首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several lines of evidence support that beta-amyloid (Abeta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the effects of Sal B against beta-amyloid peptide 25-35 (Abeta(25-35))-induced neurotoxicity, focused mainly on the neurotoxic effects of Abeta(25-35) and the neuroprotective effects of Sal B on the expression of brain-pancreas relative protein (BPRP), which is a new protein and mainly expressed in brain and pancreas. Following exposure of PC12 cells to 20 microM Abeta(25-35), a marked reduction in the expression of BPRP was observed, accompanied with decreased cell viability and increased cell apoptosis, as well as increased ROS production and calcium influx. Treatment of the PC12 cells with Sal B significantly reversed the expression of BPRP and cell viability while it decreased ROS production and intracellular calcium. These data indicate that Abeta(25-35) decreases the expression of BPRP via enhanced formation of intracellular ROS and increased intracellular calcium, and that Sal B, as an anti-oxidant, protects against Abeta(25-35)-induced reduction in expression of BPRP through its effects on suppressing the production of ROS, calcium flux, and apoptosis. However, the role(s) of BPRP in AD and the definite mechanisms by which Sal B protects against Abeta(25-35)-induced reduction in the expression of BPRP require further study.  相似文献   

2.
beta-Amyloid protein (Abeta), a major component of senile plaques of Alzheimer's disease (AD) brain, causes elevation of the intracellular free Ca2+ level and the production of robust free radicals, both of which contribute greatly to the AD-associated cascade including severe neuronal loss in the hippocampus. Genistein, the most active molecule of soy isoflavones, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the neuroprotective effect of genistein against Abeta25-35-induced apoptosis in cultured hippocampal neurons, as well as the underlying mechanism. Abeta25-35-induced apoptosis, characterized by decreased cell viability, neuronal DNA condensation, and fragmentation, is associated with an increase in intracellular free Ca2+ level, the accumulation of reactive oxygen species (ROS), and the activation of caspase-3. All these phenotypes induced by Abeta25-35 are reversed by genistein. Our results further show that at the nanomolar (100 nM) level, genistein protects neurons from Abeta25-35-induced damage largely via the estrogen receptor-mediated pathway, and at the micromolar (40 microM) level, the neuroprotective effect of genistein is mediated mainly by its antioxidative properties. Our data suggest that genistein attenuates neuronal apoptosis induced by Abeta25-35 via various mechanisms.  相似文献   

3.
In this study, the effect of puerarin on hydrogen peroxide-induced apoptosis in PC12 cells was studied. Exposure of cells to 0.5mM H(2)O(2)may cause significant viability loss and apoptotic rate increase. When c-Myc, Bcl-2 and Bax expression and caspase-3 activity were measured, using Ac-DEVD-AMC as a substrate, the changes in these apoptosis regulatory and effector proteins suggested that the elevation of c-Myc, decrease in Bcl-2:Bax protein ratio, and caspase-3 activation all play a key role in apoptosis. When cells were treated with puerarin prior to 0.5 mM H(2)O(2)treatment, a reduction in viability loss and apoptotic rate was seen. In addition, c-Myc expression decreased and Bcl-2:Bax ratio increased. Puerarin also reduced the H(2)O(2)-induced elevation of caspase-3 activation. These results suggest that puerarin can protect neurons against oxidative stress. It can block apoptosis in its early stages via the regulation of anti- and pro-apoptotic proteins, as well as by the attenuation of caspase-3 activation in H(2)O(2)-induced PC12 cells.  相似文献   

4.
Ban JY  Jeon SY  Bae K  Song KS  Seong YH 《Life sciences》2006,79(24):2251-2259
We previously reported that the Smilacis chinae rhizome inhibits amyloid beta protein (25-35) (Abeta (25-35))-induced neurotoxicity in cultured rat cortical neurons. Here, we isolated catechin and epicatechin from S. chinae rhizome and also studied their neuroprotective effects on Abeta (25-35)-induced neurotoxicity in cultured rat cortical neurons. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced neuronal cell death at a concentration of 10 microM, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Catechin and epicatechin also inhibited glutamate release into medium induced by 10 microM Abeta (25-35), which was measured by HPLC, generation of reactive oxygen species (ROS) and activation of caspase-3. These results suggest that catechin and epicatechin prevent Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca2+]c, and then by inhibiting glutamate release, generation of ROS and caspase-3 activity. Furthermore, these effects of catechin and epicatechin may be associated with the neuroprotective effect of the S. chinae rhizome.  相似文献   

5.
The phosphatidylinositol 3 kinase (PI3K)-Akt/PKB pathway protects neurons from apoptosis caused by diverse stress stimuli. However, its protective role against the amyloid beta peptide (Abeta), a major constituent of Alzheimer's disease plaques, has not been studied. We investigated the effect of the Abeta-derived Abeta(25-35) peptide on apoptosis and on the Akt survival pathway in PC12 cells. Cells submitted to micromolar concentrations of Abeta(25-35) exhibited increased production of reactive oxygen species (ROS) and morphological alterations consistent with apoptosis. Akt1 was activated shortly after incubation with Abeta(25-35) and Abeta(1-40) with a kinetics different to that of nerve-derived growth factor. Akt1 activation was blocked by the PI3K inhibitor wortmannin. We tested the hypothesis that Akt1 might modify the vulnerability of neural cells to apoptosis induced by Abeta(25-35). Overexpression of an active version of Akt1 attenuated the apoptotic effect of Abeta(25-35) as determined by flow cytometry. Moreover, PC12 cells overexpressing a membrane-targeted N-myristylated fusion protein of enhanced green fluorescence protein (EGFP) and mouse Akt1 exhibited lower levels of ROS than control EGFP-transfected cells. The present findings demonstrate that Akt1 is activated in response to Abeta(25-35) in a PI3K-dependent manner and that active Akt1 protects PC12 cells against the pro-apoptotic action of this peptide.  相似文献   

6.
Whether reactive oxygen species (ROS) mediate beta-amyloid (A beta) neurotoxicity remains controversial. Naive PC12 cells (PC12) and nerve growth factor-differentiated PC12 cells (dPC12) were used to study the role of ROS in cell death induced by A beta(25-35). The viability of PC12 and dPC12 cells decreased by 30-40% after a 48-hour exposure to 20 microM A beta(25-35). Microscopic examination showed that A beta(25-35) induced necrosis in PC12 cells and apoptosis in dPC12 cells. Vitamin E (100 microM) and other antioxidants protected PC12 cells, but not dPC12 cells, against the cytotoxic effect of A beta(25-35). Since H(2)O(2) has been proposed to be involved in A beta toxicity, the effects of H(2)O(2) on PC12 and dPC12 cells were studied. Differentiated PC12 cells appeared to be significantly more resistant to H(2)O(2) than naive PC12 cells. These data suggest that ROS may mediate A beta(25-35) toxicity in PC12 cells but not in dPC12 cells. Because the intracellular levels of ROS were elevated during the differentiation of PC12 cells, the baseline levels of ROS in these two model cell types may determine the intracellular mediators for A beta(25-35) toxicity. Therefore, the protective effects of antioxidants against A beta may depend upon the redox state of the cells.  相似文献   

7.
Oxidative stress has been implicated as a major mechanism underlying the pathogenesis of neurodegenerative disorders. ROS (reactive oxygen species) can cause cell death via apoptosis. NGF (nerve growth factor) differentiated rat PC12 cells have been extensively used to study the differentiation and apoptosis of neurons. This study has investigated the protective effects of puerarin in H2O2-induced apoptosis of differentiated PC12 cells, and the possible molecular mechanisms involved. Differentiated PC12 cells were incubated with 700 μM H2O2 in the absence or presence of different doses of puerarin (4, 8 and 16 μM). Apoptosis was assessed by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) analysis and Annexin V-PI (propidium iodide) double staining flow cytometry. Protein levels of phospho-Akt and phospho-BAD (Bcl-2/Bcl-XL-antagonist, causing cell death) were assayed by Western blotting. After stimulation with H2O2 for 18 h, the viability of differentiated PC12 cells decreased significantly and a large number of cells underwent apoptosis. Differentiated PC12 cells were rescued from H2O2-induced apoptosis at different concentrations of puerarin in a dose-dependent manner. This was through increased production of phospho-Akt and phospho-BAD, an effect that could be reversed by wortmannin, an inhibitor of PI3K (phosphoinositide 3-kinase). The results suggest that puerarin may have neuroprotective effect through activation of the PI3K/Akt signalling pathway.  相似文献   

8.
探讨异槲皮苷对β-淀粉样蛋白(Aβ25-35)导致的PC12细胞氧化损伤的保护作用。首先通过分子对接技术分析异槲皮苷与AMPK的结合情况。采用Aβ25-35(20μmol/L)损伤PC12细胞建立细胞氧化损伤模型,采用甲基噻唑蓝(MTT)法检测细胞活力,通过试剂盒检测乳酸脱氢酶(LDH)漏出量、活性氧(ROS)含量、丙二醛(MDA)含量以及抗氧化物酶超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活力,采用Western blot法检测磷酸化腺苷酸活化蛋白激酶(p-AMPK)、过氧化物增殖体受体辅激活子-1α(PGC-1α)、沉默信息调节因子3(Sirt3)和异柠檬酸脱氢酶(IDH2)的蛋白表达。结果显示异槲皮苷与AMPK的结合力为-9.48 kJ/mol,提示AMPK可能为异槲皮苷的潜在作用靶点。异槲皮苷(1、10和100μmol/L)能够浓度依赖性的显著抑制Aβ25-35导致的PC12细胞死亡,减少ROS和MDA含量,升高SOD和GSH-Px活力。异槲皮苷抑制Aβ25-35导致的细胞氧化损伤并上调p-AMPK、PGC-1α、Sirt3和IDH2的蛋白表达。以上结果表明异槲皮苷可能通过调控AMPK/Sirt3信号通路发挥抗Aβ25-35导致的PC12细胞氧化损伤作用。  相似文献   

9.
10.
The beta-amyloid (Abeta) peptide Abeta25-35 provokes apoptosis of cerebellar granule cells through activation of caspase-3 while the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) promotes granule cell survival by inhibiting caspase-3 activation through the intrinsic apoptotic pathway. The aim of the present study was to determine whether PACAP could prevent Abeta25-35 neurotoxicity by inhibiting caspase-3 activity. A 24-h exposure of cultured cerebellar granule cells to Abeta25-35 induced shrinkage of cell bodies, neurite retraction and alteration of mitochondrial activity. Administration of graded concentrations (10-80 microM) of Abeta25-35 induced a dose-related decrease of the number of living cells, and the neurotoxic effect was highly significant after a 24-h exposure to 80 microM Abeta25-35. Exposure of cerebellar granule cells to Abeta25-35 markedly enhanced caspase-3 but not caspase-9 activity. Co-incubation with 1 microM PACAP significantly reduced Abeta25-35-evoked caspase-3 activation. In contrast, PACAP did not prevent the deleterious effects of Abeta25-35 on mitochondrial potential and granule cell survival. Taken together, these data suggest that caspase-3 activation is not the main pathway activated by Abeta25-35 that leads to granule cell death. The results also demonstrate that PACAP cannot be considered as a potent neuroprotective factor against Abeta25-35-induced apoptosis in cerebellar granule neurons.  相似文献   

11.
12.
The present study investigated the protective effects of scutellarin on cobalt chloride (CoCl2)-induced apoptosis in PC12 cells. Incubation of PC12 cells with 500 microM CoCl2 for 24 h resulted in significant apoptosis as evaluated by the crystal violet, electron microscopy and flow cytometry assays. The increase of caspase-3 activity, decrease of Bcl-XL expression, phosphorylation of p38 mitogen-activated protein kinase (MAPK) and accumulation of intracellular reactive oxygen species (ROS) were also seen in CoCl2-treated PC12 cells. Scutellarin at 0.1, 1 and 10 microM significantly protected against the apoptotic cell death induced by CoCl2. Scutellarin decreased caspase-3 activity, increased Bcl-XL expression, inhibited p38 phosphorylation and attenuated ROS production. These results demonstrate that scutellarin can protect PC12 cells from cobalt chloride induced apoptosis by scavenging ROS, inhibiting p38 phosphorylation, up-regulating Bcl-XL expression and decreasing caspase-3 activity, and may reduce the cellular damage in pathological conditions associated with hypoxia-mediated neuronal injury.  相似文献   

13.
Puerarin, one of the main components of Pueraria lobata, has been reported to possess a wide range of pharmacological activities, including anti-inflammatory, antioxidative and anti-apoptotic effects. However, the role of puerarin in ototoxic drug-induced hair cell injury has not been well characterized. This study explored whether puerarin protects against cisplatin-induced hair cell damage and its potential mechanisms. The viability of puerarin-treated HEI-OC1 cells was assessed by CCK8 assay. Reactive oxygen species (ROS) was estimated with flow cytometric analysis using Cellrox Green fluorescent probe. Apoptosis-related protein levels were detected by western blot analysis. Immunostaining of the organ of Corti was performed to determine mice cochlear hair cell survival. Our results showed that puerarin improved cell viability and suppressed apoptosis in the cisplatin-damaged HEI-OC1 cells and cochlear hair cells. Mechanistic studies revealed that puerarin attenuated mitochondrial apoptosis pathway by regulating apoptotic related proteins, such as Bax and cleaved caspase-3, and attenuated ROS accumulation after cisplatin damage. Moreover, puerarin was involved in regulating the Akt pathway in HEI-OC1 cells in response to cisplatin. Our results demonstrated that puerarin administration decreased the sensitivity to apoptosis dependent on the mitochondrial apoptotic pathway by reducing ROS generation, which could be used as a new protective agent against cisplatin-induced ototoxicity.  相似文献   

14.
The cytoprotective effect of vinpocetine [14-ethoxycarbonyl-(3alpha, 16alpha-ethyl)-14,15-eburnamine] was investigated on PC12 cells treated with the amyloid beta-peptides (Abeta) for 24 hours. Vinpocetine was shown to protect cells from the inhibition in redox status induced by exposure to Abeta25-35 and Abeta1-40, the maximal protection being achieved at a vinpocetine concentration of 40 microM. At this concentration, vinpocetine blocked the inhibition of the mitochondrial respiratory chain complexes II-III and IV and completely abolished the depletion of pyruvate levels induced by toxic concentrations of Abeta peptides. Furthermore, the accumulation of ROS in cells exposed to Abeta25-35 and Abeta1-40 evaluated using the fluorescent probe 2',7'-dichlorofluorescin (DCF), was reduced in the presence of 40 microM vinpocetine. Taken together, the data presented herein demonstrate that vinpocetine protects cells from Abeta toxicity, preventing the generation of oxidative stress due to the excessive accumulation of ROS. This study suggests that vinpocetine can exert neuroprotective properties which might be of importance and contribute to its clinical efficacy in the treatment of Alzheimer's disease or other neurodegenerative disorders in which oxidative stress is involved.  相似文献   

15.
Alzheimer's disease (AD) is the most common aging-associated dementia. The population of AD patients is increasing as the world age grows. Currently, there is no cure for AD. Given that methyl vitamin B12 (methylcobalamin) deficiency is related to AD and Aβ-induced oxidative damage and that methylcobalamin can scavenge reactive oxygen species (ROS) by direct or indirect ways, we studied the effect of methylcobalamin on the cytotoxicity of Aβ. PC12 cells were chronically exposed (24 hours) to Aβ25-35 (25 μM) to establish an AD cell model. The cells were pretreated with or without methylcobalamin (1-100 μM) to investigate the role of methylcobalamin. Cell viability and apoptosis were tested, followed by testing of mitochondrial damage, oxidative stress, and mitochondrial calcium concentration. We observed that methylcobalamin improved the cell viability by decreasing the ratio of apoptosis cells in this AD cell model. Further experiments suggested that methylcobalamin functioned as an antioxidant to scavenge ROS, reducing the endoplasmic reticulum-mitochondria calcium flux through IP3R, preventing mitochondria dysfunction, ultimately protecting cells against apoptosis and cell death. Taken together, our results presented, for the first time, that methyl vitamin B12 can protect cells from Aβ-induced cytotoxicity and the mechanism was mainly relevant to the antioxidative function of methyl B12.  相似文献   

16.
Xu H  Wang H  Zhuang L  Yan B  Yu Y  Wei Z  Zhang Y  Dyck LE  Richardson SJ  He J  Li X  Kong J  Li XM 《The FEBS journal》2008,275(14):3718-3728
We have shown that quetiapine, a new antipsychotic drug, protects cultured cells against oxidative stress-related cytotoxicities induced by amyloid beta (Abeta)25-35, and that quetiapine prevents memory impairment and decreases Abeta plaques in the brains of amyloid precursor protein (APP)/presenilin-1 (PS-1) double-mutant mice. The aim of this study was to understand why quetiapine has these protective effects. Because the cytotoxicity of both Abeta(25-35) and Abeta(1-40) requires fibril formation, our first experiments determined the effect of quetiapine on Abeta(25-35) aggregation. Quetiapine inhibited Abeta(25-35) aggregation in cell-free aqueous solutions and blocked the fibrillar aggregation of Abeta(25-35), as observed under an electron microscope. We then investigated why quetiapine inhibits Abeta(25-35) aggregation. During the aggregation of Abeta(25-35), a hydroxyl radical (OH*) was released, which in turn amplified Abeta(25-35) aggregation. Quetiapine blocked OH*-induced Abeta(25-35) aggregation and scavenged the OH* produced in the Fenton system and in the Abeta(25-35) solution, as analyzed using electron paramagnetic resonance spectroscopy. Furthermore, new compounds formed by quetiapine and OH* were observed in MS analysis. Finally, we applied Abeta(25-35) to PC12 cells to observe the effect of quetiapine on living cells. Abeta(25-35) increased levels of intracellular reactive oxygen species and calcium in PC12 cells and caused cell death, but these toxic effects were prevented by quetiapine. These results demonstrate an anti-oxidative stress mechanism of quetiapine, which contributes to its protective effects observed in our previous studies and explains the effectiveness of this drug for Alzheimer's disease patients with psychiatric and behavioral complications.  相似文献   

17.
The aim of present study is to explore the cytoprotection of curcumin against 1-methyl-4-phenylpridinium ions (MPP+)-induced apoptosis and the molecular mechanisms underlying in PC12 cells. Our findings indicated that MPP+ significantly reduced the cell viability and induced apoptosis of PC12 cells. Curcumin protected PC12 cells against MPP+-induced cytotoxicity and apoptosis not only by inducing overexpression of Bcl-2, but also reducing the loss of mitochondrial membrane potential (MMP), an increase in intracellular reactive oxygen species (ROS) and overexpression of inducible nitric oxide synthase (iNOS). The selective iNOS inhibitor AG partly blocked MPP+-induced apoptosis of PC12 cells. The results of present study suggested that the cytoprotective effects of curcumin might be mediated, at least in part, by the Bcl-2-mitochondria-ROS-iNOS pathway. Because of its non-toxic property, curcumin could be further developed to treat the neurodegenerative diseases which are associated with oxidative stress, such as Parkinson’s disease (PD). J. Chen and X. Q. Tang are contributed equally to this work.  相似文献   

18.
Astrocytosis is a common feature of amyloid plaques. The Abeta-astrocyte interaction produces a detrimental effect on neurons, which may contribute to neurodegeneration in Alzheimer disease (AD). The regulation of astrocyte apoptosis is essential to physiological and pathological processes in the CNS. Melatonin is a potent antioxidant and free radical scavenger. Previously, we showed that melatonin alleviated the learning and memory deficits in the APP 695 transgenic mouse model of AD. In this study, the importance of melatonin in the management of Abeta-induced apoptosis in an astrocyte-like cell is discussed. We found that rat astroglioma C6 cells treated with Abeta25-35 or Abeta1-42 undergo apoptosis and that melatonin pretreatment at 10(-5), 10(-6), and 10(-7) M significantly attenuates Abeta25-35- or Abeta1-42-induced apoptosis. The antiapoptotic effects of melatonin were extremely reproducible and corroborated by multiple quantitative methods, including an MTT cell viability assay, Hoechst 33342 nuclei staining, DNA fragmentation analysis, and flow cytometric analysis. In addition, melatonin effectively suppressed Abeta1-42-induced nitric oxide formation, remarkably prevented Abeta1-40-induced intracellular calcium overload, and significantly alleviated Abeta1-40-induced membrane rigidity. Our results demonstrate that, in addition to the beneficial effects of providing direct antioxidant protection to neurons, melatonin may enhance neuroprotection against Abeta-induced neurotoxicity by promoting the survival of glial cells.  相似文献   

19.
Amyloid beta protein (Abeta) increases free radical production and lipid peroxidation in PC12 nerve cells, leading to apoptosis and cell death. The effect of ursolic acid from Origanum majorana L. on Abeta-induced neurotoxicity was investigated using PC12 cells. Pretreatment with isolated ursolic acid and vitamin E prevented the PC12 cell from reactive oxygen species (ROS) toxicity that is mediated by Abeta. The ursolic acid resulted in decreased Abeta toxicity assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and trypan blue assay. Thus, treatment with these antioxidants inhibited the Abeta-induced neurotoxic effect. Therefore, these results indicate that micromolar Abeta-induced oxidative cell death is reduced by ursolic acid from Origanum majorana L.  相似文献   

20.
Numerous studies show that D-β-Hydroxybutyrate (DβHB) is neuroprotective. The present study was to explore the neuroprotective effects of DβHB against the cell death and apoptosis induced by 1-methyl-4-phenylpyridinium ion (MPP+) in PC12 cells. PC12 cells were pretreated with DβHB and followed by MPP+ exposure. The cell viability was determined by MTT assay. The morphological characteristics of apoptosis was observed by Acridine Orange (AO) staining and apoptotic rates were measured by flow cytometer. The product of lipid peroxidation, malondialdehyde (MDA), was measured using thiobarbituric acid method. The mitochondrial membrane potential (MMP), intracellular ROS and total glutathione were detected by microplate reader. In PC12 cells, pretreatment with DβHB significantly reduced MPP+-induced the decrease of cell viability. AO staining and flow cytometric analysis found DβHB inhibited MPP+-induced apoptosis. The measurement of MDA formation showed that DβHB alleviated lipid peroxidation induced by MPP+. The loss of MMP induced by MPP+ was preventive by DβHB. The changes of intracellular ROS and total glutathione induced by MPP+ were reversed by DβHB. DβHB protected PC12 cells against MPP+-induced death and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号