首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effect induced by exposure to 50 Hz magnetic fields (MFs) in immunocytes from the mussel Mytilus galloprovincialis is evaluated. The whole animal was exposed for 15 and 30 min to MF intensities ranging from 200 to 1,000 microT. The changes in the cellular shape of immunocytes, expressed as shape factor (SF), were studied at different times after addition of the chemotacting substance N-formyl-Meth-Leu-Phe (fMLP). Results show that MFs provoke differing delays in fMLP-induced cellular shape changes: 200 microT are ineffective, while levels from 300 microT upwards cause a significant increase in immunocyte SF values compared to controls. Reactivation of the cells is possible up to an intensity of 600 microT. The use of PCO 400, an opener of ATP-sensitive K+ channels, shows that potassium channels are involved in the effect of MFs on M. galloprovincialis immunocytes.  相似文献   

2.
The ability of magnetic fields (MFs) to promote/increase Ca(2+) influx into cells is widely recognized, but the underlying mechanisms remain obscure. Here we analyze how static MFs of 6 mT modulates thapsigargin-induced Ca(2+) movements in non-excitable U937 monocytes, and how this relates to the anti-apoptotic effect of MFs. Magnetic fields do not affect thapsigargin-induced Ca(2+) mobilization from endoplasmic reticulum, but significantly increase the resulting Ca(2+) influx; this increase requires intracellular signal transduction actors including G protein, phospholipase C, diacylglycerol lipase and nitric oxide synthase, and behaves as a non-capacitative Ca(2+) entry (NCCE), a type of influx with an inherent signaling function, rather than a capacitative Ca(2+) entry (CCE). All treatments abrogating the extra Ca(2+) influx also abrogate the anti-apoptotic effect of MFs, demonstrating that MF-induced NCCE elicits an anti-apoptotic survival pathway.  相似文献   

3.
BACKGROUND: Epidemiologic data revealed increased brain tumor incidence in workers exposed to magnetic fields (MFs), raising concerns about the possible link between MF exposure and cancer. However, MFs seem to be neither mutagenic nor tumorigenic. The mechanism of their tumorigenic effect has not been elucidated. METHODS: To evaluate the interference of MFs with physical (heat shock, HS) and chemical (etoposide, VP16) induced apoptoses, respectively, we exposed a human glioblastoma primary culture to 6 mT static MF. We investigated cytosolic Ca(2+) ([Ca(2+)](i)) fluxes and extent of apoptosis as key endpoints. The effect of MFs on HS- and VP16-induced apoptoses in primary glioblastoma cultures from four patients was also tested. RESULTS: Static MFs increased the [Ca(2+)](i) from a basal value of 124 +/- 4 nM to 233 +/- 43 nM (P < 0.05). MF exposure dramatically reduced the extent of HS- and VP16-induced apoptoses in all four glioblastoma primary cultures analyzed by 56% (range, 28-87%) and 44% (range, 38-48%), respectively. However, MF alone did not exert any apoptogenic activity. Differences were observed across the four cultures with regard to apoptotic induction by HS and VP16 and to MF apoptotic reduction, with an individual variability with regard to apoptotic sensitivity. CONCLUSION: The ability of static MFs to reduce the extent of damage-induced apoptosis in glioblastoma cells might allow the survival of damaged and possibly mutated cells.  相似文献   

4.
A fragment of a putative L-type Ca(2+) channel has been identified by molecular biology experiments in immunocytes from the mussel Mytilus galloprovincialis. Using the cell permeable and Ca(2+)-specific fluorochrome FURA 2-AM, we have demonstrated that the algal toxin yessotoxin (YTX) is able to increase intracellular Ca(2+) concentration in M. galloprovincialis immunocytes. The YTX effect on Ca(2+) increase is inhibited by the L-type Ca(2+) channel inhibitor, verapamil, which is cAMP- and cGMP-dependent, but PKA- and nitric oxide-independent. On the basis of these observations, a possible role for YTX as a potential disturber of mussel immune efficiency is suggested.  相似文献   

5.
Fast Ca(2+) release kinetics were measured in cardiac sarcoplasmic reticulum vesicles actively loaded with Ca(2+). Release was induced in solutions containing 1.2 mM free ATP and variable free [Ca(2+)] and [Mg(2+)]. Release rate constants (k) were 10-fold higher at pCa 6 than at pCa 5 whereas Ryanodine binding was highest at pCa < or =5. These results suggest that channels respond differently when exposed to sudden [Ca(2+)] changes than when exposed to Ca(2+) for longer periods. Vesicles with severalfold different luminal calcium contents exhibited double exponential release kinetics at pCa 6, suggesting that channels undergo time-dependent activity changes. Addition of Mg(2+) produced a marked inhibition of release kinetics at pCa 6 (K(0.5) = 63 microM) but not at pCa 5. Coexistence of calcium activation and inhibition sites with equally fast binding kinetics is proposed to explain this behavior. Thimerosal activated release kinetics at pCa 5 at all [Mg(2+)] tested and increased at pCa 6 the K(0.5) for Mg(2+) inhibition, from 63 microM to 136 microM. We discuss the possible relevance of these results, which suggest release through RyR2 channels is subject to fast regulation by Ca(2+) and Mg(2+) followed by time-dependent regulation, to the physiological mechanisms of cardiac channel opening and closing.  相似文献   

6.
The toxin alpha-hemolysin expressed by uropathogenic Escherichia coli bacteria was recently shown as the first pathophysiologically relevant protein to induce oscillations of the intracellular Ca(2+) concentration in target cells. Here, we propose a generic three-variable kinetic model describing the Ca(2+) oscillations induced in single rat renal epithelial cells by this toxin. Specifically, we take into account the interplay between 1), the cytosolic Ca(2+) concentration; 2), IP(3)-sensitive Ca(2+) channels located in the membrane separating the cytosol and endoplasmic reticulum; and 3), toxin-related activation of production of IP(3) by phospholipase C. With these ingredients, the predicted response of cells exposed to the toxin is in good agreement with the results of experiments.  相似文献   

7.
8.
Ca(2+) sparks are small, localized cytosolic Ca(2+) transients due to Ca(2+) release from sarcoplasmic reticulum through ryanodine receptors. In smooth muscle, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, thus generating spontaneous transient outward currents (STOCs). The purpose of the present study is to determine experimentally the level of Ca(2+) to which the BK channels are exposed during a spark. Using tight seal, whole-cell recording, we have analyzed the voltage-dependence of the STOC conductance (g((STOC))), and compared it to the voltage-dependence of BK channel activation in excised patches in the presence of different [Ca(2+)]s. The Ca(2+) sparks did not change in amplitude over the range of potentials of interest. In contrast, the magnitude of g((STOC)) remained roughly constant from 20 to -40 mV and then declined steeply at more negative potentials. From this and the voltage dependence of BK channel activation, we conclude that the BK channels underlying STOCs are exposed to a mean [Ca(2+)] on the order of 10 microM during a Ca(2+) spark. The membrane area over which a concentration > or =10 microM is reached has an estimated radius of 150-300 nm, corresponding to an area which is a fraction of one square micron. Moreover, given the constraints imposed by the estimated channel density and the Ca(2+) current during a spark, the BK channels do not appear to be uniformly distributed over the membrane but instead are found at higher density at the spark site.  相似文献   

9.
Ca(2+) sparks are highly localized, transient releases of Ca(2+) from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca(2+) sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca(2+)-activated K(+) channels, and also gate Ca(2+)-activated Cl(-) (Cl((Ca))) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca(2+) sparks is well understood, little information is available on how Ca(2+) sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl((Ca)) channels in spark sites in airway myocytes from mouse. Ca(2+) sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca(2+) current underlying a Ca(2+) spark (I(Ca(spark))), with an appropriate correction for endogenous fixed Ca(2+) buffer, which was characterized by flash photolysis of NPEGTA. We found that I(Ca(spark)) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca(2+) sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the I(Ca(spark)) by less than 3 ms, and its rising phase matches the duration of the I(Ca(spark)). We further determined that Cl((Ca)) channels on average are exposed to a [Ca(2+)] of 2.4 microM or greater during Ca(2+) sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca(2+)] produced by a reaction-diffusion simulation with measured I(Ca(spark)). Finally we estimated that the number of Cl((Ca)) channels localized in Ca(2+) spark sites could account for all the Cl((Ca)) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl((Ca)) channels in Ca(2+) spark sites localize near to each other, and, moreover, Cl((Ca)) channels concentrate in an area with a radius of approximately 600 nm, where their density reaches as high as 300 channels/microm(2). This model reveals that Cl((Ca)) channels are tightly controlled by Ca(2+) sparks via local Ca(2+) signaling.  相似文献   

10.
The role of Ca(2+) mobilization from intracellular stores and Ca(2+)-activated Cl(-) channels in caffeine- and histamine-induced depolarization and contraction of the rabbit middle cerebral artery has been studied by recording membrane potential and isometric force. Caffeine induced a transient contraction and a transient followed by sustained depolarization. The transient depolarization was abolished by ryanodine, DIDS, and niflumic acid, suggesting involvement of Ca(2+)-activated Cl(-) channels. Histamine-evoked transient contraction in Ca(2+)-free solution was abolished by ryanodine or by caffeine-induced depletion of Ca(2+) stores. Ryanodine slowed the development of depolarization induced by histamine in Ca(2+)-containing solution but did not affect its magnitude. In arteries treated with 1 mM Co(2+), histamine elicited a transient depolarization and contraction, which was abolished by ryanodine. DIDS and niflumic acid reduced histamine-evoked depolarization and contraction. Histamine caused a sustained depolarization and contraction in low-Cl(-) solution. These results suggest that Ca(2+) mobilization from ryanodine-sensitive stores is involved in histamine-induced initial, but not sustained, depolarization and contraction. Ca(2+)-activated Cl(-) channels contribute mainly to histamine-induced initial depolarization and less importantly to sustained depolarization, which is most likely dependent on activation of nonselective cation channels.  相似文献   

11.
Recently, we described a novel 3-pS Ca(2+)-conducting channel that is activated by BAPTA and thapsigargin-induced passive depletion of intracellular Ca(2+) stores and likely to be a native store-operated channel in vascular smooth muscle cells (SMC). Neither Ca(2+) nor inositol 1,4,5-trisphosphate or other second messengers tested activated this channel in membrane patches excised from resting SMC. Here we report that these 3-pS channels are activated in inside-out membrane patches from SMC immediately upon application of Ca(2+) influx factor (CIF) extracted from mutant yeast, which has been previously shown to activate Ca(2+) influx in Xenopus oocytes and Ca(2+) release-activated Ca(2+) current in Jurkat cells. In bioassay experiments depletion of Ca(2+) stores in permeabilized human platelets resulted in the release of endogenous factor, which activated 3-pS channels in isolated inside-out membrane patches excised from SMC and exposed to permeabilized platelets. The same 3-pS channels in excised membrane patches were also activated by acid extracts of CIF derived from human platelets with depleted Ca(2+) stores, which also stimulated Ca(2+) influx upon injection into Xenopus oocytes. Specific high pressure liquid chromatography fractions of platelet extracts were found to have CIF activity when injected into oocytes and activate 3-pS channels in excised membrane patches. These data show for the first time that CIF produced by mammalian cells and yeast with depleted Ca(2+) stores directly activates native 3-pS cation channels, which in intact SMC are activated by Ca(2+) store depletion.  相似文献   

12.
We have reported that a transient treatment of hippocampal neurons with alpha-tocopherol induced a long-lasting protection against oxidative damage mediated by Fe(2+) ions. This protection required protein synthesis. Here, we have studied whether this "hyposensitivity" to oxidative stress could be linked to an altered Ca(2+) homeostasis. Fe(2+) ions triggered a Ca(2+) entry which was required for Fe(2+) ion-induced toxicity. This influx was sensitive to blockers of TRP-like nonspecific Ca(2+) channels, including Ruthenium Red, La(3+), and Gd(3+) ions which also prevented the Fe(2+) ion-induced toxicity and oxidative stress as revealed by protein carbonylation status. The pretreatment with alpha-tocopherol resulted in a reduction of the Ca(2+) increase induced by Fe(2+) ions and masked the blocking effect of La(3+) ions. Moreover, such a pretreatment reduced the capacitive Ca(2+) entries (CCE) observed after metabotropic glutamate receptor stimulation, which are known to involve TRP-like channels. By contrast, in a model of "hypersensitivity" to oxidative stress obtained by chronic stimulation of glucocorticoid receptors, we observed an exacerbation of the various effects of Fe(2+) ions, i.e., cellular toxicity and Ca(2+) increase, and the glutamate-stimulated CCE. Therefore, we conclude that the long-lasting neuroprotection induced by alpha-tocopherol pretreatment likely results from an attenuation of Ca(2+) entries via TRP-like channels.  相似文献   

13.
In plant cells, Al ion plays dual roles as an inducer and an inhibitor of Ca(2+) influx depending on the concentration. Here, the effects of Al on Ca(2+) signaling were assessed in tobacco BY-2 cells expressing aequorin and a putative plant Ca(2+) channel from Arabidopsis thaliana, AtTPC1 (two-pore channel 1). In wild-type cells (expressing only aequorin), Al treatment induced the generation of superoxide, and Ca(2+) influx was secondarily induced by superoxide. Higher Al concentrations inhibited the Al-stimulated and superoxide-mediated Ca(2+) influx, indicating that Ca(2+) channels responsive to reactive oxygen species (ROS) are blocked by high concentration of Al. H(2)O(2)-induced Ca(2+) influx was also inhibited by Al. Thus, inhibitory action of Al against ROS-induced Ca(2+) influx was confirmed. Similarly, known Ca(2+) channel blockers such as ions of La and Gd inhibited the H(2)O(2)-induced Ca(2+) influx. While La also inhibited the hypoosmotically induced Ca(2+) influx, Al showed no inhibitory effect against the hypoosmotic Ca(2+) influx. The effects of Al and La on Ca(2+) influx were also tested in the cell line overexpressing AtTPC1 and the cell line AtTPC1-dependently cosuppressing the endogenous TPC1 equivalents. Notably, responsiveness to H(2)O(2) was lost in the cosuppression cell line, thus TPC1 channels are required for ROS-responsive Ca(2+) influx. Data also suggested that hypoosmotic shock induces TPC1-independent Ca(2+) influx and Al shows no inhibitory action against the TPC1-independent event. In addition, AtTPC1 overexpression resulted in a marked increase in Al-sensitive Ca(2+) influx, indicating that TPC1 channels participate in osmotic Ca(2+) influx only when overexpressed. We concluded that members of TPC1 channel family are the only ROS-responsive Ca(2+) channels and are the possible targets of Al-dependent inhibition.  相似文献   

14.
Amperometry and microfluorimetry were employed to investigate the Ca(2+)-dependence of catecholamine release induced from PC12 cells by cholinergic agonists. Nicotine-evoked exocytosis was entirely dependent on extracellular Ca(2+) but was only partly blocked by Cd(2+), a nonselective blocker of voltage-gated Ca(2+) channels. Secretion and rises of [Ca(2+)](i) observed in response to nicotine could be almost completely blocked by methyllycaconitine and alpha-bungarotoxin, indicating that such release was mediated by receptors composed of alpha7 nicotinic acetylcholine receptor subunits. Secretion and [Ca(2+)](i) rises could also be fully blocked by co-application of Cd(2+) and Zn(2+). Release evoked by muscarine was also fully dependent on extracellular Ca(2+). Muscarinic receptor activation stimulated release of Ca(2+) from a caffeine-sensitive intracellular store, and release from this store induced capacitative Ca(2+) entry that could be blocked by La(3+) and Zn(2+). This Ca(2+) entry pathway mediated all secretion evoked by muscarine. Thus, activation of acetylcholine receptors stimulated rises of [Ca(2+)](i) and exocytosis via Ca(2+) influx through voltage-gated Ca(2+) channels, alpha7 subunit-containing nicotinic acetylcholine receptors, and channels underlying capacitative Ca(2+) entry.  相似文献   

15.
Ca(2+) sparks are highly localized cytosolic Ca(2+) transients caused by a release of Ca(2+) from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca(2+) in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, causing spontaneous transient outward currents (STOCs) that regulate membrane potential and, hence, voltage-gated channels. Using the fluorescent Ca(2+) indicator fluo-3 and a high speed widefield digital imaging system, it was possible to capture the total increase in fluorescence (i.e., the signal mass) during a spark in smooth muscle cells, which is the first time such a direct approach has been used in any system. The signal mass is proportional to the total quantity of Ca(2+) released into the cytosol, and its rate of rise is proportional to the Ca(2+) current flowing through the RyRs during a spark (I(Ca(spark))). Thus, Ca(2+) currents through RyRs can be monitored inside the cell under physiological conditions. Since the magnitude of I(Ca(spark)) in different sparks varies more than fivefold, Ca(2+) sparks appear to be caused by the concerted opening of a number of RyRs. Sparks with the same underlying Ca(2+) current cause STOCs, whose amplitudes vary more than threefold, a finding that is best explained by variability in coupling ratio (i.e., the ratio of RyRs to BK channels in the spark microdomain). The time course of STOC decay is approximated by a single exponential that is independent of the magnitude of signal mass and has a time constant close to the value of the mean open time of the BK channels, suggesting that STOC decay reflects BK channel kinetics, rather than the time course of [Ca(2+)] decline at the membrane. Computer simulations were carried out to determine the spatiotemporal distribution of the Ca(2+) concentration resulting from the measured range of I(Ca(spark)). At the onset of a spark, the Ca(2+) concentration within 200 nm of the release site reaches a plateau or exceeds the [Ca(2+)](EC50) for the BK channels rapidly in comparison to the rate of rise of STOCs. These findings suggest a model in which the BK channels lie close to the release site and are exposed to a saturating [Ca(2+)] with the rise and fall of the STOCs determined by BK channel kinetics. The mechanism of signaling between RyRs and BK channels may provide a model for Ca(2+) action on a variety of molecular targets within cellular microdomains.  相似文献   

16.
We have evaluated the presence of capacitative Ca(2+) entry (CCE) in guinea pig gallbladder smooth muscle (GBSM), including a possible relation with activation of L-type Ca(2+) channels. Changes in cytosolic Ca(2+) concentration induced by Ca(2+) entry were assessed by digital microfluorometry in isolated, fura 2-loaded GBSM cells. Application of thapsigargin, a specific inhibitor of the Ca(2+) store pump, induced a transient Ca(2+) release followed by sustained entry of extracellular Ca(2+). Depletion of the stores with thapsigargin, cyclopiazonic acid, ryanodine and caffeine, high levels of the Ca(2+)-mobilizing hormone cholecystokinin octapeptide, or simple removal of external Ca(2+) resulted in a sustained increase in Ca(2+) entry on subsequent reapplication of Ca(2+). This entry was attenuated by 2-aminoethoxydiphenylborane, L-type Ca(2+) channel blockade, pinacidil, and Gd(3+). Accumulation of the voltage-sensitive dye 3,3'-dipentylcarbocyanine and direct intracellular recordings showed that depletion of the stores is sufficient for depolarization of the plasma membrane. Contractility studies in intact gallbladder muscle strips showed that CCE induced contractions. The CCE-evoked contraction was sensitive to 2-aminoethoxydiphenylborane, L-type Ca(2+) channel blockers, and Gd(3+). We conclude that, in GBSM, release of Ca(2+) from internal stores activates a CCE pathway and depolarizes plasma membrane, allowing coactivation of voltage-operated L-type Ca(2+) channels. This process may play a role in excitation-contraction coupling in GBSM.  相似文献   

17.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

18.
19.
Zhang W  Fan LM  Wu WH 《Plant physiology》2007,143(3):1140-1151
In responses to a number of environmental stimuli, changes of cytoplasmic [Ca(2+)](cyt) in stomatal guard cells play important roles in regulation of stomatal movements. In this study, the osmo-sensitive and stretch-activated (SA) Ca(2+) channels in the plasma membrane of Vicia faba guard cells are identified, and their regulation by osmotic changes and actin dynamics are characterized. The identified Ca(2+) channels were activated under hypotonic conditions at both whole-cell and single-channel levels. The channels were also activated by a stretch force directly applied to the membrane patches. The channel-mediated inward currents observed under hypotonic conditions or in the presence of a stretch force were blocked by the Ca(2+) channel inhibitor Gd(3+). Disruption of actin filaments activated SA Ca(2+) channels, whereas stabilization of actin filaments blocked the channel activation induced by stretch or hypotonic treatment, indicating that actin dynamics may mediate the stretch activation of these channels. In addition, [Ca(2+)](cyt) imaging demonstrated that both the hypotonic treatment and disruption of actin filaments induced significant Ca(2+) elevation in guard cell protoplasts, which is consistent with our electrophysiological results. It is concluded that stomatal guard cells may utilize SA Ca(2+) channels as osmo sensors, by which swelling of guard cells causes elevation of [Ca(2+)](cyt) and consequently inhibits overswelling of guard cells. This SA Ca(2+) channel-mediated negative feedback mechanism may coordinate with previously hypothesized positive feedback mechanisms and regulate stomatal movement in response to environmental changes.  相似文献   

20.
The ciliate Tetrahymena vorax is normally insensitive to light. However, after uptake of acridine orange, blue light evokes instant backward swimming. The dye accumulates mainly in posterior vacuoles, with half-maximal uptake after 1 min. Illumination for 10 s induced a depolarisation of approximately 15 mV lasting less than 2 s, followed by a sustained hyperpolarisation of approximately 20 mV. Deciliated cells displayed a similar response. The hyperpolarisation was linked to reduced membrane resistance, showed a reversal potential of approximately -55 mV and was blocked by 1 mmol l(-1) TEA. The rate of rise of electrically evoked Ca(2+)-spikes was reduced during the hyperpolarisation, which is compatible with elevated cytosolic Ca(2+) concentration. This suggests that the hyperpolarisation may be caused by activation of Ca(2+)-sensitive K(+) channels. The depolarisation was abolished in Ca(2+)-free medium, whereas the hyperpolarisation was unaffected. Illumination for 2 s, or prolonged stimulation restricted to the anterior part of the cell, induced depolarisation only. Illumination of the posterior part caused delayed hyperpolarisation with no preceding depolarisation. We conclude that the induced backward swimming is associated with Ca(2+) influx through anterior channels, while Ca(2+) released from intracellular stores activates K(+) channels responsible for the delayed hyperpolarisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号