首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李春香  杨群 《遗传》2003,25(2):177-180
对杉科(Taxodiaceae)与柏科(Cupressaceae s.s.)的28S rRNA基因的部分序列(约630 bp)进行PCR扩增、序列测定和系统发生关系分析,用简约法和邻接法构建的系统发生树基本一致。结果表明,杉科与柏科构成一个单系群,支持将杉科、柏科(Sciadopitys除外)合并为一个科——广义柏科(Cupressaceae sensu lato)的观点。在广义柏科中,Taiwania、Athrotaxis分别形成一支系;Metasequoia、Sequoia、Sequoiadendron关系较近,聚成一支系; Taxodium、Glyptostrobus、Cryptomeria聚成一支系;柏科聚成一支系。这一分析结果与叶绿体基因序列的分析结果相吻合,但是由于28S rRNA基因的进化速率较慢,尚不能分辨上述各个支系之间的系统演化关系。 Abstract:DNA sequences from 28S rDNA were used to assess relationships between and within traditional Taxodiaceae and Cupressaceae s.s.The MP tree and NJ tree generally are similar to one another.The results show that Taxodiaceae and Cupressaceae s.s.form a monophyletic conifer lineage excluding Sciadopitys.In the Taxodiaceae-Cupressaceae s.s.monophyletic group,the Taxodiaceae is paraphyletic.Taxodium,Glyptostrobus and Cryptomeria forming a clade(Taxodioideae),in which Glyptostrobus and Taxodium are closely related and sister to Cryptomeria;Sequoia,Sequoiadendron and Metasequoia are closely related to each other,forming another clade (Sequoioideae),in which Sequoia and Sequoiadendron are closely related and sister to Metasequoia;the seven genera of Cupressaceae s.s.are found to be closely related to form a monophyletic lineage (Cupressoideae).These results are basically similar to analyses from chloroplast gene data.But the relationships among Taiwania,Sequoioideae,Taxodioideae,and Cupressoideae remain unclear because of the slow evolution rate of 28S rDNA,which might best be answered by sequencing more rapidly evolving nuclear genes.  相似文献   

2.
In the present paper,both cladistic analysis and phenetic analysis were conducted to evaluate the phylogenetic relationships of the Taxodiaceae based on an extensive literature review and study of herbarium. In the cladistic analysis,the Sciadopityaceae was chosen as outgroup.The polarity of characters was determined mainly according to outgroup comparison,fossil evidence and generally accepted viewpoints of morphological evolution.By the result of compatibility analysis,character 2(leaf type),which possessed a much higher coefficient than others whether or not its polarity was altered,was deleted. Finally,a data matrix consisting of all the extant nine genera and 24 characters was analyzed using Maximal Same Step Method,Synthetic Method,Evolutionary Extremal Aggregation Method and Minimal Parallel Evolutionary Method,and four cladograms were generated,of which only the most parsimonious one (Fig.1)was presented for discussion. The cladogram shows that the Taxodiaceae are assorted along five lines of evolution: 1)Metasequoia;2)Sequoiadendron,Sequoia;3)Cryptomeria;4)Glyptostrobus and Taxodium;5)Cunninghamia,Athrotaxis and Taiwania. Ten genera(including Sciadopitys)and 59 characters were used in the phenetic analysis.The phenogram(Fig.2)indicates that Sciadopitys is a very distinct group with remote affinity to the other genera,and the Taxodiaceae are divided into four groups:1)Sequoia,Sequoiadendron;2)Athrotaxis,Cunninghamia and Taiwania;3)Cryptomeria,Glyptostrobus and Taxodium;4)Metasequoia. Based primarily on the result of cladistics,with reference to that of phenetics,the main conclusions were drawn as follows:(1)Generic relationships:Cryptomeria should be considered the most primitive genus in the extant groups of the Taxodiaceae. Glyptostrobus and Taxodium, close to Cryptomeria, are sister taxa and relatively primitive groups. Sequoiadendron and Sequoia are closely related and intermediate advanced. Metasequoia is a more or less isolated taxon, relatively close to Sequoiadendron and Sequoia. Cunninghamia. Athrotaxis and Taiwania might represent a single lineage and form a very advanced group, of which Taiwania may be the most specialized. (2) Systematic treatments: The authors support the viewpoint that Sciadopitys should be treated as an independent family, and suggest that the Taxodiaeae should be divided into five tribes. Systematic arrangements are as follows: Taxodiaceae Warming Trib. 1. Cryptomerieae Vierhapper Gen. 5. Sequoia Endl. Gen. 1. Cryptomeria D. Don Trib. 4. Metasequoieae Pilger et Melchior Trib. 2. Taxodieae Benth. et Hook. Gen. 6. Metasequoia Miki ex Hu et Cheng Gen. 2. Glyptostrobus Endl. Trib. 5. Cunninghamieae Zucc. Gen. 3. Taxodium Rich. Gen. 7. Cunninghamia R. Br. Trib. 3. Sequoieae Wettstein Gen. 8. Athrotaxis D. Don Gen. 4. Sequoiadendron Buchholz Gen. 9. Taiwania Hayata  相似文献   

3.
杉科植物的系统发育分析   总被引:7,自引:0,他引:7  
本文以形态学为依据,参考其他学科的研究成果,用分支分类方法并结合表征分类方法探讨了杉科植物的系统演化关系,提出了新的分类系统。在分支分类中,金松科被选作外类群。主要根据外类群比较原则、化石原则和一般的演化规律,确定了性状的祖征和衍征,采用最大同步法、综合分析法、演化极端结合法及最小平行进化法共四种方法进行分支分析,选择最简约的分支图作为本文讨论基础。在表征分类中,选取59个性状,利用距离系数和类平均法,对金松属和杉科各属进行了聚类运算,得出表征图。综合两种分析结果,主要结论如下:(1)属间关系:柳杉属是现存杉科植物中最原始的类群。水松属和落羽杉属关系密切,二者与柳杉属近缘。巨杉属和北美红杉属关系密切,是中级进化水平的类群。水杉属与巨杉属和北美红杉属的亲缘关系相对较近。杉木属、密叶杉属和台湾杉属关系密切,是杉科植物中的高级进化类群,其中又以台湾杉属演化水平最高。(2)系统排列:支持金松科的成立,将杉科分成5族,即柳杉族(仅含柳杉属)、落羽杉族(含水松属、落羽杉属)、北美红杉族(含巨杉属、北美红杉属)、水杉族(仅含水杉属)和杉木族(含杉木属、密叶杉属及台湾杉属)。  相似文献   

4.
The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.  相似文献   

5.
杉科、柏科是松柏类裸子植物中的重要类群,其系统分类研究一直是裸子植物的研究热点之一.但是杉科与柏科之间及其内部各属之间的系统发生关系却一直存在争议.一般认为杉科、柏科单独成科.近年来的分子系统学及分支系统学研究结果证实:除了金松属以外,杉科和柏科为一单系群,应合并为一个科Cupres-saceae sensu lato(广义柏科),其主要分支类群的系统发生关系也已经基本确立,而金松属则单独成立金松科.  相似文献   

6.
李林初   《广西植物》1989,9(3):233-241
杉科共由10属(包括金松属)、20种(变种)组成。本文整理了19种(占95%,隶10属)植物的染色体数目和16种(占80%,隶9属)的核型资料,核型的模式图如图1所示。通过对这些细胞学资料的分析,笔者支持2n=20、x=10的金松属从杉科(2n=22、x=11)分立成金松科。根据其他各属间的亲缘关系,本作者认为可以把它们分隶于5个亚科:Ⅰ.柳杉亚科:Cryptomerioideae(Cryptomeria);Ⅱ.落羽杉亚科Taxodioideae(Glyptostroous,Taxodium);Ⅲ.红杉亚科Sequoideae(Metasequoia,Sequoiadendron,Sequoia);Ⅳ.杉木亚科Cunninghamioideae(Cunninghamia,还可能有:Athrotaxis);Ⅴ.台湾杉亚科Taiwainoideae(Taiwania)。这些亚科和属的进化水平依序渐增,它们分别位于进化路线A(亚科Ⅰ、Ⅱ、Ⅴ)和进化路线L(亚科Ⅲ、Ⅳ)上。这些结果是前人的演化系统所没有涉及的,表明了染色体资料在杉科的系统演化研究中起着重要的作用。  相似文献   

7.
Abstract. Phylogenetic relationships amongst Megastigmus species (Chalcidoidea: Torymidae) associated with conifer seeds were inferred from DNA sequence data. Twenty‐nine species of seed chalcids were analysed using two different genes, cytochrome b (mitochondrial DNA) and the D2 domain of the 28S ribosomal DNA. Maximum‐parsimony and maximum‐likelihood analyses showed that taxa formed two monophyletic groups, one clade comprising all species associated with Cupressaceae and Taxodiaceae hosts with the exception of Chamaecyparis, and the other clade composed of species associated with Pinaceae. Species infesting Cupressaceae and Taxodiaceae seemed to be specialized to particular host genera or even to be species specific, which was consistent with a taxonomic radiation following initial host adaptation. By contrast, Megastigmus species associated with Pinaceae appeared capable of shifting onto different congeneric species or even onto a new host genus, with their evolution apparently less constrained by plant association. We hypothesized that the Megastigmus group associated with Pinaceae may have a much higher invasive potential than that related to Cupressaceae. The study also confirmed the presence of invasive Nearctic species in the Palaearctic, and demonstrated the existence of a cryptic species complex.  相似文献   

8.
通过构建分子钟对广义柏科主要分类群的起源时间进行探讨。采用相对速率检验法分析广义柏科mat K、rbc L进化速率的稳定性,结果显示rbc L的非同义替代速率只在Pinaceae与Taxodiaceae的分类群及柏科北半球的支系(Cupressoideae)之间通过相对速率检验,而Pinaceae与柏科南半球分支(Callitrodeae)之间没有通过相对速率检验。mar K基因的非同义替代速率在Pinaceae与广义柏科的所有分类群之间通过相对速率检验。根据通过相对速率检验的分类群之间的遗传距离和基因进化速率,计算它们发生分歧的时间。据此推测,杉科的主要分类群Taiwanioideae、Athrotaxidoideae、Sequoioideae与其他分支发生分歧的时间均在侏罗纪,支持现存杉科在侏罗纪就已经建立起来的观点;Cupressaceae(s.s.)的两个支系(亚科)发生分歧的时间在124Ma之前,相当于早白垩世早期,可能由于南北古大陆的完全分离,其祖先居群被分隔成两个亚群,随后各自演化为不同的支系。Callitirodeae、Cupressoideae各属发生分歧的时间也均在白垩纪,表明Cupressaceae(s.s.)在白垩纪就已经建立起来。  相似文献   

9.
Chloroplast trnL/F and nuclear ribosomal ITS and ETS sequence data were used to analyze phylogenetic relationships among members of tribe Mimuleae (Scrophulariaceae) and other closely related families in Lamiales. The results of these analyses led to the following conclusions. (1) The Australian genera Glossostigma and Peplidium and the taxonomically isolated Phryma join four genera of tribe Mimuleae to form a well-supported clade that is distinct from other families in the Lamiales. We refer to that clade as the subfamily Phrymoideae. (2) The genera Mazus and Lancea (tribe Mimuleae) together form a well-supported clade that we recognize as the subfamily Mazoideae. Mazoideae is weakly supported as sister to Phrymoideae. We assign Mazoideae and Phrymoideae to a redefined family Phrymaceae. (3) Mimulus is not monophyletic, because members of at least six other genera have been derived from within it. In light of the molecular evidence, it is clear that species of Phrymaceae (about 190 species) have undergone two geographically distinct radiations; one in western North America (about 130 species) and another in Australia (about 30 species). Phylogenetic interpretations of morphological evolution and biogeographical patterns are discussed.  相似文献   

10.
Morphological features and the affinities of petrified seed cones of the Taxodiaceae, Cupressaceae, and Sciadopityaceae are reevaluated. TheCunninghamia-like plants are the earliest record of the families.Parataiwania explains the divergence ofTaiwania from aCunninghamia-like ancestral form by loss of ovuliferous scale and sclerenchyma.Sequoia-like allies probably diverged from a Cretaceous transitional plant likeYezosequoia and are most diversified in the Late Cretaceous.Yubaristrobus andArchicupressus suggest monophyly ofTaxodium and its allied genera of the Taxodiaceae and the Cupressaceae. The Cupressaceae may be derived from a taxodiaceous plant with orthotropous seeds, acquiring a reniform arrangement of the vascular bundles of the bract-scale complex, decussate or whorled phyllotaxis, and spherical cones consisting of a small number of bract-scale complexes. The Cretaceous fossils of the Sciadopityaceae suggest the ancient origin of the family.  相似文献   

11.
A anatomical characters of secondary phloem in Glyptostrobus pensilis (Staunt.)Koch were observed by means of both light and scanning electron microscopy(SEM). The secondary phloem is composed of axial and radial systems. In the axial systems, the phloem consists of sieve cells, phloem parenchyma cells, albuminous cell and phloem fibers. In the radial systems, it consists of phloem rays. The alternate arrangement of different cells in cross section results in tangential bands. The sequence of radial arrangement follows the pattern of sieve cells, phloem parenchyma cells, sieve cells and phloem fibers, sieve cells. Many crystals of calbium oxalate are embedded in the radial walls of seive cells. The phloem fibers are of only one type. The phloem rays are homogeneous, uniseriate. According to the anatomical characters of secondary phloem of Glyptostrobus pensilis (Staunt.)Koch and comparison with the other genera of Taxodiaceae, Glyptostrobus, Metasequoia and Taxodium have close relationships.  相似文献   

12.
水松的次生韧皮部解剖及其系统位置的讨论   总被引:3,自引:0,他引:3  
在光学显微镜和扫描电子显微镜下观察,水松茎次生韧皮部的主要特征为:韧皮部由轴向系统和径向系统组成。轴向系统由筛胞、韧皮薄壁组织细胞、蛋白细胞和韧皮纤维组成,径向系统由韧皮射线组成。在横切面上,轴向系统的各组成分子以单层切向带交替有规律的排列,其排列顺序为:筛胞-韧皮薄壁组织细胞-韧皮纤维-筛胞。筛胞的径向壁上嵌埋有草酸钙结晶,韧皮纤维仅一种类型,韧皮射线同型、单列。根据水松茎次生韧皮部的解剖研究,并与杉科其它各属的有关资料进行比较,我们认为:水松属与水杉属和落羽杉属有较近的亲缘关系。  相似文献   

13.
Phylogeny of the Taxaceae genera and the monotypic family Cephalotaxaceae has been extraordinarily controversial. In this paper chloroplast matK genes and nuclear ITS sequences were determined for all six genera of the two families and representatives of other conifer families. Analysis using either the nonsynonymous sites or the deduced amino acid sequences of matK genes strongly indicates that taxad genera and Cephalotaxaceae are monophyletic, with the Taxodiaceae/Cupressaceae clade as their sister group. Cephalotaxus is basal to the taxad genera, among which two clades, Torreya/Amentotaxus and Taxus/Pseudotaxus/Austrotaxus, are resolved. They correspond to Janchen's two tribes, Torreyeae and Taxeae. In Taxeae, Austrotaxus is the first to branch off. Analyses of the nuclear ITS sequence data corroborated the topology of the matK gene tree. These results refute the views that Cephalotaxaceae has no alliance with Taxaceae and that Austrotaxus and Amentotaxus should be excluded from the Taxaceae. We estimated the divergence time between the Taxodiaceae/Cupressaceae and the Cephalotaxaceae/Taxaceae clades to be 192-230 Myr ago and the divergence time between taxads and Cephalotaxus to be 149-179 Myr ago. Soon after the latter divergence event, within 6-8 Myr, the two taxad tribes originated. In conclusion, our data do not support Florin's claim that taxads could be traced to Devonian psilophytes (359-395 Myr ago).  相似文献   

14.
Cryptomeria fortunei (Chinese cedar) is a highly adaptable woody species and one of the main forest plantation trees in subtropical high-altitude areas in China. However, there are few studies on its chloroplast (cp) genome. In this study, the complete cp genome of C. fortunei was sequenced and evaluated via comparative analyses with those of related species (formerly the Taxodiaceae) in Cupressaceae. The C. fortunei cp genome was 131,580 bp in length, and the GC content of the whole genome was 35.38%. It lost one relevant large inverted repeat and contained 114 unique genes, including 82 protein-coding genes, 28 tRNAs and 4 rRNAs. The relative synonymous codon usage (RSCU) of codons ending with A/U was more than twice that of codons ending with G/C. Thirty long repeat structures (LRSs) and 213 simple sequence repeat (SSR) loci were detected in the C. fortunei cp genome. Comparative analyses of 10 cp genomes revealed that substantial rearrangements occurred in the gene organization. Additionally, 6 cp hotspot regions (trnS-GGA, ycf1, trnP-GGG, trnC-GCA, psbZ and accD) were identified, and 4 genes (petL, psbM, rpl22 and psaM) had likely underwent positive selection. Phylogenetic analysis showed that Cupressaceae, Taxaceae and Cephalotaxaceae clustered to form a clade and that C. fortunei was most closely related to C. japonica (Japanese cedar), C. japonica cv. Wogon Hort and Taxodium distichum (baldcypress). These results provide references for future studies of population genetics, phylogenetic status and molecular markers among Cupressaceae species and for the cultivation of improved varieties.  相似文献   

15.
According to the karyotypic data the present author proposes two evolutionary lines, A and L (Fig. 1), in Taxodiaceae (Exclud. Sciadopitys). The former is characterized by a relatively rapid increase of the mean arm ratio but a relatively slow rise of the ratio of the longest chromosome to the shortest one and it is composed of Cryptomeria, Glyptostrobus, Taxodium and Taiwania, which advance from primitive to progressive in the order. The latter is characterized by, on the contrary, a relatively slow increase of mean arm ratio and a relatively rapid rise of the ratio of chromosome size and it comprises Metasequoia, Sequoiadendron, Sequoia and Cunninghamia (probably Athrotaxis also), which advance in the order. The inference is supported by the data from morphology, anatomy, embryology and so on.Key words Taxodiaceae; Karyotype; Evolutionary line  相似文献   

16.
Metasequoia is endemic to China. Present study deals with ultrastructure of pollen exine of M. glyptostroboides Hu et Cheng, and in comparision with other genera of the family. Pollen grains of Metasequoia are spheroidal or subsphoroidal and 27.8(24.3–32.3) μm in diameter. There is a papilla in the distal face. The papilla is wide at the base, 3.5–5.2 μm high, with pointed and circular end and the base crooked toward one side. Exine is about L5 μm thick, layers distinct, Nexine is as thick as sexine. Surface weakly granulate. According to observation by SEM, exine is covered with fine granules and rather coarse tuberculae. The former can be easily separated from the latter. The loose and uneven tuberculae are provided with minute spinules on the surface and generally fall off after acetolysis. The fine and dense granulae, however, remain intact after acetolysis. The study by TEM shows that ektexine is made of granules densely arranged and connected with each other. In addition, sparse Ubisch bodies are unevenly distributed on granular layer with geminate surface. The thick endexine, is composed of 10–15 lamellae. It is worthy to note that all lamellae possess tripartite structure. But lamellae of endexine in other genera of Taxodiaceae have no tripartite structure except the lamella near ektexine. Number of lamella and thickness of endexine in Metasequoia differ from those of other genera in Taxodiaceae; for example endexine with 8–10 lamellae in Taxodium, 8–9 lamellae in Sequoia, 6–7 lamellae in Glyptostrobus, 6–8 lamellae in Cunninghamia, about 16 lamellae in Cryptomeria etc.  相似文献   

17.
Chemosystematics is a common tool in systematics and taxonomy of extant plants. Terpenoids have been found to be especially valuable for chemosystematic investigations of conifers. A review of data in the extensive literature revealed some characteristic distribution patterns of sesqui-, di-, and triterpenoids in extant conifer families. The numerous terpenoids can be assigned to approximately 40 sesquiterpenoid, 17 diterpenoid, and only a few triterpenoid structural classes. Some of these terpenoid classes (e.g., cadinanes, humulanes, labdanes, pimaranes) are unspecific and distributed among all conifers. Other structural classes occur in certain clusters of families (e.g., totaranes in Podocarpaceae, Taxodiaceae, and Cupressaceae s.str.) or were restricted to species of only one conifer family (e.g., cuparanes in Cupressaceae s.str.). Cupressaceae s.str. and Taxodiaceae show great similarities in their terpenoid composition (cedranes, thujopsanes) but can be separated by the occurrence of some sesquiterpenoids (cuparanes, widdranes), which were hitherto known only in Cupressaceae s.str. This supports a monophyletic clade of Cupressaceae s.str. within the major Taxodiaceae/Cupressaceae lineage (= Cupressaceae s.l.). Pinaceae differ from the other conifer families because they commonly lack several diterpenoid classes (phenolic abietanes, tetracyclic diterpenoids) and because they contain some distinct sesquiterpenoids (longicyclanes, sativanes), diterpenoids (cembranes), and triterpenoids (serratanes, lanostanes). With the exception of diterpenoid alkaloids (taxanes), Taxaceae contain terpenoids common in the other conifer families. This supports their inclusion as a separate family in the major conifer clade.  相似文献   

18.
Chen S  Xia T  Wang Y  Liu J  Chen S 《Annals of botany》2005,96(3):413-424
BACKGROUND AND AIMS: The systematic position of the genus Metagentiana and its phylogenetic relationships with Crawfurdia, Gentiana and Tripterospermum have not been explicitly addressed. These four genera belong to one of two subtribes (Gentianinae) of Gentianeae. The aim of this paper is to examine the systematic position of Crawfurdia, Metagentiana and Tripterospermum and to clarify their phylogenetic affinities more clearly using ITS and trnL intron sequences. METHODS: Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the plastid DNA trnL (UAA) intron were analysed phylogenetically. Ten of fourteen Metagentiana species were sampled, together with 40 species of other genera in the subtribe Gentianinae. KEY RESULTS: The data support several previously published conclusions relating to the separation of Metagentiana from Gentiana and its closer relationships to Crawfurdia and Tripterospermum based on studies of gross morphology, floral anatomy, chromosomes, palynology, embryology and previous molecular data. The molecular clock hypothesis for the tested sequences in subtribe Gentianinae was not supported by the data (P < 0.05), so the clock-independent non-parametric rate smoothing method was used to estimate divergence time. This indicates that the separation of Crawfurdia, Metagentiana and Tripterospermum from Gentiana occurred about 11.4-21.4 Mya (million years ago), and the current species of these three genera diverged at times ranging from 0.4 to 6.2 Mya. CONCLUSIONS: The molecular analyses revealed that Crawfurdia, Metagentiana and Tripterospermum do not merit status as three separate genera, because sampled species of Crawfurdia and Tripterospermum are embedded within Metagentiana. The speciation and rapid radiation of these three genera is likely to have occurred in western China as a result of upthrust of the Himalayas during the late Miocene and the Pleistocene.  相似文献   

19.
The present paper deals for the first time with an analysis of the karyotypes of Athrotaxis cupressoides Don and A. selaginoides Don endemic to Tasmania (Australia). Their morphology of somatic chromosomes in seed root-tip cells, chromosome measurements, and diagrams are shown in Plate 1, Table 1 and Fig. 1 respectively, The karyotypic formulas of the two species are 2n = 22 = 22m (2SAT) and 2n = 22 = 20m(2SAT ) + 2sm according to of terminology Lexvan et al (1964). They all belong to IB type of Stebbins’(1971)karyotypic asymmetry which was reported for the first time in the higher plants by Li(1987b). Their chromosome complements are 22 = 2L + 10M2+ 8M1+ 2S and 22 =2L+ 10M2+ 6M1+ 4S respectively according to the standard defined by Kuo et al. (1972) based on relative length. The karyotype of A. selaginoides is more advanced than that of A. cupressoides. In the light of karyotypic data, the sequence of the taxo-diaceous genera (excl. Sciadopitys) from primitive to advanced may be in the following order: Cryptomeria, Glyptostrobus, Taxodium, Metasequoia, Sequoiadendron, Sequoia, Athrotaxis, Cunninghamia and Taiwania. The genus Athrotaxis is closely related to Sequoia (Sequoiadendron) and Cunninghamia The peculiarity of the karyotype of Athrotaxis deserves the establishment of a new status Arthrotaxoideae (Wettstein) L. C. Li This suggestion is also supported by the data from morphology, embryology, palynology and geography. The family Taxodiaceae is divided into six subfamilies and nine genera, as shown in the following table:————————————————————————————————————————————————— 1. Cryptomerioideae Hida Cryptomeria D. Don 4. Arthrotaxoideae (Wettstein) L. C. Li 2. Taxodioideae Pilger Glyptostrobus Endl. Taxodim Richard Athrotaxis D. Don 3. Sequoideae Saxton metasequoia Miki ex Hu et 5. Cunninghamioideae Hida Cunninghamia Cheng Sequoiadebron Buch. Sequoia Endl. R.Brown 6. Taiwanioideae (Hayata)L. C. Li Taiwanta Hayata————————————————————————————————————————————————— The systematic positions of Athrotaxis in the systems of other authors are dis-cussed too.  相似文献   

20.
Yubaristrobus is a new genus of the Taxodiaceae based on a permineralized seed cone from the Upper Cretaceous of Hokkaido. The type species,Y. nakajimae sp. nov., is characterized by peltate bract-scale complexes consisting of a completely-fused bract and scale. The bract-scale complexes are spirally arranged as in most taxodiaceous genera. Their vascular arrangement is specialized and unique in the Taxodiaceae and suggests a relationship with the Cupressaceae. Consecutive number from the previous paper (Ohsawa, M. Nishida and H. Nishida, 1992b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号