首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of genes associated with hereditary disorders has contributed to improving medical care and to a better understanding of gene functions, interactions, and pathways. However, there are well over 1500 Mendelian disorders whose molecular basis remains unknown. At present, methods such as linkage analysis can identify the chromosomal region in which unknown disease genes are located, but the regions could contain up to hundreds of candidate genes. In this work, we present a method for prioritization of candidate genes by use of a global network distance measure, random walk analysis, for definition of similarities in protein-protein interaction networks. We tested our method on 110 disease-gene families with a total of 783 genes and achieved an area under the ROC curve of up to 98% on simulated linkage intervals of 100 genes surrounding the disease gene, significantly outperforming previous methods based on local distance measures. Our results not only provide an improved tool for positional-cloning projects but also add weight to the assumption that phenotypically similar diseases are associated with disturbances of subnetworks within the larger protein interactome that extend beyond the disease proteins themselves.  相似文献   

2.

Background

Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates.

Methodology/Principal Findings

We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases.

Conclusion

Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes.  相似文献   

3.
Complex genetic disorders often involve products of multiple genes acting cooperatively. Hence, the pathophenotype is the outcome of the perturbations in the underlying pathways, where gene products cooperate through various mechanisms such as protein-protein interactions. Pinpointing the decisive elements of such disease pathways is still challenging. Over the last years, computational approaches exploiting interaction network topology have been successfully applied to prioritize individual genes involved in diseases. Although linkage intervals provide a list of disease-gene candidates, recent genome-wide studies demonstrate that genes not associated with any known linkage interval may also contribute to the disease phenotype. Network based prioritization methods help highlighting such associations. Still, there is a need for robust methods that capture the interplay among disease-associated genes mediated by the topology of the network. Here, we propose a genome-wide network-based prioritization framework named GUILD. This framework implements four network-based disease-gene prioritization algorithms. We analyze the performance of these algorithms in dozens of disease phenotypes. The algorithms in GUILD are compared to state-of-the-art network topology based algorithms for prioritization of genes. As a proof of principle, we investigate top-ranking genes in Alzheimer''s disease (AD), diabetes and AIDS using disease-gene associations from various sources. We show that GUILD is able to significantly highlight disease-gene associations that are not used a priori. Our findings suggest that GUILD helps to identify genes implicated in the pathology of human disorders independent of the loci associated with the disorders.  相似文献   

4.
MOTIVATION: Identifying candidate genes associated with a given phenotype or trait is an important problem in biological and biomedical studies. Prioritizing genes based on the accumulated information from several data sources is of fundamental importance. Several integrative methods have been developed when a set of candidate genes for the phenotype is available. However, how to prioritize genes for phenotypes when no candidates are available is still a challenging problem. RESULTS: We develop a new method for prioritizing genes associated with a phenotype by Combining Gene expression and protein Interaction data (CGI). The method is applied to yeast gene expression data sets in combination with protein interaction data sets of varying reliability. We found that our method outperforms the intuitive prioritizing method of using either gene expression data or protein interaction data only and a recent gene ranking algorithm GeneRank. We then apply our method to prioritize genes for Alzheimer's disease. AVAILABILITY: The code in this paper is available upon request.  相似文献   

5.
Lee TL  Raygada MJ  Rennert OM 《Gene》2012,496(2):88-96
Autism spectrum disorders (ASDs) are a group of diseases exhibiting impairment in social drive, communication/language skills and stereotyped behaviors. Though an increased number of candidate genes and molecular interactions have been identified by various approaches, the pathogenesis remains elusive. Based on clinical observations, data from accessible GWAS and expression datasets we identified ASDs gene candidates. Integrative gene network and a novel CNV-centric Node Network (CNN) analysis method highlighted ASDs-associated key elements and biological processes. Functional analysis identified neurological functions including synaptic cholinergic receptor (CHRNA) families, dopamine receptor (DRD2), and correlations between social behavior and oxytocin related pathways. CNN analysis of genome-wide genetic and expression data identified inheritance-related clusters related to PTEN/TSC1/FMR1 and mTor/PI3K regulation. Integrative analysis identified potential regulators of networks, specifically TNF and beta-estradiol, suggesting a potential central role in ASDs. Our data provide information on potential disease mechanisms, and key regulators that may generate novel postulations, and diagnostic molecular biomarkers.  相似文献   

6.
Recent advances in genome sequencing techniques have improved our understanding of the genotype-phenotype relationship between genetic variants and human diseases. However, genetic variations uncovered from patient populations do not provide enough information to understand the mechanisms underlying the progression and clinical severity of human diseases. Moreover, building a high-resolution genotype-phenotype map is difficult due to the diverse genetic backgrounds of the human population. We built a cross-species genotype-phenotype map to explain the clinical severity of human genetic diseases. We developed a data-integrative framework to investigate network modules composed of human diseases mapped with gene essentiality measured from a model organism. Essential and nonessential genes connect diseases of different types which form clusters in the human disease network. In a large patient population study, we found that disease classes enriched with essential genes tended to show a higher mortality rate than disease classes enriched with nonessential genes. Moreover, high disease mortality rates are explained by the multiple comorbid relationships and the high pleiotropy of disease genes found in the essential gene-enriched diseases. Our results reveal that the genotype-phenotype map of a model organism can facilitate the identification of human disease-gene associations and predict human disease progression.  相似文献   

7.
Linkage analysis is a successful procedure to associate diseases with specific genomic regions. These regions are often large, containing hundreds of genes, which make experimental methods employed to identify the disease gene arduous and expensive. We present two methods to prioritize candidates for further experimental study: Common Pathway Scanning (CPS) and Common Module Profiling (CMP). CPS is based on the assumption that common phenotypes are associated with dysfunction in proteins that participate in the same complex or pathway. CPS applies network data derived from protein–protein interaction (PPI) and pathway databases to identify relationships between genes. CMP identifies likely candidates using a domain-dependent sequence similarity approach, based on the hypothesis that disruption of genes of similar function will lead to the same phenotype. Both algorithms use two forms of input data: known disease genes or multiple disease loci. When using known disease genes as input, our combined methods have a sensitivity of 0.52 and a specificity of 0.97 and reduce the candidate list by 13-fold. Using multiple loci, our methods successfully identify disease genes for all benchmark diseases with a sensitivity of 0.84 and a specificity of 0.63. Our combined approach prioritizes good candidates and will accelerate the disease gene discovery process.  相似文献   

8.
Piro RM  Di Cunto F 《The FEBS journal》2012,279(5):678-696
The identification of genes involved in human hereditary diseases often requires the time-consuming and expensive examination of a great number of possible candidate genes, since genome-wide techniques such as linkage analysis and association studies frequently select many hundreds of 'positional' candidates. Even considering the positive impact of next-generation sequencing technologies, the prioritization of candidate genes may be an important step for disease-gene identification. In this paper we develop a basic classification scheme for computational approaches to disease-gene prediction and apply it to exhaustively review bioinformatics tools that have been developed for this purpose, focusing on conceptual aspects rather than technical detail and performance. Finally, we discuss some past successes obtained by computational approaches to illustrate their beneficial contribution to medical research.  相似文献   

9.
We present a new multilocus method for the fine-scale mapping of genes contributing to human diseases. The method is designed for use with multiple biallelic markers-in particular, single-nucleotide polymorphisms for which high-density genetic maps will soon be available. We model disease-marker association in a candidate region via a hidden Markov process and allow for correlation between linked marker loci. Using Markov-chain-Monte Carlo simulation methods, we obtain posterior distributions of model parameter estimates including disease-gene location and the age of the disease-predisposing mutation. In addition, we allow for heterogeneity in recombination rates, across the candidate region, to account for recombination hot and cold spots. We also obtain, for the ancestral marker haplotype, a posterior distribution that is unique to our method and that, unlike maximum-likelihood estimation, can properly account for uncertainty. We apply the method to data for cystic fibrosis and Huntington disease, for which mutations in disease genes have already been identified. The new method performs well compared with existing multi-locus mapping methods.  相似文献   

10.
Zhang L  Li X  Tai J  Li W  Chen L 《PloS one》2012,7(6):e39542
Predicting candidate genes using gene expression profiles and unbiased protein-protein interactions (PPI) contributes a lot in deciphering the pathogenesis of complex diseases. Recent studies showed that there are significant disparities in network topological features between non-disease and disease genes in protein-protein interaction settings. Integrated methods could consider their characteristics comprehensively in a biological network. In this study, we introduce a novel computational method, based on combined network topological features, to construct a combined classifier and then use it to predict candidate genes for coronary artery diseases (CAD). As a result, 276 novel candidate genes were predicted and were found to share similar functions to known disease genes. The majority of the candidate genes were cross-validated by other three methods. Our method will be useful in the search for candidate genes of other diseases.  相似文献   

11.
In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL) analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided opportunities to test our approach, our method can be applied to any disease system where genetic variations play a fundamental causal role.  相似文献   

12.

Background

Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seed-network of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development.

Methodology/Principal Findings

Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina.

Conclusions/Significance

We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will facilitate the use of prior biological knowledge to develop rational systems-based hypotheses.  相似文献   

13.

Background

Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of common diseases or complex traits is becoming increasingly recognized. Thus, the development of a network-based approach combined with phenotypic profiling would be useful for disease gene prioritization.

Results

We developed a random-set scoring model and implemented it to quantify phenotype relevance in a network-based disease gene-prioritization approach. We validated our approach based on different gene phenotypic profiles, which were generated from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining of the phenotype data. Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to a range of human diseases. The resulting accurate ranking of known causal genes supported the reliability of our approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a complex mode of inheritance.

Conclusion

We have implemented and validated a network-based approach to prioritize genes for human diseases based on their phenotypic profile. We have devised a powerful and transparent tool to identify and rank candidate genes. Our global gene prioritization provides a unique resource for the biological interpretation of data from genome-wide association studies, and will help in the understanding of how the associated genetic variants influence disease or quantitative phenotypes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-315) contains supplementary material, which is available to authorized users.  相似文献   

14.
Identifying genes involved in complex neuropsychiatric disorders through classic human genetic approaches has proven difficult. To overcome that barrier, we have developed a translational approach called Convergent Functional Genomics (CFG), which cross-matches animal model microarray gene expression data with human genetic linkage data as well as human postmortem brain data and biological role data, as a Bayesian way of cross-validating findings and reducing uncertainty. Our approach produces a short list of high probability candidate genes out of the hundreds of genes changed in microarray datasets and the hundreds of genes present in a linkage peak chromosomal area. These genes can then be prioritized, pursued, and validated in an individual fashion using: (1) human candidate gene association studies and (2) cell culture and mouse transgenic models. Further bioinformatics analysis of groups of genes identified through CFG leads to insights into pathways and mechanisms that may be involved in the pathophysiology of the illness studied. This simple but powerful approach is likely generalizable to other complex, non-neuropsychiatric disorders, for which good animal models, as well as good human genetic linkage datasets and human target tissue gene expression datasets exist.  相似文献   

15.
The present study proposed a two-step drug repositioning method based on a protein-protein interaction (PPI) network of two diseases and the similarity of the drugs prescribed for one of the two. In the proposed method, first, lists of disease related genes were obtained from a meta-database called Genotator. Then genes shared by a pair of diseases were sought. At the first step of the method, if a drug having its target(s) in the PPI network, the drug was deemed a repositioning candidate. Because targets of many drugs are still unknown, the similarities between the prescribed drugs for a specific disease were used to infer repositioning candidates at the second step. As a first attempt, we applied the proposed method to four different types of diseases: hypertension, diabetes mellitus, Crohn disease, and autism. Some repositioning candidates were found both at the first and second steps.  相似文献   

16.
Sun G  Schliekelman P 《Genetics》2011,187(3):939-953
We describe a method for integrating gene expression information into genome scans and show that this can substantially increase the statistical power of QTL mapping. The method has three stages. First, standard clustering methods identify small (size 5-20) groups of genes with similar expression patterns. Second, each gene group is tested for a causative genetic locus shared with the clinical trait of interest. This is done using an EM algorithm approach that treats genotype at the putative causative locus as an unobserved variable and combines expression information from all of the genes in the group to infer genotype information at the locus. Finally, expression QTL (eQTL) are mapped for each gene group that shares a causative locus with the clinical trait. Such eQTL are candidates for the causative locus. Simulation results show that this method has far superior power to standard QTL mapping techniques in many circumstances. We applied this method to existing data on mouse obesity. Our method identified 27 putative body weight QTL, whereas standard QTL mapping produced only one. Furthermore, most gene groups with body weight QTL included cis genes, so candidate genes could be immediately identified. Eleven body weight QTL produced 16 candidate genes that have been previously associated with body weight or body weight-related traits, thus validating our method. In addition, 15 of the 16 other loci produced 32 candidate genes that have not been associated with body weight. Thus, this method shows great promise for finding new causative loci for complex traits.  相似文献   

17.
Alternative splicing (AS) regulates biological processes governing phenotypes and diseases. Differential AS (DAS) gene test methods have been developed to investigate important exonic expression from high-throughput datasets. However, the DAS events extracted using statistical tests are insufficient to delineate relevant biological processes. In this study, we developed a novel application, Alternative Splicing Encyclopedia: Functional Interaction (ASpediaFI), to systemically identify DAS events and co-regulated genes and pathways. ASpediaFI establishes a heterogeneous interaction network of genes and their feature nodes (i.e., AS events and pathways) connected by co-expression or pathway gene set knowledge. Next, ASpediaFI explores the interaction network using the random walk with restart algorithm and interrogates the proximity from a query gene set. Finally, ASpediaFI extracts significant AS events, genes, and pathways. To evaluate the performance of our method, we simulated RNA sequencing (RNA-seq) datasets to consider various conditions of sequencing depth and sample size. The performance was compared with that of other methods. Additionally, we analyzed three public datasets of cancer patients or cell lines to evaluate how well ASpediaFI detects biologically relevant candidates. ASpediaFI exhibits strong performance in both simulated and public datasets. Our integrative approach reveals that DAS events that recognize a global co-expression network and relevant pathways determine the functional importance of spliced genes in the subnetwork. ASpediaFI is publicly available at https://bioconductor.org/packages/ASpediaFI.  相似文献   

18.
Genome-wide techniques such as microarray analysis, Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS), linkage analysis and association studies are used extensively in the search for genes that cause diseases, and often identify many hundreds of candidate disease genes. Selection of the most probable of these candidate disease genes for further empirical analysis is a significant challenge. Additionally, identifying the genes that cause complex diseases is problematic due to low penetrance of multiple contributing genes. Here, we describe a novel bioinformatic approach that selects candidate disease genes according to their expression profiles. We use the eVOC anatomical ontology to integrate text-mining of biomedical literature and data-mining of available human gene expression data. To demonstrate that our method is successful and widely applicable, we apply it to a database of 417 candidate genes containing 17 known disease genes. We successfully select the known disease gene for 15 out of 17 diseases and reduce the candidate gene set to 63.3% (±18.8%) of its original size. This approach facilitates direct association between genomic data describing gene expression and information from biomedical texts describing disease phenotype, and successfully prioritizes candidate genes according to their expression in disease-affected tissues.  相似文献   

19.
Complex diseases result from contributions of multiple genes that act in concert through pathways. Here we present a method to prioritize novel candidates of disease-susceptibility genes depending on the biological similarities to the known disease-related genes. The extent of disease-susceptibility of a gene is prioritized by analyzing seven features of human genes captured in H-InvDB. Taking rheumatoid arthritis (RA) and prostate cancer (PC) as two examples, we evaluated the efficiency of our method. Highly scored genes obtained included TNFSF12 and OSM as candidate disease genes for RA and PC, respectively. Subsequent characterization of these genes based upon an extensive literature survey reinforced the validity of these highly scored genes as possible disease-susceptibility genes. Our approach, Prioritization ANalysis of Disease Association (PANDA), is an efficient and cost-effective method to narrow down a large set of genes into smaller subsets that are most likely to be involved in the disease pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号