首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of coagulase-negative staphylococci to colonize implanted medical devices is generally attributed to their ability to produce biofilms. Biofilm of the model strain of Staphylococcus epidermidis RP62A was shown to contain two carbohydrate-containing moieties, a linear poly-beta-(1-->6)-N-acetyl-D-glucosamine (PNAG) and teichoic acid. In the present study, we investigated several biofilm-producing staphylococci isolated from infected orthopaedic implants and characterized the composition of the laboratory-grown biofilms using chemical analysis and 1H nuclear magnetic resonance spectroscopy. Extracellular teichoic acid was produced by all strains studied. Some of the clinical strains were shown to produce biofilms with compositions similar to that of the model strain, containing a varying amount of PNAG. The chemical structure of PNAG of the clinical strains was similar to that previously described for the model strains S. epidermidis RP62A and Staphylococcus aureus MN8m, differing only in the amount of charged groups. Biofilms of the strains producing a substantial amount of PNAG were detached by dispersin B, a PNAG-degrading enzyme, while being unsusceptible to proteinase K treatment. On the other hand, some strains produced biofilms without any detectable amount of PNAG. The biofilms of these strains were dispersed by proteinase K, but not by dispersin B.  相似文献   

2.
The ability to adhere to artificial surfaces and form biofilms is considered as a virulence factor of Staphylococcus epidermidis, one of the major causes of nocosomial infections, especially those related to implanted medical devices. Cell-wall teichoic acid is known to play an important role in biofilm formation of staphylococci. The structure of the cell wall and extracellular teichoic acids of S. epidermidis RP62A, a reference biofilm-positive strain, was studied by NMR spectroscopy and capillary electrophoresis-mass spectrometry. Their structures were found to be a (1-->3)-linked poly(glycerol phosphate), substituted at the 2-position of glycerol residues with alpha-Glc, alpha-GlcNAc, D-Ala and alpha-Glc6Ala. D-Alanyl acylation of a sugar hydroxyl group seems to be a novel structural feature of teichoic acids from staphylococci.  相似文献   

3.
Colonization of implanted medical devices by coagulase-negative staphylococci such as Staphylococcus epidermidis is mediated by the bacterial polysaccharide intercellular adhesin (PIA), a polymer of beta-(1-->6)-linked glucosamine substituted with N-acetyl and O-succinyl constituents. The icaADBC locus containing the biosynthetic genes for production of PIA has been identified in both S. epidermidis and S. aureus. Whereas it is clear that PIA is a constituent that contributes to the virulence of S. epidermidis, it is less clear what role PIA plays in infection with S. aureus. Recently, identification of a novel polysaccharide antigen from S. aureus termed poly N-succinyl beta-(1-->6)-glucosamine (PNSG) has been reported. This polymer was composed of the same glycan backbone as PIA but was reported to contain a high proportion of N-succinylation rather than acetylation. We have isolated a glucosamine-containing exopolysaccharide from the constitutive over-producing MN8m strain of S. aureus in order to prepare polysaccharide-protein conjugate vaccines. In this report we demonstrate that MN8m produced a high-molecular-weight (>300,000 Da) polymer of beta-(1-->6)-linked glucosamine containing 45-60% N-acetyl, and a small amount of O-succinyl (approx 10% mole ratio to monosaccharide units). By detailed NMR analyses of polysaccharide preparations, we show that the previous identification of N-succinyl was an analytical artifact. The exopolysaccharide we have isolated is active in in vitro hemagglutination assays and is immunogenic in mice when coupled to a protein carrier. We therefore conclude that S. aureus strain MN8m produces a polymer that is chemically and biologically closely related to the PIA produced by S. epidermidis.  相似文献   

4.
The frequency of the gseA gene encoding a glutamic acid-specific serine protease, GluSE, of Staphylococcus epidermidis was investigated. DNA hybridization analysis demonstrated that gseA existed exclusively in S. epidermidis but not in other bacteria examined. A single step PCR assay with a set of designed primers yielded amplification of gseA from all 69 clinical isolates of S. epidermidis taken from patients and healthy adults, whereas production of GluSE was observed in 74% (51/69) of the isolates. Furthermore, none of the 46 clinical isolates of other species of coagulase-negative staphylococci and 45 clinical isolates of Staphylococcus aureus showed amplification, except a Staphylococcus capitis strain. However, this strain was positive for a S. epidermidis-specific DNA region and the DNA sequence of the 16S rRNA gene showed 99% identity with that of S. epidermidis. Therefore, these results indicated that the present PCR assay for gseA was ubiquitous and highly specific for detection of S. epidermidis.  相似文献   

5.
Staphylococcus epidermidis is the most medically significant of the coagulase-negative staphylococci. An oligonucleotide probe (pSe) for identification of S. epidermidis was defined by comparing the sequences of the 16S rRNA variable region V6 from numerous coagulase-negative staphylococci. In order to increase the sensitivity of the detection, polymerase chain reaction amplification of the variable region with primers based on the conserved flanking sequences was applied. The detection limit of the polymerase chain reaction assay combined with pSe probe was shown to be 1 fg which corresponds to about one single bacterium. Additionally, a sensitive, non-radioisotopic system with chemiluminescence detection was tested.  相似文献   

6.
A rapid and sensitive in vitro assay was developed to quantitatively assess the adherence of Staphylococcus epidermidis to a hydrophobic plastic surface. The assay is based upon the detection of cell-associated urease activity as a marker of bacteria remaining adherent to the polystyrene microwells of flat-bottomed, 96-well tissue culture plates. Using ATCC 35984, a slime-producing strain of S. epidermidis, the assay could detect as few as 3 x 10(3) bacteria and was linear to 3.5 x 10(7) bacteria. The adherence of both slime-positive and slime-negative coagulase-negative staphylococci could be evaluated by using this method. This assay could be used to examine factors which influence the adherence of individual S. epidermidis strains to hydrophobic surfaces and to develop agents or coating materials which suppress the adherence of coagulase-negative staphylococci to biomedical implants.  相似文献   

7.
A rapid and sensitive in vitro assay was developed to quantitatively assess the adherence of Staphylococcus epidermidis to a hydrophobic plastic surface. The assay is based upon the detection of cell-associated urease activity as a marker of bacteria remaining adherent to the polystyrene microwells of flat-bottomed, 96-well tissue culture plates. Using ATCC 35984, a slime-producing strain of S. epidermidis, the assay could detect as few as 3 x 10(3) bacteria and was linear to 3.5 x 10(7) bacteria. The adherence of both slime-positive and slime-negative coagulase-negative staphylococci could be evaluated by using this method. This assay could be used to examine factors which influence the adherence of individual S. epidermidis strains to hydrophobic surfaces and to develop agents or coating materials which suppress the adherence of coagulase-negative staphylococci to biomedical implants.  相似文献   

8.
Abstract Adhesion of staphylococcal cells to polyethylene with end point-attached heparin was quantified by bioluminescence. Staphylococcus epidermidis 3380 and the slime-producing S. epidermidis RP12 adhered to the highest extent, and S. lugdunensis 2342 to the least extent. Preincubation of the polymer with dialysis fluid reduced adhesion of S. epidermidis 3380 and RP12 but enhanced that of S. aureus , and preadsorption of the surface with fibronectin decreased subsequent adhesion of S. epidermidis and S. haemolyticus strains. When staphylococci were grown in the presence of a biomaterial their ability to activate peritoneal cells was decreased. The bactericidal activity was impaired, whereas ingestion of opsonized coagulase-negative staphylococci (CNS) strains was unaffected. With S. epidermidis RP12 the presence of biomaterial did not influence either phagocytosis or bactericidal effect of peritoneal cells. After intra-peritoneal challenge with staphylococcal strains, the organ uptake of S. aureus Cowan 1 was increased in normal mice whereas immunosuppressed mice died. CNS strains increased mainly in the peritoneal cavity of immunosuppressed mice. The uptake of bacteria in liver and kidneys was increased with S. epidermidis 3380, S. lugdunensis 2343 and S. schleiferi 667-88. Generally, CNS strains persisted in the peritoneal cavity of both normal and immunosuppressed mice. These data indicate that host defense mechanisms, mainly polymorphonuclear neutrophils, fail to eliminate CNS infections in the peritoneum, and that initial adhesion to an implanted biomaterial may be of lesser importance in the peritoneal cavity than in e.g. catheter-associated infections. There are strain-specific virulence factors of bacteria, and slime producing strains evade the host defense mechanisms more efficiently than non-slime producing strains.  相似文献   

9.
Extracellular teichoic acid, an essential constituent of the biofilm produced by Staphylococcus epidermidis strain RP62A, is also an important constituent of the extracellular matrix of another biofilm producing strain, Staphylococcus aureus MN8m. The structure of the extracellular and cell wall teichoic acids of the latter strain was studied by NMR spectroscopy and capillary electrophoresis-mass spectrometry. Both teichoic acids were found to be a mixture of two polymers, a (1-->5)-linked poly(ribitol phosphate), substituted at the 4-position of ribitol residues with beta-GlcNAc, and a (1-->3)-linked poly(glycerol phosphate), partially substituted with the D-Ala at 2-position of glycerol residue. Such mixture is unusual for S. aureus.  相似文献   

10.
A new coagulase-negative species of the genus Staphylococcus, Staphylococcus muscae, is described on the basis of the results of a study of four strains that were isolated from flies. 16S rRNA sequences of the type strains of S. muscae, Staphylococcus schleiferi, and Staphylococcus sciuri were determined and used, together with the corresponding sequences of Staphylococcus aureus and Staphylococcus epidermidis, for a comparative analysis. The new species is characterized taxonomically; this species is differentiated from the other novobiocin-susceptible staphylococci by its physiological and biochemical activities, cell wall composition, and levels of genetic relatedness. The type strain of this species is strain MB4 (= CCM 4175).  相似文献   

11.
Passive protective activity of rabbit antiserum prepared by a representative capsular type II strain of Staphylococcus epidermidis in mice was absorbed out with homologous capsular type strains of S. simulans, S. cohnii, S. xylosus, S. hominis, S. capitis, S. hyicus, S. haemolyticus, and S. saprophyticus in addition to the homologous strain. The minimum amount of the strains required for absorption differed greatly, depending upon the strain. No absorption of the activity was shown with a strain of capsular type I and III of S. epidermidis, S. simulans, and S. cohnii, and a strain of capsular type III of S. hominis. These results suggest a possible capsular type specificity in the cross protection between strains of S. epidermidis and other species of coagulase-negative staphylococci.  相似文献   

12.
Identification of Micrococcaceae in Clinical Bacteriology   总被引:6,自引:4,他引:2  
The cellular morphology, identifying physiological characteristics, and a key to the human genera of Micrococcaceae are presented with flow charts for identification of aerobic and anaerobic isolates. These flow charts can be amended as desired, depending upon the degree of accuracy desired. Micrococcaceae isolates in a 350-bed private general hospital during a 15-week period are tabulated to show relative numbers of the different genera and species, with their probable relationship to infection or contamination. Only 11 of the 220 Micrococcaceae isolates were not Staphylococcus; no Sarcina or Peptococcus were isolated. Of the Staphylococcus isolates, 61% were S. epidermidis. Almost 18% of the S. aureus isolates were coagulase-negative. Of the S. aureus isolates, 80% of the coagulase-positive isolates were infecting agents, as were 67% of the coagulase-negative S. aureus isolates, compared to only 48% of S. epidermidis isolates. Two of four Gaffkya isolates but only one of seven Micrococcus isolates were infecting agents. If coagulase production is used as the sole criterion for speciation of staphylococci, and Micrococcus is not differentiated from Staphylococcus, the term "coagulase-negative staphylococci" does not differentiate three distinct levels of pathogenicity. Coagulase-negative S. aureus is more virulent than S. epidermidis or Gaffkya, which are more virulent than Micrococcus or Sarcina.  相似文献   

13.
The relative surface charge and hydrophobicity of 16 strains of Staphylococcus epidermidis showed large variations. For this species no relationship between the two surface parameters was found. A highly negative surface charge was observed in all seven encapsulated strains (one S. epidermidis and six Staphylococcus saprophyticus strains). The adhesion of the staphylococci to fluorinated polyethylene-propylene films was not related to the relative surface charge and the hydrophobicity of the bacteria. On films pre-exposed to human plasma, the bacterial adhesion was substantially reduced. Mechanisms involved in the adhesion of coagulase-negative staphylococci to this biomaterial are discussed.  相似文献   

14.
Staphylococcus aureus is an opportunistic pathogen and the major causative agent of numerous hospital- and community-acquired infections. Staphylococcus epidermidis has emerged as a causative agent of infections often associated with implanted medical devices. We have sequenced the approximately 2.8-Mb genome of S. aureus COL, an early methicillin-resistant isolate, and the approximately 2.6-Mb genome of S. epidermidis RP62a, a methicillin-resistant biofilm isolate. Comparative analysis of these and other staphylococcal genomes was used to explore the evolution of virulence and resistance between these two species. The S. aureus and S. epidermidis genomes are syntenic throughout their lengths and share a core set of 1,681 open reading frames. Genome islands in nonsyntenic regions are the primary source of variations in pathogenicity and resistance. Gene transfer between staphylococci and low-GC-content gram-positive bacteria appears to have shaped their virulence and resistance profiles. Integrated plasmids in S. epidermidis carry genes encoding resistance to cadmium and species-specific LPXTG surface proteins. A novel genome island encodes multiple phenol-soluble modulins, a potential S. epidermidis virulence factor. S. epidermidis contains the cap operon, encoding the polyglutamate capsule, a major virulence factor in Bacillus anthracis. Additional phenotypic differences are likely the result of single nucleotide polymorphisms, which are most numerous in cell envelope proteins. Overall differences in pathogenicity can be attributed to genome islands in S. aureus which encode enterotoxins, exotoxins, leukocidins, and leukotoxins not found in S. epidermidis.  相似文献   

15.
Characterization of staphylococci   总被引:11,自引:0,他引:11  
A total of 158 Staphylococcus strains from various sources were characterized by biochemical, physiological, and morphological tests. Numerical taxonomy was applied by using these features. Taxonomic analysis was done with programs run under the MVS-TSO system of the IBM 370 complex and PDP-10 system of the National Institutes of Health. DNA-DNA hybridization with nitrocellulose filters was done to compare selected atypical cultures with American Type Culture Collection reference strains. We found that the use of the nomenclature of Bergey's Manual (8th edition) to identify these strains by species was not adequate. DNA homology values supported the formation of Staphylococcus hyicus subsp. hyicus separate from Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus. The three tests that best separated these strains into four species were (i) tube coagulase (6-h or 24-h porcine plasma or 24-h Difco rabbit plasma), (ii) production of acetoin or acid aerobically from ribose, maltose, or trehalose, and (iii) growth in the presence of novobiocin. Four strains of S. hyicus subsp. hyicus (VII76, VII113, VII131, and VA519) gave typical enterotoxigenic responses in monkey-feeding tests but were negative for enterotoxins A through E, suggesting the presence of one or more new enterotoxins. Two coagulase-negative, heat-stable DNase-positive strains (D143 and ARM) could not be classified by either DNA-DNA hybridization or numerical taxonomy, and D143 was enterotoxigenic as measured by the monkey-feeding bioassay. DNA homology showed that strain FRI-698M was more closely related to S. epidermidis than to S. aureus, yet it produced enterotoxin D. These data suggest the occurrence of coagulase-negative enterotoxigenic strains that are not S. aureus; nonetheless, a positive tube coagulase test and heat-stable DNase test should together be useful for routine screening of most potentially enterotoxigenic staphylococci in foods.  相似文献   

16.
Lysozyme production is a frequent property of potentially pathogenic staphylococci. In the present study, 1,186 strains of human origin, 85 strains of animal origin, and 156 strains of Staphylococcus albus (epidermidis) were tested. Of 1,114 coagulase-positive strains of human and animal origin, 1,098 were lysozyme-positive (98.5%). On the other hand, of 157 coagulase-negative strains which, based on further investigations, belong to the potentially pathogenic staphylococci, all were lysozyme-positive. All of the 156 strains (100%) belonging to the species S. albus (epidermidis) were lysozyme-negative. We conclude that lysozyme production is a better index of potentially pathogenic staphylococci than the measurement of free coagulase, especially in cases of strains of animal origin. It is possible that lysozyme production allows a differentiation between pathogenic and nonpathogenic coagulase-negative staphylococci.  相似文献   

17.
Hu J  Xu T  Zhu T  Lou Q  Wang X  Wu Y  Huang R  Liu J  Liu H  Yu F  Ding B  Huang Y  Tong W  Qu D 《PloS one》2011,6(6):e20918
Because there is no effective antibiotic to eradicate Staphylococcus epidermidis biofilm infections that lead to the failure of medical device implantations, the development of anti-biofilm vaccines is necessary. Biofilm formation by S. epidermidis requires accumulation-associated protein (Aap) that contains sequence repeats known as G5 domains, which are responsible for the Zn(2+)-dependent dimerization of Aap to mediate intercellular adhesion. Antibodies against Aap have been reported to inhibit biofilm accumulation. In the present study, three monoclonal antibodies (MAbs) against the Aap C-terminal single B-repeat construct followed by the 79-aa half repeat (AapBrpt1.5) were generated. MAb(18B6) inhibited biofilm formation by S. epidermidis RP62A to 60% of the maximum, while MAb(25C11) and MAb(20B9) enhanced biofilm accumulation. All three MAbs aggregated the planktonic bacteria to form visible cell clusters. Epitope mapping revealed that the epitope of MAb(18B6), which recognizes an identical area within AapBrpt constructs from S. epidermidis RP62A, was not shared by MAb(25C11) and MAb(20B9). Furthermore, all three MAbs were found to affect both Aap expression and extracellular polymeric substance (EPS, including extracellular DNA and PIA) biosynthesis in S. epidermidis and enhance the cell accumulation. These findings contribute to a better understanding of staphylococcal biofilm formation and will help to develop epitope-peptide vaccines against staphylococcal infections.  相似文献   

18.
From 50 infected surgical wounds of orthopaedic patients, 43 (86%) staphylococcal strains were isolated. 34 of all these staphylococci belonged to Staphylococcus aureus species (i.e. 68 % of all isolates from surgical wounds; 79% of staphylococcal isolates); 9 were coagulase-negative staphylococci (i.e. 21% of all isolates from surgical wounds; 18% of staphylococcal isolates). Among microorganisms isolated from the wounds we also found 2 (4%) of the Enterobacteriaceae family; 2 (4%) of the Pseudomonas genus; 3 (6%) of the Streptococcus genus. Thus, orthopaedic surgical wounds were infected by staphylococci (mainly S. aureus) more frequently than by other micro-organisms. All the staphylococcal strains were screened for methicillin resistance by agar disk diffusion testing and for the presence of mecA gene responsible for methicillin resistance by PCR. 32% of the S. aureus and 33% of the S. epidermidis strains resulted methicillin resistant and mecA-positive. The data confirm the diffusion of methicillin resistant S. aureus in surgical site infections and shows that the so-called "new pathogens", i.e. S. epidermidis and other coagulase-negative staphylococci, also exhibit a frequent and hazardous methicillin-resisting ability.  相似文献   

19.
20.
Previous studies have demonstrated that Staphylococcus epidermidis isolates colonizing the skin of healthy humans do not typically encode icaADBC, the genes responsible for the production of polysaccharide intercellular adhesin or biofilms. It was therefore hypothesized that the presence of icaADBC was deleterious to the successful colonization of human skin by S. epidermidis. Using a human skin competition model, it was determined that the strong biofilm-producing S. epidermidis strain 1457 was outcompeted at 1, 3, and 10 days by an isogenic icaADBC mutant (1457 ica::dhfr), suggesting a fitness cost for carriage of icaADBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号