首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) has been implicated, both and paradoxically, as a pro- and anti-inflammatory agent in a wide range of circumstances. It is of common concern that NO can be either up- or downregulated by different inflammatory cytokines. Attempting to assess the contribution of NO to the granulomatous response, we used the in vitro granuloma (IVG) model which consists on a reaction of mononuclear cells around polyacrylamide beads conjugated to antigens. Our assays employed Schistosoma mansoni antigens and human peripheral blood mononuclear cells (PBMC) from schistosomiasis patients. Recently, we have described evidence for a regulatory role of NO, with the aid of an inhibitor of NO synthesis, L-NAME. The addition of L-NAME to IVG cultures elicited an increase on the granuloma formation index. Based on these data we decided to investigate the mechanisms involved in the effects of L-NAME-enhanced granuloma formation. Cytokines and chemokines are involved in inflammatory responses by, particularly the latter, inducing migration and adhesion of leukocytes, which led us on this search for their interactions with NO on granulomatous reaction. We evaluated the cytokine/chemokine-secreting profile of PBMC (treated and not treated with L-NAME) on the IVG reaction in order to investigate how NO could interfere on the release of these soluble mediators. Comparison of cell culture releasing amounts of IL-2, IL-10, TNFalpha, IFNgamma, MIP-1alpha, MCP-1, and RANTES demonstrated that MIP-1alpha had increased levels when NO production was blocked with L-NAME, whereas IL-10 secretion decreased in presence of L-NAME. The other tested cytokines (IL-2, TNFalpha, and IFNgamma) and chemokines (MCP-1 and RANTES) showed no significant differences between the presence or absence of L-NAME. Results obtained in this work suggest that inhibition of NO production could upregulate the IVG reaction on human schistosomiasis through changes in the cytokine/chemokine profile released by PBMC. The mechanisms involved may lead to a MIP-1alpha-increased and IL-10-decreased secretion under our experimental conditions, which could partly account for the previously ascribed IVG-exacerbating action of NO inhibition.  相似文献   

2.
It has been hypothesized that hormonally regulated histamine production plays a role in preparation of the uterus for implantation. Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine production. The current study was designed to determine intrauterine expression of HDC mRNA expression during pregnancy in the mouse. High levels of HDC mRNA expression were observed in the preimplantation mouse uterus with peak expression occurring on day 4. High levels of HDC mRNA expression were also detected in the post-implantation uterus. In an effort to determine whether HDC mRNA is regulated by pro-inflammatory cytokines, the HDC mRNA pattern was compared to intrauterine expression of mRNA's for interleukin-1alpha (IL-1alpha), IL-1beta, macrophage chemotactic protein-1 (MCP-1) and RANTES (regulated on activation, normal T expressed and secreted) during the peri-implantation period. IL-1beta, MCP-1 and RANTES mRNA levels were increased in the uterus on days 1-2 and on days 4-5. Increased expression of IL-1alpha mRNA was observed on days 1-2 and days 5-7. There was no clear relationship between HDC mRNA expression and cytokine/chemokine mRNA expression. Progesterone-stimulated intrauterine expression of HDC mRNA. Intrauterine cytokine/chemokine mRNA was also hormonally regulated. This data allowed the possibility that one or more of these pro-inflammatory cytokines could be involved in regulating intrauterine HDC mRNA production. Recombinant IL-1alpha, IL-1beta, MCP-1 and RANTES all failed to induce HDC mRNA expression in the preimplantation uterus in a mouse pseudopregnancy model. At the same time, IL-1beta induced the expression of mRNA for each of the four cytokines/chemokines. Despite the fact that these were also produced in the uterus during pregnancy and were hormonally regulated, none of these cytokines induced intrauterine HDC mRNA expression. The data suggest that progesterone is involved in the regulation of HDC mRNA expression in the preimplantation uterus, but IL-1alpha/beta, MCP-1 and RANTES, which have been reported to regulate histamine synthesis during inflammatory processes, do not appear to play a role.  相似文献   

3.
Selective diapedesis of Th1 cells induced by endothelial cell RANTES.   总被引:16,自引:0,他引:16  
Differentiated CD4 T cells can be divided into Th1 and Th2 types based on the cytokines they produce. Differential expression of chemokine receptors on either the Th1-type or the Th2-type cell suggests that Th1-type and Th2-type cells differ not only in cytokine production but also in their migratory capacity. Stimulation of endothelial cells with IFN-gamma selectively enhanced transmigration of Th1-type cells, but not Th2-type cells, in a transendothelial migration assay. Enhanced transmigration of Th1-type cells was dependent on the chemokine RANTES produced by endothelial cells, as indicated by the findings that Ab neutralizing RANTES, or Ab to its receptor CCR5, inhibited transmigration. Neutralizing Ab to chemokines macrophage-inflammatory protein-1alpha or monocyte chemotactic protein-1 did not inhibit Th1 selective migration. Whereas anti-CD18 and anti-CD54 blocked basal levels of Th1-type cell adherence to endothelial cells and also inhibited transmigration, anti-RANTES blocked only transmigration, indicating that RANTES appeared to induce transmigration of adherent T cells. RANTES seemed to promote diapedesis of adherent Th1-type cells by augmenting pseudopod formation in conjunction with actin rearrangement by a pathway that was sensitive to the phosphoinositol 3-kinase inhibitor wortmannin and to the Rho GTP-binding protein inhibitor, epidermal cell differentiation inhibitor. Thus, enhancement of Th1-type selective migration appeared to be responsible for the diapedesis induced by interaction between CCR5 on Th1-type cells and RANTES produced by endothelial cells. Further evidence that CCR5 and RANTES play a modulatory role in Th1-type selective migration derives from the abrogation of this migration by anti-RANTES and anti-CCR5 Abs.  相似文献   

4.
Li LX  Yoshikawa H  Egeberg KW  Grill V 《Cytokine》2003,23(4-5):101-107
Regulation of uncoupling protein-2 (UCP-2) in beta-cells is presently unclear but may involve oxidative stress. We tested for regulation by beta-cell toxic cytokines. Exposure to interleukin-1beta (IL-1beta, 10 ng/ml) for 6 h down-regulated UCP-2 mRNA in clonal INS-1 cells, by 37 +/- 7%, and in rat pancreatic islets, by 55 +/- 8%. In contrast, a 6 h exposure to IL-1beta did not affect viability as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, or mitochondrial membrane potential, or ATP cellular contents. Continued exposure to IL-1beta was accompanied by decreased viability and persisting down-regulation of UCP-2 mRNA. Exposure to a combination of IL-1beta and tumor necrosis factor (TNF)-alpha for 48 h additively decreased cell viability and UCP-2 mRNA. The constitutive nitric oxide (NO) synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME, 1 mM) partially protected against toxicity but failed to significantly affect UCP-2 mRNA expression. The inducible NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 1 mM) protected completely against cytokine-induced toxicity. L-NMMA per se down-regulated UCP-2 mRNA (by 64 +/- 7%). Transfection with a UCP-2-antisense nucleotide failed to affect IL-1beta induced toxicity. In conclusion, down-regulation of UCP-2 mRNA by IL-1beta is an early event of cytokine interaction with beta-cells which is not directly coupled to toxicity.  相似文献   

5.
Airway epithelial cells are a rich source of eosinophil-selective C-C chemokines. We investigated whether cytokines and the topical glucocorticoid budesonide differentially regulate RANTES, monocyte chemoattractant protein-4 (MCP-4), and eotaxin mRNA and protein expression in the human bronchial epithelial cell line BEAS-2B and in primary human bronchial epithelial cells by Northern blot analysis and ELISAs. Eotaxin and MCP-4 mRNA expression induced by TNF-alpha alone or in combination with IFN-gamma was near-maximal after 1 h, peaked at 4 and 8 h, respectively, remained unchanged up to 24 h, and was protein synthesis independent. In contrast, RANTES mRNA was detectable only after 2 h and slowly increased to a peak at 24 h, and was protein synthesis dependent. Induction of eotaxin and MCP-4 mRNA showed a 10- to 100-fold greater sensitivity to TNF-alpha compared with RANTES mRNA. IL-4 and IFN-gamma had selective effects on chemokine expression; IL-4 selectively up-regulated the expression of eotaxin and MCP-4 and potentiated TNF-alpha-induced eotaxin, while IFN-gamma markedly potentiated only the TNF-alpha-induced expression of RANTES. Although budesonide inhibited the expression of chemokine mRNA to a variable extent, it effectively inhibited production of eotaxin and RANTES protein. Budesonide inhibited both RANTES- and eotaxin promoter-driven reporter gene activity. Budesonide also selectively accelerated the decay of eotaxin and MCP-4 mRNA. These results point to IL-4 as a possible mediator by which Th2 cells may induce selective production of C-C chemokines from epithelium and indicate that glucocorticoid inhibit chemokine expression through multiple mechanisms of action.  相似文献   

6.
7.
To determine the temporal relationship between alcohol-induced changes in cytokines and chemokines, development of liver pathology and stimulation of hepatocyte proliferation, male Sprague-Dawley rats were intragastrically fed low carbohydrate-containing ethanol (EtOH) diets via total enteral nutrition (TEN) for up to 49 d. Induction of EtOH metabolism and appearance of steatosis preceded development of oxidative stress, inflammation, and cell death. A transitory peak of tumor necrosis factor (TNFalpha) and interferon gamma (IFN gamma) was observed at 14 d followed by reduced expression of TNFalpha, IFN gamma and another Th1 cytokine IL-12 accompanied by reduced expression of the Th1 regulators T-bet and STAT4. After 35-49 d of EtOH, at a time when hepatocyte proliferation was stimulated, IL-12 returned to control values and a second peak of TNFalpha occurred. The Th2 cytokine IL-4 remained suppressed throughout the study and was accompanied by reductions in the Th2 regulator GATA3. There was no temporal effect of EtOH on expression of IL-6 or TGFbeta. IL-5 and IL-13 mRNA were undetectable. Chemokine CXCL-2 expression increased progressively up to 35 d and preceded the appearance of inflammatory infiltrates. These data suggest that steatosis, increased ethanol metabolism, a transient induction of the innate immune response and suppression of Th2 responses were acute consequences of ethanol treatment and were followed by suppression of Th1 responses. However, the majority of necrosis, apoptosis and a late peak of TNFalpha only occurred after 6-7 weeks of ethanol, coincided with the appearance of inflammatory infiltrates and were associated with stimulation of hepatocyte proliferation.  相似文献   

8.
To investigate the role of neutrophils in experimental cerebral malaria (ECM), in a previous study we found that early neutrophil depletion prevented the development of ECM and down regulated the expression of Th1 cytokines in the brain. To further clarify the mechanisms responsible for these findings, in the present study, using RT-PCR, we examined the expression of cytokine and chemokine mRNAs in neutrophils and macrophages after PbA infection. We found that, after infection, neutrophils not only expressed cytokines IL-2, IL-12p40, IL-18, IFN-gamma and TNF-alpha mRNAs, but also mRNAs for Th1 chemoattractive chemokines, monokine-induced by IFN-gamma (MIG), macrophage-inflammatory protein-1alpha (MIP-1alpha) and IFN-gamma inducible protein-10 (IP-10). Neutrophil depletion down regulated the expression of IL-18 and MIG mRNAs in macrophages, but did not affect the expression of IFN-gamma, TNF-alpha, MIP-1alpha and IP-10 mRNAs. Therefore, this study confirms our hypothesis that neutrophils may play a role in the pathogenesis of ECM via their expression of cytokines or chemokines.  相似文献   

9.
Cryopreserved peripheral blood mononuclear cells (PBMC) are commonly used when assessing immune responses in clinical trials, both for practical reasons and to minimize interassay variation, as samples are often collected and studied over time. This study investigated the effect of cryopreservation on cytokine and chemokine secretion, and on expression of regulatory T-cell associated markers, in samples from children with type 1 diabetes. PBMC were cultured before and after cryopreservation either with GAD65 or PHA. Secretion of cytokines (IL-5, -6, -10, -12, -13 -17, IFN-γ and TNF-α) and chemokines (IP-10, MCP-1, MIP-1α, MIP-1β and RANTES) was analysed in cell supernatants using multiplex fluorochrome technique (Luminex). Expression of FOXP3 and TGF-β mRNA was detected by multiplex real-time RT-PCR. Increased spontaneous secretion of IL-6, -10, -12, -13, IFN-γ and MCP-1, and mRNA expression of FOXP3 and TGF-β, was detected after cryopreservation. Stimulation with GAD65 induced higher levels of IL-6, IFN-γ, TNF-α and MIP-1α, whereas lower secretion was found for IL-10 and IL-13 in cryopreserved PBMC. Stimulation with PHA induced lower secretion of IP-10, MCP-1 and RANTES and FOXP3 mRNA expression after cryopreservation. Thus, cryopreserved PBMC were suitable to assess the immunological markers included in this study, even though their expression could differ from freshly handled cells.  相似文献   

10.
IL-11 is a pleiotropic cytokine that induces tissue remodeling with subepithelial fibrosis when expressed in the airway. Its effects on the Th2-dominated airway inflammation that is characteristic of asthma, however, are poorly understood. To characterize the effects of IL-11 on Th2 tissue inflammation, we compared the inflammatory responses elicited by OVA in sensitized mice in which IL-11 is overexpressed in a lung-specific fashion (CC10-IL-11) with that in transgene- wild-type littermate controls. Transgene- and CC10-IL-11 transgene+ mice had comparable levels of circulating Ag-specific IgE after sensitization. OVA challenge of sensitized transgene- mice caused airway and parenchymal eosinophilic inflammation, Th2 cell accumulation, and mucus hypersecretion with mucus metaplasia. Exaggerated levels of immunoreactive endothelial cell VCAM-1, mucin (Muc) 5ac gene expression and bronchoalveolar lavage and lung IL-4, IL-5, and IL-13 protein and mRNA were also noted. In contrast, OVA challenge in CC10-IL-11 animals elicited impressively lower levels of tissue and bronchoalveolar lavage inflammation, eosinophilia, and Th2 cell accumulation, and significantly lower levels of VCAM-1 and IL-4, IL-5, and IL-13 mRNA and protein. IL-11 did not cause a comparable decrease in mucus hypersecretion, Muc 5ac gene expression, or the level of expression of RANTES, monocyte chemoattractant protein-2, or monocyte chemoattractant protein-3. In addition, IL-11 did not augment IFN-gamma production demonstrating that the inhibitory effects of IL-11 were not due to a shift toward Th1 inflammation. These studies demonstrate that IL-11 selectively inhibits Ag-induced eosinophilia, Th2 inflammation, and VCAM-1 gene expression in pulmonary tissues.  相似文献   

11.
12.
《Cryobiology》2009,58(3):201-208
Cryopreserved peripheral blood mononuclear cells (PBMC) are commonly used when assessing immune responses in clinical trials, both for practical reasons and to minimize interassay variation, as samples are often collected and studied over time. This study investigated the effect of cryopreservation on cytokine and chemokine secretion, and on expression of regulatory T-cell associated markers, in samples from children with type 1 diabetes. PBMC were cultured before and after cryopreservation either with GAD65 or PHA. Secretion of cytokines (IL-5, -6, -10, -12, -13 -17, IFN-γ and TNF-α) and chemokines (IP-10, MCP-1, MIP-1α, MIP-1β and RANTES) was analysed in cell supernatants using multiplex fluorochrome technique (Luminex). Expression of FOXP3 and TGF-β mRNA was detected by multiplex real-time RT-PCR. Increased spontaneous secretion of IL-6, -10, -12, -13, IFN-γ and MCP-1, and mRNA expression of FOXP3 and TGF-β, was detected after cryopreservation. Stimulation with GAD65 induced higher levels of IL-6, IFN-γ, TNF-α and MIP-1α, whereas lower secretion was found for IL-10 and IL-13 in cryopreserved PBMC. Stimulation with PHA induced lower secretion of IP-10, MCP-1 and RANTES and FOXP3 mRNA expression after cryopreservation. Thus, cryopreserved PBMC were suitable to assess the immunological markers included in this study, even though their expression could differ from freshly handled cells.  相似文献   

13.
Neutrophils (polymorphonuclear leukocytes; PMN) are phagocytic cells instrumental in the clearance of infectious pathogens. Human PMN are commonly thought to respond primarily to chemokines from the CXC family. However, recent findings suggest that under specific cytokine activation conditions, PMN can also respond to some CC chemokines. In this study, the effect of GM-CSF, a well-characterized PMN priming and maturation factor, on CC-chemokine receptor (CCR) expression in PMN was investigated. Constitutive expression of CCR1 and CCR3 mRNA in PMN was detected by ribonuclease protection assay. Following incubation of PMN with GM-CSF (0.01-10 ng/ml; 6 h) CCR1 mRNA expression was rapidly (approximately 1 h) up-regulated. In contrast, no significant induction of CCR2, CCR3, CCR4, or CCR5 mRNA was observed. CCR1 protein was also up-regulated by GM-CSF stimulation. GM-CSF-induced up-regulation of CCR1 showed functional consequences because GM-CSF-treated PMN, but not control cells, responded to the CC chemokines macrophage inflammatory protein-1alpha, monocyte chemoattractant protein-3, and RANTES in assays of chemotactic migration and intracellular calcium mobilization. These results suggest that PMN activated by the proinflammatory cytokine GM-CSF can change their receptor expression pattern and become responsive to CC chemokines.  相似文献   

14.
Diesel exhausts and their associated organic compounds may be involved in the recent increase in the prevalence of allergic disorders, through their ability to favor a type 2 immune response. Type 2 T cells have been shown to be preferentially recruited by the chemokines eotaxin (CCL11), macrophage-derived chemokine (MDC, CCL22), and thymus activation-regulated chemokine (CCL17) through their interaction with CCR3 and CCR4, respectively, whereas type 1 T cells are mainly recruited by IFN-gamma-induced protein-10 (CXCL10) through CXCR3 binding. The aim of the study was to evaluate the effect of diesel exposure on the expression of chemokines involved in type 1 and 2 T cell recruitment. PBMC and alveolar macrophages from house dust mite allergic patients were incubated with combinations of diesel extracts and Der p 1 allergen, and chemokine production was analyzed. Diesel exposure alone decreased the constitutive IP-10 production, while it further augmented allergen-induced MDC production, resulting in a significantly increased capacity to chemoattract human Th2, but not Th1 clones. Inhibition experiments with anti-type 1 or type 2 cytokine Abs as well as cytokine mRNA kinetic evaluation showed that the chemokine variations were not dependent upon IL-4, IL-13, or IFN-gamma expression. In contrast, inhibition of the B7:CD28 pathway using a CTLA-4-Ig fusion protein completely inhibited diesel-dependent increase of allergen-induced MDC production. This inhibition was mainly dependent upon the CD86 pathway and to a lesser extent upon the CD80 pathway. These results suggest that the exposure to diesel exhausts and allergen may likely amplify a deleterious type 2 immune response via a differential regulation of chemokine production through the CD28 pathway.  相似文献   

15.
The purpose of this study was to determine whether medium-chain triglycerides (MCTs) modulate the inflammatory immune response to LPS and enhance the expression of secretory IgA in the rat intestine. Rats were given either corn oil or MCTs by gavage daily for 1 wk, and LPS or saline vehicle was administered via the tail vein. They were then killed, and serum and sections from the gut were collected for further analysis. Western blot analysis for secretory IgA revealed that MCTs significantly enhanced its expression in the ileum compared with corn oil in rats administered saline. After LPS challenge, expression of secretory IgA was decreased in the corn oil group but not in the MCTs group. The mRNA expression of IL-6 was assessed by real-time RT-PCR, because IL-6 regulates secretory IgA in the intestine. The expression was significantly greater in the MCTs group than in the corn oil group after LPS injection. Increases in expression of proinflammatory cytokines or chemokines such as TNF-alpha, IL-18, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 in the ileum were significantly blunted by MCTs. In addition, the mRNA expression of the Th2 IgA-stimulating cytokine IL-10 in the ileum and Peyer's patches was significantly greater in the MCTs than the corn oil group. In contrast, the mRNA expression of the Th1 IgA-inhibiting cytokine interferon-gamma was blunted by MCTs. As a result, intestinal injury was significantly reduced. Therefore, MCTs protect the gut by modulating the immune response to LPS and enhancing secretory IgA expression.  相似文献   

16.
Human eosinophils are potential sources of inflammatory and immunomodulatory mediators, including cysteinyl leukotrienes, chemokines, and cytokines, which are pertinent to allergic inflammation. We evaluated the means by which IL-16, a recognized eosinophil chemoattractant, might act on eosinophils to affect their capacity to release leukotriene C(4) (LTC(4)) or their preformed stores of chemokines (eotaxin, RANTES) or Th1 (IL-12) or Th2 (IL-4) cytokines. IL-16 dose dependently (0.01-100 nM) elicited new lipid body formation, intracellular LTC(4) formation at lipid bodies, and priming for enhanced calcium ionophore-activated LTC(4) release. IL-16 also elicited brefeldin A-inhibitable, vesicular transport-mediated release of preformed IL-4, but not IL-12, from eosinophils. CD4 is a recognized IL-16R, and accordingly anti-CD4 Fab, soluble CD4, and a CD4 domain 4-based IL-16 blocking peptide inhibited the actions of IL-16 on eosinophils. Although CD4 is not G-protein coupled, pertussis toxin inhibited IL-16-induced eosinophil activation. IL-16 actions were found to be mediated by the autocrine activity, not of platelet-activating factor, but rather of endogenous CCR3-acting chemokines. IL-16 induced the rapid vesicular transport-mediated release of RANTES. The effects of IL-16 were blocked by CCR3 inhibitors (met-RANTES, anti-CCR3 mAb) and by neutralizing anti-eotaxin and anti-RANTES mAbs, but not by platelet-activating factor receptor antagonists (CV6209, BN52021). RANTES and eotaxin each enhanced LTC(4) and IL-4 (but not IL-12) release. Therefore, IL-16 activation of eosinophils is CD4-mediated to elicit the extracellular release of preformed RANTES and eotaxin, which then in an autocrine fashion act on plasma membrane CCR3 receptors to stimulate both enhanced LTC(4) production and the preferential release of IL-4, but not IL-12, from within eosinophils.  相似文献   

17.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

18.
Psoriasis is characterized by activation of T cells with a type 1 cytokine profile. IL-12 and IL-23 produced by APCs are essential for inducing Th1 effector cells. Promising clinical results of administration of an Ab specific for the p40 subunit of IL-12 and IL-23 (anti-IL-12p40) have been reported recently. This study evaluated histological changes and mRNA expression of relevant cytokines and chemokines in psoriatic skin lesions following a single administration of anti-IL-12p40, using immunohistochemistry and real-time RT-PCR. Expression levels of type 1 cytokine (IFN-gamma) and chemokines (IL-8, IFN-gamma-inducible protein-10, and MCP-1) were significantly reduced at 2 wk posttreatment. The rapid decrease of these expression levels preceded clinical response and histologic changes. Interestingly, the level of an anti-inflammatory cytokine, IL-10, was also significantly reduced. Significant reductions in TNF-alpha levels and infiltrating T cells were observed in high responders (improvement in clinical score, > or =75% at 16 wk), but not in low responders. Of importance, the levels of APC cytokines, IL-12p40 and IL-23p19, were significantly decreased in both responder populations, with larger decreases in high responders. In addition, baseline levels of TNF-alpha significantly correlated with the clinical improvement at 16 wk, suggesting that these levels may predict therapeutic responsiveness to anti-IL-12p40. Thus, in a human Th1-mediated disease, blockade of APC cytokines by anti-IL-12p40 down-regulates expression of type 1 cytokines and chemokines that are downstream of IL-12/IL-23, and also IL-12/IL-23 themselves, with a pattern indicative of coordinated deactivation of APCs and Th1 cells.  相似文献   

19.
Tobacco smoking has been associated with impaired pulmonary functions and increased incidence of infections; however, mechanisms that underlie these phenomena are poorly understood. In this study, we examined whether smokers' alveolar macrophages (AM) exhibit impaired sensing of bacterial components via TLR2 and TLR4 and determined the effect of smoking on expression levels of TLR2, TLR4 and coreceptors, and activation of signaling intermediates. Smokers' AMs exhibited reduced gene expression and secretion of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6) and chemokines (RANTES and IL-8) upon stimulation with TLR2 and TLR4 agonists, S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-Cys-(S)-Ser-Lys4-OH trihydrochloride (Pam(3)Cys), and LPS, whereas expression of anti-inflammatory cytokines (IL-10 and IL-1 receptor antagonist) was not affected. TLR3 activation with polyinosinic-polycytidylic acid led to comparable or even higher cytokine responses in smokers' AMs, indicating that smoking-induced suppression does not affect all TLRs. Comparable expression of cytokines and chemokines was detected in PBMC and purified monocytes obtained from smokers and nonsmokers, demonstrating that the suppressive effect of smoking is restricted to the lung. TLR2/4-inducible IL-1R-associated kinase-1 (IRAK-1) and p38 phosphorylation and NF-kappaB activation was suppressed in smokers' AMs, whereas TLR2, TLR4, CD14, MD-2 mRNA levels, and TLR4 protein expression were not altered. These data suggest that changes in expression and/or activities of signaling intermediates at the postreceptor level account for smoking-induced immunosuppression. Thus, exposure of AMs to tobacco smoke induces a hyporesponsive state similar to endotoxin tolerance as manifested by inhibited TLR2/4-induced expression of proinflammatory cytokines, chemokines, and impaired activation of IRAK-1, p38, and NF-kappaB, resulting in suppressed expression of proinflammatory mediators.  相似文献   

20.
Neurotrophins, such as neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), are potent regulators of neuronal functions. Here we show that human immune cells also produce NT-3 mRNA, secrete BDNF, and express their specific receptors trkB and trkC. The truncated trkB receptor, usually expressed in sensory neurons of the central nervous system, was also constitutively expressed in unstimulated Th cells. Full-length trkB was detectable in stimulated PBMC, B cell lines, and Th1, but not in Th2 and Th0 cell clones. Clonally restricted expression was also observed for trkC, until now not detected on blood cells. The Th1 cytokine IL-2 stimulated production of trkB mRNA but not of trkC, whereas the Th2 cytokine IL-4 enhanced NT-3 but not BDNF mRNA expression. Microbial Ags, which influence the Th1/Th2 balance, could therefore modulate the neurotrophic system and thereby affect neuronal synaptic activity of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号