首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
Implantation of the blastocyst into the maternal endometrium is mediated by a population of well-differentiated primary cells of the placenta known as trophoblasts, which grow in an invasive and destructive fashion similar to tumor cells. Interactions between the endometrium and trophoblasts are regulated by a coordinated interplay of extracellular matrix (ECM) proteins secreted by the invading extravillous trophoblasts. Integrins act as adhesion receptors and mediate both cell-ECM and cell-cell interactions. However, the correlation between integrin expression and trophoblast invasion under hypoxia is unclear. Here, we analyzed the expression of integrins in HTR-8/SVneo trophoblast cells exposed to hypoxic conditions in order to demonstrate an association between invasion activity and integrin expression in trophoblasts. Trophoblasts were examined by microarray analysis, RT-PCR, western blotting, and zymography after 1% hypoxic treatment, and cell invasion was estimated. The dynamic expression of integrins and human matrix metalloproteinases (MMPs) was observed under hypoxic conditions. The invasiveness of trophoblasts cultured under 1% hypoxic conditions was significantly greater than that of trophoblasts cultured under normoxic conditions through alterations in MMP-2 and -9 (P < 0.05). Notably, integrin α4 expression during early hypoxia was negatively regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) expression in trophoblasts. The downregulation of integrin α4 expression by siRNA treatment controlled trophoblast invasion activity (P < 0.05). Taken together, we suggest that dynamic changes in integrins, including those in integrin α4 expression by hypoxia, play a regulatory role in trophoblast invasion. These findings expand our understanding of the potential roles of integrin α4 in implantation.  相似文献   

2.
Preeclampsia and fetal growthrestriction are associated with placental hypoperfusion and villoushypoxia. The villous response to this environment includes diminishedtrophoblast differentiation and enhanced apoptosis. We tested thehypothesis that hypoxia induces apoptosis in cultured trophoblasts, andthat epidermal growth factor (EGF), an enhancer of trophoblastdifferentiation, diminishes hypoxia-induced apoptosis. Trophoblastsisolated from placentas of term-uncomplicated human pregnancies werecultured up to 72 h in standard (PO2 = 120 mmHg) or hypoxic (PO2 < 15 mmHg) conditions. Exposure to hypoxia for 24 h markedly enhanced trophoblast apoptosis as determined by DNA laddering, internucleosomal in situ DNA fragmentation, and histomorphology, as well as by thereversibility of the apoptotic process with a caspase inhibitor. Apoptosis was accompanied by increased expression of p53 and Bax anddecreased expression of Bcl-2. Addition of EGF to cultured trophoblastsor exposure of more differentiated trophoblasts to hypoxiasignificantly lowered the level of apoptosis. We conclude that hypoxiaenhances apoptosis in cultured trophoblasts by a mechanism thatinvolves an increase in p53 and Bax expression. EGF and enhancement ofcell differentiation protect against hypoxic-induced apoptosis.

  相似文献   

3.
TH Hung  SF Chen  LM Lo  MJ Li  YL Yeh  TT Hsieh 《PloS one》2012,7(7):e40957

Background

Unexplained intrauterine growth restriction (IUGR) may be a consequence of placental insufficiency; however, its etiology is not fully understood. We surmised that defective placentation in IUGR dysregulates cellular bioenergic homeostasis, leading to increased autophagy in the villous trophoblast. The aims of this work were (1) to compare the differences in autophagy, p53 expression, and apoptosis between placentas of women with normal or IUGR pregnancies; (2) to study the effects of hypoxia and the role of p53 in regulating trophoblast autophagy; and (3) to investigate the relationship between autophagy and apoptosis in hypoxic trophoblasts.

Methodology/Principal Findings

Compared with normal pregnant women, women with IUGR had higher placental levels of autophagy-related proteins LC3B-II, beclin-1, and damage-regulated autophagy modulator (DRAM), with increased p53 and caspase-cleaved cytokeratin 18 (M30). Furthermore, cytotrophoblasts cultured under hypoxia (2% oxygen) in the presence or absence of nutlin-3 (a p53 activity stimulator) had higher levels of LC3B-II, DRAM, and M30 proteins and increased Bax mRNA expression compared with controls cultured under standard conditions. In contrast, administration of pifithrin-α (a p53 activity inhibitor) during hypoxia resulted in protein levels that were similar to those of the control groups. Moreover, cytotrophoblasts transfected with LC3B, beclin-1, or DRAM siRNA had higher levels of M30 compared with the controls under hypoxia. However, transfection with Bcl-2 or Bax siRNA did not cause any significant change in the levels of LC3B-II in hypoxic cytotrophoblasts.

Conclusions/Significance

Together, these results suggest that there is a crosstalk between autophagy and apoptosis in IUGR and that p53 plays a pivotal and complex role in regulating trophoblast cell turnover in response to hypoxic stress.  相似文献   

4.
Regulation of cytotrophoblast differentiation toward extravillous trophoblasts (EVTs) is critical for establishing successful pregnancy. Previous studies have focused primarily on the factors promoting the differentiation, while inhibitory regulators except hypoxia have been less documented. In this study, to test our hypothesis that angiotensin II (Ang II) would inhibit EVT differentiation, we investigated the effects of Ang II on trophoblast outgrowth and the expression of molecules associated with the proliferation and invasion of trophoblasts using human first trimester villous explant cultures. Ang II increased EVT outgrowth and the number of cells in cell columns. Moreover, Ang II-treated explants exhibited increased Ki67 and integrin alpha5 immunoreactivity in EVTs as well as matrix metalloproteinase-2 activity in the conditioned media, and decreased alpha1 integrin immunoreactivity, which are compatible with the features of the proliferative phenotype EVTs. These effects of Ang II were similar to those of hypoxia (3% O(2)). Ang II stimulated the expression of hypoxia inducible factor-1alpha at both mRNA and protein levels, and also enhanced the expression of plasminogen activator inhibitor-1 (PAI-1). Data presented herein suggest a possible role for Ang II in impairing trophoblast differentiation toward an invasive phenotype, which might be associated with shallow invasion in preeclamptic placentas.  相似文献   

5.
6.
目的:探究缺氧微环境SIRT1亚细胞定位对结直肠癌细胞凋亡的影响及其分子机制。方法:将编码过表达野生型SIRT1以及核定位序列(nuclear localization sequence,NLS)突变型SIRT1(SIRT1NLSmt)的慢病毒载体转染人类结肠癌HCT116细胞株,经嘌呤霉素筛选获得稳定过表达野生型SIRT1细胞株(LV-SIRT1细胞)和细胞质定位的NLS突变型SIRT1细胞株(LV-SIRT1NLSmt细胞),通过观察慢病毒载体编码的SIRT1-GFP融合蛋白的荧光定位,明确稳定转染细胞中外源性SIRT1的亚细胞定位。利用real-time PCR、Western blot法对分离提取的核-质蛋白进行检测,证实外源性SIRT1的表达和亚细胞定位情况。利用CCK-8细胞毒性实验、流式细胞术检测和TUNEL染色比较缺氧(1%O2)处理前后LV-SIRT1和LV-SIRT1NLSmt细胞存活或凋亡情况,Western blot法检测凋亡相关蛋白p53、ac-p53(K382)、Bcl-2、Bax、caspase-3和cleaved caspase-3表达水平。结果:Western blot、real-time PCR和免疫荧光染色结果显示稳定转染细胞均存在外源性SIRT1的过表达,NLS突变可导致SIRT1NLSmt富集于细胞质中;与亲本细胞HCT116和LV-SIRT1NLSmt细胞相比,LV-SIRT1细胞对缺氧的耐受能力最差、细胞凋亡水平最高,凋亡相关蛋白p53、Bax、caspase-3、cleaved caspase-3表达水平显著升高,ac-p53(K382)和Bcl-2表达水平显著下降,且LV-SIRT1细胞的胞核ac-p53下降最为显著。结论:在缺氧微环境中,细胞核定位的SIRT1通过影响p53的去乙酰化水平促进结直肠癌细胞凋亡。  相似文献   

7.
Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells.  相似文献   

8.
The NDRG2 gene belongs to a family of N-Myc downstream-regulated genes (NDRGs) and is expressed in many normal tissues. NDRG2 gene expression has been shown to be regulated in the stress response of certain cells. However, its function is not yet fully understood. Many studies have demonstrated that hypoxia, one of the stress responses, induced apoptosis in several cell types. In the current study, we investigated NDRG2 involvement in hypoxia response and found that NDRG2 expression was markedly up-regulated in several tumor cell lines exposed to hypoxic conditions or similar stresses at the mRNA and protein level. We also observed that the expression of NDRG2 was regulated by Hypoxia-inducible factor 1 (HIF-1) in tumor cells under hypoxia. Three hypoxia-responsive elements (HREs) in the NDRG2 promoter were identified. HRE1 could directly bind Hif-1 in vivo. Importantly, we found that silencing or enforcing the expression of NDRG2 could strongly inhibit or increase apoptosis. In addition, our data also showed that Ndrg2 was able to be translocated from the cytoplasm to the nucleus, and the segment from 101 to 178 amino acids of Ndrg2 is responsible for its translocation. Taken together, this study suggests that NDRG2 is a Hif-1 target gene and closely related with hypoxia-induced apoptosis in A549 cells.  相似文献   

9.
10.
The regulation of trophoblast apoptosis is essential for normal placentation, and increased placental trophoblast cell apoptosis is the cause of pathologies such as intrauterine growth retardation (IUGR) and pre‐eclampsia. X‐linked inhibitor of apoptosis (XIAP) is expressed in trophoblasts, but little is known about the role of XIAP in placental development. In the present study, the function of XIAP in the placenta and in HTR‐8/SVneo trophoblasts under hypoxic conditions was examined. In addition, the correlation between XIAP and immortalization‐upregulated protein‐2 (IMUP‐2) was demonstrated in HTR‐8/SVneo trophoblasts under hypoxia, based on a previous study showing that increased IMUP‐2 induces trophoblast apoptosis and pre‐eclampsia. XIAP was downregulated in pre‐eclamptic placentas (P < 0.05). In HTR‐8/SVneo trophoblasts, XIAP expression was decreased and the expression of apoptosis‐related genes was increased in response to hypoxia. Ectopic expression of hypoxia inducible factor (HIF)‐1α in HRT‐8 SV/neo cells induced the nuclear translocation of XIAP and alterations of XIAP protein stability. Furthermore, hypoxia induced nuclear translocated XIAP co‐localized with upregulated IMUP‐2 in trophoblast nuclei, and the interaction between XIAP and IMUP‐2 induced apoptosis in HRT‐8 SV/neo cells. The present results suggest that hypoxia‐induced down‐regulation of XIAP mediates apoptosis in trophoblasts through interaction with increased IMUP‐2, and that this mechanism underlies the pathogenesis of pre‐eclampsia. J. Cell. Biochem. 114: 89–98, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
NDRG1 is a hypoxia-inducible protein, whose modulated expression is associated with the progression of human cancers. Here, we reveal that NDRG1 is markedly upregulated in the cytoplasm and on the membrane in human hepatocellular carcinoma (HCC). We demonstrate further that hypoxic stress increases the cytoplasmic expression of NDRG1 in vitro, but does not result in its localization on the plasma membrane. However, grown within an HCC-xenograft in vivo, cells express NDRG1 in the cytoplasm and on the plasma membrane. In conclusion, hypoxia is a potent inducer of NDRG1 in HCCs, albeit requiring additional stimuli within the tumour microenvironment for its recruitment to the membrane.  相似文献   

12.
When cultured in 20% O(2), human cytotrophoblasts fuse to form the syncytiotrophoblast with marked induction of hCYP19 (aromatase) gene expression. When cultured in 2% O(2), cytotrophoblast fusion and induced hCYP19 expression are prevented. These effects of hypoxia are mediated by increased expression of mammalian achaete/scute homologue-2 (Mash-2), which increases levels of upstream stimulatory factors 1 and 2 (USF1/2) and their binding as heterodimers to E-boxes surrounding the hCYP19 promoter. In studies to define mechanisms for O(2) regulation of syncytiotrophoblast differentiation, we found that hypoxia and overexpression of Mash-2 markedly increased cyclin B1 levels in cultured trophoblasts and the proportion of cells at the G(2)/M transition. Unlike USF proteins, USF1/2 mRNA levels are unaffected by O(2) tension. To determine whether increased O(2) might enhance proteasomal degradation of USF1/2, human trophoblasts were cultured in 2% or 20% O(2) with or without proteasome inhibitors. In cells cultured in 20% O(2), proteasome inhibitors increased USF1/2 protein levels and blocked spontaneous induction of hCYP19 expression, cell fusion, and differentiation. Like hypoxia, inhibitory effects of proteasome inhibitors on hCYP19 expression were mediated by increased binding of USF1/2 to the E-boxes. In human trophoblast cells cultured in 20% O(2), increased polyubiquitylation of USF1/2 proteins was observed. Thus, early in gestation when the placenta is relatively hypoxic, increased USF1/2 may block trophoblast differentiation and hCYP19 gene expression. In the second trimester, increased O(2) tension promotes proteasomal degradation of USF1/2, resulting in syncytiotrophoblast differentiation and induction of hCYP19 expression.  相似文献   

13.
Hypoxia-induced nucleophosmin protects cell death through inhibition of p53   总被引:13,自引:0,他引:13  
Nucleophosmin (NPM) is a multifunctional protein that is overexpressed in actively proliferating cells and cancer cells. Here we report that this proliferation-promoting protein is strongly induced in response to hypoxia in human normal and cancer cells. Up-regulation of NPM is hypoxia-inducible factor-1 (HIF-1)-dependent. The NPM promoter encodes a functional HIF-1-responsive element that can be activated by hypoxia or forced expression of HIF-1alpha. Suppression of NPM expression by small interfering RNA targeting NPM increases hypoxia-induced apoptosis, whereas overexpression of NPM protects against hypoxic cell death of wild-type but not p53-null cells. Moreover, NPM inhibits hypoxia-induced p53 phosphorylation at Ser-15 and interacts with p53 in hypoxic cells. Thus, this study not only demonstrates hypoxia regulation of a proliferation-promoting protein but also suggests that hypoxia-driven cancer progression may require increased expression of NPM to suppress p53 activation and maintain cell survival.  相似文献   

14.
SIRT1, a nicotinamide adenine dinucleotide (NAD+)‐dependent histone/protein deacetylase, has been extensively studied recently for its critical role in the regulation of physiology, calorie restriction and aging. Studies on laboratory mice showed that expression of SIRT1 can be induced by starvation in a p53‐dependent manner and requires the p53‐binding sites present in the Sirt1 promoter. However, it remains to be determined whether these findings based on rodents apply to human beings. In this paper, we characterized a putative p53‐binding element in the human SIRT1 promoter that might be required for the up‐regulation of SIRT1 in response to nutritional stress. The p53‐binding site in the promoter of human SIRT1 is more deviant from the consensus sequence than the corresponding sequence in the mouse Sirt1. There is a C to A change at the second half site in human SIRT1, thus disrupting the core‐binding element CWWG in the canonical RRRCWWGYYY. To test whether such sequence change would affect its binding with p53 and the SIRT1 expression under stress, we studied various human cell lines with different p53 status and cells with ectopic expression of functionally distinct p53. We found that serum withdrawal also up‐regulates human SIRT1 gene expression in a p53‐dependent manner and that the p53‐binding element in SIRT1 is required for the up‐regulation. Thus, the mechanism responsible for the regulation of SIRT1 expression by p53 is conserved between mice and human beings.  相似文献   

15.
Emerging evidence has shown that tumor suppressor p53 expression is enhanced in response to brain ischemia/hypoxia and that p53 plays a critical role in the cell death pathway in such an acute neurological insult. However the mechanism remains unclear. Recently it was reported that Peg3/Pw1, originally identified as a paternally expressed gene, plays a pivotal role in the p53-mediated cell death pathway in mouse fibroblast cell lines. In this study, we found that Peg3/Pw1 expression is enhanced in peri-ischemic neurons in rat stroke model by in situ hybridization analysis, where p53 expression was also induced by immunohistochemical analysis. Moreover, we found that p53 was co-localized with Peg3/Pw1 in brain ischemia/hypoxia by double staining analysis. In human neuroblastoma-derived SK-N-SH cells, Peg3/Pw1 mRNA expression is enhanced remarkably at 24 h post-hypoxia, when p53 protein expression was also enhanced at high levels. Subcellular localization of Peg3/Pw1 was observed in the nucleus. Adenovirus-mediated high dose p53 overexpression induced Peg3/Pw1 mRNA expression. Overexpression of Peg3/Pw1 reduced cell viability under hypoxic conditions, whereas that of the C-terminal-deleted mutant and anti-sense Peg3/Pw1 inhibited hypoxia-induced cell death. These results suggest that Peg3/Pw1 is involved in the p53-mediated cell death pathway as a downstream effector of p53 in brain ischemia/hypoxia.  相似文献   

16.
Intrauterine growth restriction (IUGR) affects 3–8% of pregnancies and is associated with altered cell turnover in the villous trophoblast, an essential functional cell type of the human placenta. The intrinsic pathway of apoptosis, particularly p53, is important in regulating placental cell turnover in response to damage. We hypothesised that expression of proteins in the p53 pathway in placental tissue would be altered in IUGR. Expression of constituents of the p53 pathway was assessed using real-time PCR, Western blotting and immunohistochemistry. p53 mRNA and protein expression was increased in IUGR, which localised to the syncytiotrophoblast. Similar changes were noted in p21 and Bax expression. There was no change in the expression of Mdm2, Bak and Bcl-2. The association between altered trophoblast cell turnover in IUGR and increased p53 expression is reminiscent of that following exposure to hypoxia. These observations provide further insight into the potential pathogenesis of IUGR. Further research is required to elicit the role and interactions of p53 and its place in the pathogenesis of IUGR.  相似文献   

17.
18.
19.
Hypoxia often occurs under various physiological and pathophysiological conditions, including solid tumors; it is linked to malignant transformation, metastatic progression, and treatment failure or resistance. Tip110 protein plays important roles in several known physiological and pathophysiological processes, including cancers. Thus, in the present study we investigated the regulation of Tip110 expression under hypoxia. Hypoxia led to Tip110 protein degradation through the ubiquitin-proteasome system. Under hypoxia, Tip110 stabilized p53, which in return destabilized Tip110. In addition, Tip110 regulated hypoxia-inducible factor 1α (HIF-1α), likely through enhancement of its protein stability. Furthermore, Tip110 upregulated p300, a known coactivator for both p53 and HIF-1α. Expression of a p53(22/23) mutant deficient in p300 binding accelerated Tip110 degradation under hypoxia. Tip110 knockdown resulted in the inhibition of cell proliferation and cell death in the presence of p53. Finally, significantly less Tip110, p53, and HIF-1α was detected in the hypoxic region of bone metastasis tumors in a mouse model of human melanoma cells. Taken together, these results suggest Tip110 is an important mediator in the cross talk between p53 and HIF-1α in response to hypoxic stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号