首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Introduction of the Y chromosome from a Mus musculus domesticus (Tirano) subspecies into the Mus musculus musculus C57BL/6 (B6) inbred strain background results in sex reversal in XY offspring. It has been hypothesized that the domesticus testis-determining Y (Tdy) locus is misregulated in B6 genome, thereby impairing sex determination in B6.Y(Dom) animals. The identification of a gene in the sex-determining region on the Y chromosome (Sry) as the Tdy has provided a means to experimentally examine this hypothesis. We have generated several lines of B6 transgenic mice harboring a green fluorescent protein gene directed by a Sry promoter from the domesticus (Tirano) Y chromosome. Detailed analysis of the transgene expression was conducted in both fetal and adult tissues of the transgenic mice. The domesticus Sry promoter was capable of directing the expression of the green fluorescent protein gene in a pattern similar, if not identical, to that of the endogenous B6 Sry gene. These observations suggest that the domesticus Sry promoter is not involved in the postulated misregulation of the domesticus (Tirano) Sry gene in the B6 genomic background. These results are discussed with reference to a second hypothesis invoking incompatible protein interaction(s) as a mechanism of aberrant sex determination in B6.Y(Dom) animals.  相似文献   

2.
When the Y chromosome of the laboratory inbred mouse strain C57BL/6 (B6) is replaced by the Y of certain strains of Mus musculus domesticus, testis determination fails and all XY fetuses develop either as hermaphrodites or XY females (XY sex reversal). This suggests the presence of at least two alleles of Sry, the male-determining gene on the Y:M. m. domesticus and B6. The B6 Y chromosome is derived from the Japanese house mouse, M. m. molossinus and therefore carries a molossinus Sry allele. As a first step to determine how the molossinus Sry allele evolved, its distribution pattern was determined in wild mice. The cumulative data of 96 M. musculus samples obtained from 58 geographical locations in Europe, North Africa, and Asia show the molossinus Sry allele is restricted to Japan and the neighboring Asian mainland and confirm that Japanese M. m. molossinus mice were derived in part from a race of M. m. musculus from Korea or Manchuria. Sry polymorphisms, as illustrated by the molossinus Sry allele, can serve as molecular markers for studies on the evolution of wild M. musculus populations and can help determine the role sex determination plays in speciation.   相似文献   

3.
When the Y chromosomes from certain populations of Mus musculus domesticus are introduced into the mouse strain C57BL/6 (B6), testis determination can fail, resulting in gonads developing either as ovotestes (with both ovarian and testicular components) or as ovaries. Not all Y(DOM) chromosomes cause sex reversal. Y(DOM) chromosomes are divided into three classes based upon their ability to induce testes in B6. The molecular basis underlying the three Y(DOM) classes is an enigma. The simplest explanation is that they harbor different alleles of the testis-determining gene, Sry. Sequencing of Sry(DOM) genes has indeed identified polymorphisms. However, none were unequivocally linked to the sex-reversal trait. It was concluded that all SRY(DOM) proteins are functionally equivalent. Using a semiquantitative RT-PCR assay, we now show that representatives of the three Y(DOM) classes have variant Sry expression patterns, that severity of sex reversal correlates with Sry mRNA titers, and that genetic correction of the sex reversal results in the upregulation of Sry expression. We propose that the variant Sry expression patterns result from polymorphisms at the site of a putative Sry enhancer.  相似文献   

4.
The phenomenon of B6-Y(DOM) sex reversal arises when certain variants of the Mus domesticus Y chromosome are crossed onto the genetic background of the C57BL/6J (B6) inbred mouse strain, which normally carries a Mus musculus-derived Y chromosome. While the sex reversal has been assumed to involve strain-specific variations in structure or expression of Sry, the actual cause has not been identified. Here we used in situ hybridization to study expression of Sry, and the critical downstream gene Sox9, in strains containing different chromosome combinations to investigate the cause of B6-Y(DOM) sex reversal. Our findings establish that a delay of expression of Sry(DOM) relative to Sry(B6) underlies B6-Y(DOM) sex reversal and provide the first molecular confirmation that Sry must act during a critical time window to appropriately activate Sox9 and effect male testis determination before the onset of the ovarian-determining pathway.  相似文献   

5.
6.
Washburn LL  Albrecht KH  Eicher EM 《Genetics》2001,158(4):1675-1681
C57BL/6J-T-associated sex reversal (B6-TAS) in XY mice results in ovarian development and involves (1) hemizygosity for Tas, a gene located in the region of Chromosome 17 deleted in T(hp) and T(Orl), (2) homozygosity for one or more B6-derived autosomal genes, and (3) the presence of the AKR Y chromosome. Here we report results from experiments designed to investigate the Y chromosome component of this sex reversal. Testis development was restored in B6 T(Orl)/+ XY(AKR) mice carrying a Mus musculus Sry transgene. In addition, two functionally different classes of M. domesticus Sry alleles were identified among eight standard and two wild-derived inbred strains. One class, which includes AKR, did not initiate normal testis development in B6 T(Orl)/+ XY mice, whereas the other did. DNA sequence analysis of the Sry ORF and a 5' 800-bp segment divided these inbred strains into the same groups. Finally, we found that Sry is transcribed in B6 T(Orl)/+ XY(AKR) fetal gonads but at a reduced level. These results pinpoint Sry as the Y-linked component of B6-TAS. We hypothesize that the inability of specific M. domesticus Sry alleles to initiate normal testis development in B6 T(Orl)/+ XY(AKR) mice results from a biologically insufficient level of Sry expression, allowing the ovarian development pathway to proceed.  相似文献   

7.
应用显微切割技术获得赤麂1号,Y1,Y2染色体,通过DOP-PCR增加模板DNA拷贝数,然后用人的性别决定基因(Sex-tetermininig Region of the Chromosome Y,SRY)中HMG框内设计1对引物,对DOP-PCR产物进行扩增,在雄性赤麂Y2染色体DOP-PCR产物中扩增出与人SRY基因同源的Sry基因片段,克隆,测序,首次在分子水平上证明赤麂Y2染色体是真正的Y染色体,同时对赤麂Syr基因进行了初步定位。  相似文献   

8.
F G Biddle  Y Nishioka 《Génome》1988,30(6):870-878
The Y chromosome of Mus musculus poschiavinus interacts with the autosomal recessive gene tda-1b of the C57BL/6J laboratory strain of the house mouse to cause complete or partial sex reversal. Ovaries or ovotestes develop in a substantial proportion of the XY fetuses. Several different Y-specific DNA probes distinguish two major types of Y chromosome in the house mouse and they are represented by M. m. domesticus and M. m. musculus. The poschiavinus Y chromosome appears identical to the domesticus Y. The developmental distribution of the gonad types was examined in the first backcross or N2 generation of fetuses in C57BL/6J with six different domesticus-type Y chromosomes and, as controls, three different musculus-type Y chromosomes. Gonadal hermaphrodites were found with three of the six domesticus-type Y chromosomes. Both overall frequency and phenotypic distribution of types of gonadal hermaphrodites identify three classes of domesticus-type Y chromosome by their differential interaction with the C57BL/6J genetic background.  相似文献   

9.
10.
During the critical period of mouse sex determination, mesenchymal cells migrate from the mesonephros into the adjacent developing testis. This process is thought to initiate cord development and is dependent on Sry. The presence of Sry, however, does not always guarantee normal testis development. For example, transfer of certain Mus domesticus-derived Y chromosomes, i.e., M. domesticus Sry alleles, onto the C57BL/6J (B6) inbred mouse strain results in abnormal testis development. We tested the hypothesis that mesonephric cell migration was impaired in three cases representing a range of aberrant testis development: B6 XY(AKR), B6 XY(POS), and (BXD-21 x B6-Y(POS))F1 XY(POS). In each case, mesonephric cell migration was abnormal. Furthermore, the timing, extent, and position of migrating cells in vitro and cord development in vivo were coincident, supporting the hypothesis that mesonephric cells are critical for cord development. Additional experiments indicated that aberrant testis development results from the inability of Sry(M. domesticus) to initiate normal cell migration, but that downstream signal transduction mechanisms are intact. These experiments provide new insight into the mechanism of C57BL/6J-Y(M. domesticus) sex reversal. We present a model incorporating these findings as they relate to mammalian sex determination.  相似文献   

11.
We have investigated patterns of evolution in the nonrecombining portion of the Y chromosome in mice by comparing levels of polymorphism within Mus domesticus with levels of divergence between M. domesticus and M. spretus. A 1,277-bp fragment of noncoding sequence flanking the sex determining locus (Sry) was PCR amplified, and 1,063 bases were sequenced and compared among 20 M. domesticus and 1 M. spretus. Two polymorphic base substitutions and two polymorphic insertion/deletion sites were identified within M. domesticus; nucleotide diversity was estimated to be 0.1%. Divergence between M. domesticus and M. spretus for this region (1.9%) was slightly lower than the average divergence of single-copy nuclear DNA for these species. Comparison of levels of polymorphism and divergence at Sry with levels of polymorphism and divergence in the mitochondrial DNA control region provided no evidence of a departure from the expectations of neutral molecular evolution. These findings are consistent with the presumed lack of function for much of the Y chromosome.   相似文献   

12.
Molecular evolution of Sry and Sox gene   总被引:9,自引:0,他引:9  
Nagai K 《Gene》2001,270(1-2):161-169
  相似文献   

13.
In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.  相似文献   

14.
15.
Sry and the hesitant beginnings of male development   总被引:5,自引:0,他引:5  
In mammals, Sry (sex-determining region Y gene) is the master regulator of male sex determination. The discovery of Sry in 1990 was expected to provide the key to unravelling the network of gene regulation underlying testis development. Intriguingly, no target gene of SRY protein has yet been discovered, and the mechanisms by which it mediates its developmental functions are still elusive. What is clear is that instead of the robust gene one might expect as the pillar of male sexual development, Sry function hangs by a thin thread, a situation that has profound biological, medical and evolutionary implications.  相似文献   

16.
17.
18.
We report the isolation and characterization of two recombinant clones containing DNA derived from the Y chromosome of the C57BL/10 inbred mouse strain. Both clones were isolated from a lambda phage library derived from a partial EcoRI digest of C57BL/10 male DNA using the murine retrovirus M720. Characterization of these clones showed they were derived from a repeated segment present on the C57BL/10J Y chromosome that contains sequences found elsewhere in the genome. In addition, one clone contained a sequence, designated YB10, that is unique to the Y chromosome and present in approximately 500 copies on the C57BL/10J Y chromosome. Analysis of Southern blots containing DNAs prepared from females and males of representative species from four subgenera of Mus probed with pYB10 and the 3'LTR from one of the Y-associated retroviruses (MuRVY) revealed that, with the exception of a single fragment observed in both female and male DNA of Mus saxicola, hybridization to pYB10 was observed only to male DNA of the species Mus spretus, Mus hortulanus, Mus musculus, Mus domesticus and Mus abbotti. In addition, the pattern and intensity of hybridization to YB10 and the MuRVY-LTR indicated that sequence of divergence was followed by amplification of Y chromosome sequences containing YB10 and MuRVY. The divergence and amplification occurred separately in each of the ancestral lineages leading to M. spretus, M. hortulanus, M. abbotti, M. musculus and M. domesticus. We suggest that acquisition and amplification of DNA sequences by the mammalian Y chromosome has contributed to its evolution and may imply that the mammalian Y chromosome is evolving at a faster rate than the rest of the genome.  相似文献   

19.
Djian P  Delhomme B 《Genetics》2005,169(4):2199-2208
The involucrin gene encodes a protein of terminally differentiated keratinocytes. Its segment of repeats, which represents up to 80% of the coding region, is highly polymorphic in mouse strains derived from wild progenitors. Polymorphism includes nucleotide substitutions, but is most strikingly due to the recent addition of a variable number of repeats at a precise location within the segment of repeats. Each mouse taxon examined showed consistent and distinctive patterns of evolution of its variable region: very rapid changes in most M. m. domesticus alleles, slow changes in M. m. musculus, and complete arrest in M. spretus. We conclude that changes in the variable region are controlled by the genetic background. One of the M. m. domesticus alleles (DIK-L), which is of M. m. musculus origin, has undergone a recent repeat duplication typical of M. m. domesticus. This suggests that the genetic background controls repeat duplications through trans-acting factors. Because the repeat pattern differs in closely related murine taxa, involucrin reveals with greater sensitivity than random nucleotide substitutions the evolutionary relations of the mouse and probably of all murids.  相似文献   

20.
Sox genes encode proteins related to each other, and to the sex determining gene Sry, by the presence of a DNA binding motif known as the HMG domain. Although HMG domains can bind to related DNA sequences, Sox gene products may achieve target gene specificity by binding to preferred target sequences or by interacting with specific partner proteins. To assess their functional similarities, we replaced the HMG box of Sry with the HMG box of Sox3 or Sox9 and tested whether these constructs caused sex reversal in XX mice. Our results indicate that such chimeric transgenes can functionally replace Sry and elicit development of testis cords, male patterns of gene expression, and elaboration of male secondary sexual characteristics. This implies that chimeric SRY proteins with SOX HMG domains can bind to and regulate SRY target genes and that potential SRY partner factor interactions are not disrupted by HMG domain substitutions. genesis 28:111-124, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号