首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Identification of the structural domains of proteins is important for our understanding of the organizational principles and mechanisms of protein folding, and for insights into protein function and evolution. Algorithmic methods of dissecting protein of known structure into domains developed so far are based on an examination of multiple geometrical, physical and topological features. Successful as many of these approaches are, they employ a lot of heuristics, and it is not clear whether they illuminate any deep underlying principles of protein domain organization. Other well-performing domain dissection methods rely on comparative sequence analysis. These methods are applicable to sequences with known and unknown structure alike, and their success highlights a fundamental principle of protein modularity, but this does not directly improve our understanding of protein spatial structure.  相似文献   

2.

Background  

Inferences about protein function are often made based on sequence homology to other gene products of known activities. This approach is valuable for small families of conserved proteins but can be difficult to apply to large superfamilies of proteins with diverse function. In this study we looked at sequence homology between members of the DJ-1/ThiJ/PfpI superfamily, which includes a human protein of unclear function, DJ-1, associated with inherited Parkinson's disease.  相似文献   

3.

Background  

The classification of protein domains in the CATH resource is primarily based on structural comparisons, sequence similarity and manual analysis. One of the main bottlenecks in the processing of new entries is the evaluation of 'borderline' cases by human curators with reference to the literature, and better tools for helping both expert and non-expert users quickly identify relevant functional information from text are urgently needed. A text based method for protein classification is presented, which complements the existing sequence and structure-based approaches, especially in cases exhibiting low similarity to existing members and requiring manual intervention. The method is based on the assumption that textual similarity between sets of documents relating to proteins reflects biological function similarities and can be exploited to make classification decisions.  相似文献   

4.

Background  

The signal peptide plays an important role in protein targeting and protein translocation in both prokaryotic and eukaryotic cells. This transient, short peptide sequence functions like a postal address on an envelope by targeting proteins for secretion or for transfer to specific organelles for further processing. Understanding how signal peptides function is crucial in predicting where proteins are translocated. To support this understanding, we present SPdb signal peptide database , a repository of experimentally determined and computationally predicted signal peptides.  相似文献   

5.
6.

Background  

Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest.  相似文献   

7.

Background  

The eukaryotic cell has an intricate architecture with compartments and substructures dedicated to particular biological processes. Knowing the subcellular location of proteins not only indicates how bio-processes are organized in different cellular compartments, but also contributes to unravelling the function of individual proteins. Computational localization prediction is possible based on sequence information alone, and has been successfully applied to proteins from virtually all subcellular compartments and all domains of life. However, we realized that current prediction tools do not perform well on partial protein sequences such as those inferred from Expressed Sequence Tag (EST) data, limiting the exploitation of the large and taxonomically most comprehensive body of sequence information from eukaryotes.  相似文献   

8.
9.
10.

Background  

Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation.  相似文献   

11.

Background

Streptomyces coelicolor has long been considered a remarkable bacterium with a complex life-cycle, ubiquitous environmental distribution, linear chromosomes and plasmids, and a huge range of pharmaceutically useful secondary metabolites. Completion of the genome sequence demonstrated that this diversity carried through to the genetic level, with over 7000 genes identified. We sought to expand our understanding of this organism at the molecular level through identification and annotation of novel protein domains. Protein domains are the evolutionary conserved units from which proteins are formed.

Results

Two automated methods were employed to rapidly generate an optimised set of targets, which were subsequently analysed manually. A final set of 37 domains or structural repeats, represented 204 times in the genome, was developed. Using these families enabled us to correlate items of information from many different resources. Several immediately enhance our understanding both of S. coelicolor and also general bacterial molecular mechanisms, including cell wall biosynthesis regulation and streptomycete telomere maintenance.

Discussion

Delineation of protein domain families enables detailed analysis of protein function, as well as identification of likely regions or residues of particular interest. Hence this kind of prior approach can increase the rate of discovery in the laboratory. Furthermore we demonstrate that using this type of in silico method it is possible to fairly rapidly generate new biological information from previously uncorrelated data.  相似文献   

12.

Background  

PDZ domain is a well-conserved, structural protein domain found in hundreds of signaling proteins that are otherwise unrelated. PDZ domains can bind to the C-terminal peptides of different proteins and act as glue, clustering different protein complexes together, targeting specific proteins and routing these proteins in signaling pathways. These domains are classified into classes I, II and III, depending on their binding partners and the nature of bonds formed. Binding specificities of PDZ domains are very crucial in order to understand the complexity of signaling pathways. It is still an open question how these domains recognize and bind their partners.  相似文献   

13.

Background  

Modern-day proteins were selected during long evolutionary history as descendants of ancient life forms. In silico reconstruction of such ancestral protein sequences facilitates our understanding of evolutionary processes, protein classification and biological function. Additionally, reconstructed ancestral protein sequences could serve to fill in sequence space thus aiding remote homology inference.  相似文献   

14.

Background

While many authors have discussed models and tools for studying protein evolution at the sequence level, molecular function is usually mediated by complex, higher order features such as independently folding domains and linear motifs that are based on or embedded in a particular arrangment of features such as secondary structure elements, transmembrane domains and regions with intrinsic disorder. This ‘protein architecture’ can, in its most simplistic representation, be visualized as domain organization cartoons that can be used to compare proteins in terms of the order of their mostly globular domains.

Methodology

Here, we describe a visual approach and a webserver for protein comparison that extend the domain organization cartoon concept. By developing an information-rich, compact visualization of different protein features above the sequence level, potentially related proteins can be compared at the level of propensities for secondary structure, transmembrane domains and intrinsic disorder, in addition to PFAM domains. A public Web server is available at www.proteinarchitect.net, while the code is provided at protarchitect.sourceforge.net.

Conclusions/Significance

Due to recent advances in sequencing technologies we are now flooded with millions of predicted proteins that await comparative analysis. In many cases, mature tools focused on revealing hits with considerable global or local similarity to well-characterized proteins will not be able to lead us to testable hypotheses about a protein''s function, or the function of a particular region. The visual comparison of different types of protein features with ProteinArchitect will be useful when assessing the relevance of similarity search hits, to discover subgroups in protein families and superfamilies, and to understand protein regions with conserved features outside globular regions. Therefore, this approach is likely to help researchers to develop testable hypotheses about a protein''s function even if is somewhat distant from the more characterized proteins, by facilitating the discovery of features that are conserved above the sequence level for comparison and further experimental investigation.  相似文献   

15.

Background  

There is an increasing number of proteins with known structure but unknown function. Determining their function would have a significant impact on understanding diseases and designing new therapeutics. However, experimental protein function determination is expensive and very time-consuming. Computational methods can facilitate function determination by identifying proteins that have high structural and chemical similarity.  相似文献   

16.

Background  

Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL.  相似文献   

17.

Background  

Over the past decade our laboratory has focused on understanding how soluble cytoskeleton-associated proteins interact with membranes and other lipid aggregates. Many protein domains mediating specific cell membrane interactions appear by fluorescence microscopy and other precision techniques to be partially inserted into the lipid bilayer. It is unclear whether these protein-lipid-interactions are dependent on shared protein motifs or unique regional physiochemistry, or are due to more global characteristics of the protein.  相似文献   

18.

Background  

Domains are basic units of proteins, and thus exploring associations between protein domains and human inherited diseases will greatly improve our understanding of the pathogenesis of human complex diseases and further benefit the medical prevention, diagnosis and treatment of these diseases. Within a given domain-domain interaction network, we make the assumption that similarities of disease phenotypes can be explained using proximities of domains associated with such diseases. Based on this assumption, we propose a Bayesian regression approach named "domainRBF" (domain Rank with Bayes Factor) to prioritize candidate domains for human complex diseases.  相似文献   

19.
20.

Background  

Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号