首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different hyphenated liquid chromatographic (LC) and mass spectrometric (MS) techniques were investigated in order to set-up a method for the fast, direct analysis of betamethasone in hydrolysed and non-hydrolysed urine using large-volume sample injection. After the optimisation of the LC parameters using a traditional UV detector and of the thermospray and mass spectrometric parameters by flow injection, urine samples (0.5 ml) were submitted to analysis by either LC combined with tandem mass spectrometry (MS–MS), coupled-column LC (LC–LC) combined with single quadrupole MS, and LC–LC–MS–MS. Both the three-step configurations (LC–MS–MS and LC–LC–MS) did not provide satisfactory results: loss of sensitivity was noted in the case of LC–MS–MS (likely due to reduced efficiency in the ionisation of betamethasone in the thermospray owing to the presence of large amounts of matrix interference), while in the case of LC–LC–MS a high chemical noise resulting in insufficient selectivity of detection was observed. On the contrary, LC–LC–MS–MS analysis proved to meet the demand of high speed of analysis (sample throughput, 4.5 h−1), selectivity, and sensitivity (LOQ, 1 ng/ml; LOD, 0.2 ng/ml). Notwithstanding the complex analytical system adopted, the developed procedure was manageable and very robust, provided that at the beginning of each analytical session the performance of the system was controlled by checking the retention time of the analytes on the first analytical column with UV detection and by optimising vaporiser temperature of the thermospray by flow injection.  相似文献   

2.
The discrepancy of results for the quantification of androstenedione in human serum between a radioimmunoassay (RIA) method and high performance liquid chromatography tandem-mass spectrometry (LC–MS/MS) was investigated. RIA overestimated concentrations compared to LC–MS/MS on 59 clinical samples (RIA = 1.79 × LC–MS/MS + 0.94). RIA kit and LC–MS/MS calibrants were also determined by both methods. The RIA performed with improved accuracy on the calibrants (RIA = 1.35 × LC–MS/MS − 0.28). Lipid, protein, electrolyte content, and pH of the two sets of calibrants were further investigated. The RIA calibrants contained little lipid material, while the LC–MS/MS calibrant material contained the same levels expected in normal serum/plasma. The pH and sex hormone binding globulin (SHBG) values were different between the RIA calibrants and the LC–MS/MS calibrant material (SHBG, 31 ± 2 and 38 ± 2 nmol/l; pH, 8.27 ± 0.18 and 8.66 ± 0.03, respectively). No correlation was observed between androstenedione RIA and LC–MS/MS discrepancy and lipid or protein. LC–MS/MS sample preparation was tested for the removal of protein-bound material and recovery determined (99–108%). The corresponding RIA results overestimated androstenedione by 52–174% compared to LC–MS/MS. The results here demonstrate that LC–MS/MS is the more accurate method.  相似文献   

3.
The steroidal liver X receptor agonist, 3α,6α,24-trihydroxy-24,24-di(trifluoromethyl)-5β-cholane (ATI-829) is a potential therapeutic agent for the treatment of atherosclerosis. A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS–MS) method for the quantification of ATI-829 in mouse plasma was developed and validated. Proteins in a 25 μL aliquot of mouse plasma were precipitated, and ATI-829 was extracted from the precipitate by the addition of 125 μL methanol. The overall extraction efficiency was greater than 99%. LC–MS–MS with negative ion electrospray and selected reaction monitoring was used for the quantitative analysis of ATI-829. The lower limit of quantitation of ATI-829 corresponded to 5.0 ng/mL (9.7 nM) plasma. Interference from matrix was negligible. The calibration curve was linear over the range 5–2000 ng/mL. The intra-day precision and inter-day precision of the analyses were <4.5% and <6%, respectively, and the accuracy ranged from 92% to 103%. ATI-829 in plasma was stable for at least 6 h at room temperature, 1 week at 4 °C, and 3 weeks at −20 °C. The validated method was then utilized for pharmacokinetic studies of ATI-829 administered to mice.  相似文献   

4.
Ticagrelor is the first direct acting reversibly binding oral platelet P2Y(12) receptor antagonist. The parent molecule and the main metabolite (AR-C124910XX) are both able to block adenosine diphosphate-induced receptor signaling with similar potency. Drug binding to plasma proteins reduces free drug available for pharmacologic activity. Therefore, assessing unbound drug is important for interpretation of pharmacokinetic/pharmacodynamic findings. This paper describes the development and validation of an equilibrium dialysis/LC-MS/MS method for measuring unbound ticagrelor and AR-C124910XX in human plasma. Plasma samples (200μl) were dialysed against phosphate buffered saline (37 °C, 24h) in 96-well dialysis plates to separate unbound analytes. Drug-protein binding alterations during dialysis were minimized by maintaining physiologic conditions (pH 7.4, 37 °C). Ticagrelor and AR-C124910XX were quantified in dialysates (unbound fraction), retentates and plasma (total concentration) using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) methods. Calibration curves were established for the retentate and plasma (total concentration) in the ranges 5-5000 ng/ml (ticagrelor) and 2.5-2500 ng/ml (AR-C124910XX), and for the dialysate in the range 0.25-100 ng/ml (both analytes). Both ticagrelor and AR-C124910XX were highly protein bound (>99.8%), i.e. unbound fraction <0.2%. Yet, the methodology was successfully applied to determine unbound concentrations of ticagrelor and AR-C124910XX in clinical samples.  相似文献   

5.
To reliably identify the residual tetracycline antibiotics (TCs), oxytetracycline (OTC), tetracycline, chlortetracycline (CTC) and doxycycline (DC), in bovine tissues, we have established a confirmation method using electrospray ionization liquid chromatography–tandem mass spectrometry (ESI LC–MS–MS) with daughter ion scan. All TCs gave [M+H−NH3]+ and [M+H−NH3−H2O]+ as the product ions, except for DC when [M+H]+ was selected as the precursor ion. The combination of C18 cartridge clean-up and the present ESI LC–MS–MS method can reliably identify TCs fortified at a concentration of 0.1 ppm in bovine tissues, including liver, kidney and muscle, and has been successfully applied to the identification of residual OTC in bovine liver and residual CTC in bovine muscle samples previously found at concentrations of 0.58 ppm and 0.38 ppm by LC, respectively.  相似文献   

6.
Oxytocin (OT) is a neuropeptide with an extremely low endogenous level (low pg/ml) in human plasma. It is very challenging to develop a highly sensitive assay to measure endogenous OT, including radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA). Electrospray ionization (ESI) liquid chromatography–tandem mass spectrometry (LC–MS/MS) can provide high-throughput and selective methods for quantification of peptides in biological samples. A novel and highly sensitive two-dimensional LC–MS/MS (2D-LC–MS/MS) assay combining solid-phase extraction (SPE) has been developed and validated for the determination of endogenous OT in both human and rat plasma. The lower limit of quantification (LLOQ) was 1.00 pg/ml for human and 50.0 pg/ml for rat. Human plasma diluted with water (1:6, v/v) was successfully optimized as a surrogate matrix for human to prepare standard curves without endogenous interference. The extraction efficiency and absolute recovery were above 65.8% using the HLB SPE procedure, and matrix effects were lower than 12%. The method was validated in the range of 1.00–250 pg/ml for human plasma and 50.0–10,000 pg/ml for rat plasma with precision less than 12.7% and accuracy less than 7%.  相似文献   

7.
Cyclophosphamide (CP) and its metabolite, hydroxycyclophosphamide (OH-CP) have been quantitated in mouse plasma and tissue by derivatization combined with liquid chromatography–tandem mass spectrometry (LC–MS–MS). The derivatization was conducted immediately upon sample collection, to trap the OH-CP metabolite intermediate prior to further conversion to phosphoramide mustard or other reaction products. This simple and straightforward derivatization procedure, combined with sample extraction via protein precipitation, allowed quantitation of CP and the oxime derivative of OH-CP in plasma for concentrations ranging from approximately 12.5–3333 ng/ml, and in spleen tissue for concentrations of 1250–50 000 ng/g. The short cycle time (2.5 min) of the LC–MS–MS method allowed high throughput analysis with minimal matrix interference. Mouse plasma levels were quantitated for doses of 40, 65 and 120 mg/kg; spleen concentrations were determined for mice dosed at 120 mg/kg. The CP and oxime plasma levels correlated well with dose amounts. The CP levels in the spleen and plasma were similar while the oxime levels in the spleen were significantly lower than the plasma.  相似文献   

8.
Liquid chromatography–coulometric array detection (LC–EC) is a sensitive, quantitative, and robust metabolomics profiling tool that complements the commonly used mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based approaches. However, LC–EC provides little structural information. We recently demonstrated a workflow for the structural characterization of metabolites detected by LC–EC profiling combined with LC–electrospray ionization (ESI)–MS and microNMR. This methodology is now extended to include (i) gas chromatography (GC)–electron ionization (EI)–MS analysis to fill structural gaps left by LC–ESI–MS and NMR and (ii) secondary fractionation of LC-collected fractions containing multiple coeluting analytes. GC–EI–MS spectra have more informative fragment ions that are reproducible for database searches. Secondary fractionation provides enhanced metabolite characterization by reducing spectral overlap in NMR and ion suppression in LC–ESI–MS. The need for these additional methods in the analysis of the broad chemical classes and concentration ranges found in plasma is illustrated with discussion of four specific examples: (i) characterization of compounds for which one or more of the detectors is insensitive (e.g., positional isomers in LC–MS, the direct detection of carboxylic groups and sulfonic groups in 1H NMR, or nonvolatile species in GC–MS), (ii) detection of labile compounds, (iii) resolution of closely eluting and/or coeluting compounds, and (iv) the capability to harness structural similarities common in many biologically related, LC–EC-detectable compounds.  相似文献   

9.
A rapid equilibrium dialysis (RED) assay followed by a solid phase extraction (SPE) high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of unbound vismodegib in human plasma was developed and validated. The equilibrium dialysis was carried out using 0.3 mL plasma samples in the single-use plate RED system at 37°C for 6h. The dialysis samples (0.1 mL) were extracted using a Strata-X-C 33u Polymeric Strong Cation SPE plate and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization (ESI) mass spectrometry. The standard curve, which ranged from 0.100 to 100 ng/mL for vismodegib, was fitted to a 1/x(2) weighted linear regression model. The lower limit of quantitation (LLOQ, 0.100 ng/mL) was sufficient to quantify unbound concentrations of vismodegib after dialysis. The intra-assay precision of the LC-MS/MS assay, based on the four analytical QC levels (LLOQ, low, medium and high), was within 7.7% CV and inter-assay precision was within 5.5% CV. The assay accuracy, expressed as %Bias, was within ±4.0% of the nominal concentration values. Extraction recovery of vismodegib was between 77.9 and 84.0%. The assay provides a means for accurate assessment of unbound vismodegib plasma concentrations in clinical studies.  相似文献   

10.
We present fast LC–MS–MS analyses of multicomponent mixtures containing flavones, sulfonamides, benzodiazepines and tricyclic amines. Using a short microbore HPLC column with small particle size, five to eight compounds were partially resolved within 15 to 30 s. TurboIonSpray and atmospheric pressure chemical ionization interfaces were well suited to tolerate the higher eluent flow-rates of 1.2 to 2 ml/min. The methods were applied to biological sample matrices after clean-up using solid-phase or liquid–liquid extraction. Good precision and accuracy (average 8.9 and 97.7%, respectively) were achieved for the determination of tricyclic amines in human plasma. Benzodiazepines were determined in human urine with average precision of 9% and average accuracy of 95% for intra- and inter-assay. Detection limits in the low ng/ml range were obtained. An example for 240 injections per hour of demonstrated the feasibility of rapid LC–MS–MS analysis.  相似文献   

11.
A liquid chromatography–electrospray ionization tandem mass spectrometric method was developed for the simultaneous determination of losartan and its major active metabolite, EXP-3174, in human plasma. The two analytes and the internal standard (DuP-167) were extracted from plasma under acidic conditions by using solid-phase extraction cartridges containing a sorbent of copolymer, poly(divinylbenzene-co-N-vinylpyrrolidone). The analytes were separated by LC equipped with a reversed-phase C18 column, and introduced into the mass spectrometer via the electrospray ion source with pneumatically-assisted nebulization. For LC–MS–MS samples, an isocratic mobile phase consisting of [0.1% triethylamine–0.1% acetic acid (pH 7.1)]–acetonitorile (65:35, v/v) was used, and the assay was monitored for the negative fragment ions of the analytes. The method demonstrated linearity from 1 to 1000 ng/ml for both losartan and EXP-3174. The limit of quantification for both compounds in plasma was 1 ng/ml. This assay method may be useful for the measurement of levels of the two compounds in clinical studies of losartan.  相似文献   

12.
Morphine (MOR) is an opioid analgesic used for the treatment of moderate to severe pain. MOR is extensively metabolized to morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). A rapid and sensitive method that was able to reliably detect at least 0.5 ng/ml of MOR and 1.0 ng/ml of M6G was required to define their pharmacokinetic profiles. An LC–MS–MS method was developed in our laboratory to quantify all three analytes with the required sensitivity and a rapid turnaround time. A solid-phase extraction (SPE) was used to isolate MOR, M3G, M6G, and their corresponding deuterated internal standards from heparinized plasma. The extract was injected on a LC tandem mass spectrometer with a turbo ion-spray interface. Baseline chromatographic separation among MOR, M3G, and M6G peaks was achieved on a silica column with an aqueous organic mobile phase consisting of formic acid, water, and acetonitrile. The total chromatographic run time was 3 min per injection, with retention times of 1.5, 1.9 and 2.4 min for MOR, M6G, and M3G, respectively. Chromatographic separation of M3G and M6G from MOR was paramount in establishing the LC–MS–MS method selectivity because of fragmentation of M3G and M6G to MOR at the LC–MS interface. The standard curve range in plasma was 0.5–50 ng/ml for MOR, 1.0–100 ng/ml for M6G, and 10–1000 ng/ml for M3G. The inter-day precision and accuracy of the quality control (QC) samples were <7% relative standard deviation (RSD) and <6% relative error (R.E.) for MOR, <9% RSD and <5% R.E. for M6G, and <3% RSD and <6% R.E. for M3G. Analyte stability during sample processing and storage were established. Method ruggedness was demonstrated by the reproducible performance from multiple analysts using several LC–MS–MS systems to analyze over one thousand samples from clinical trials.  相似文献   

13.
A sensitive and specific LC–MS–MS assay has been developed and validated for barnidipine (1-benzyl-3-pyrrolidinyl)methyl-2,6-dimethyl-4(m-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate). The assay involves a simple and rapid solid-phase extraction procedure. Sample analysis was on a Spherisorb S3ODS2 100 mm×2 mm I.D. column, with a Finnigan TSQ 7000 mass spectrometer, using an electrospray interface and selective reaction monitoring (SRM). The intra- and inter-day precision and accuracy, determined as the coefficient of variation and relative error, respectively, were 11.8% or less. The limit of quantitation was 0.03 ng/ml, and the calibration was linear between 0.03 and 3.0 ng/ml. The method has been used successfully for the measurement of over two thousand human plasma samples from pharmacokinetic clinical trials.  相似文献   

14.
BMS-708163 is a γ-secretase inhibitor that is being developed for the treatment of Alzheimer's disease. Several LC–MS/MS methods have been developed for the determination of BMS-708163 in both plasma and cerebrospinal fluid in support of dog, rat, mouse and human studies. To support non-clinical studies, an LC–MS/MS method with a lower limit of quantitation (LLOQ) of 5 ng/mL, was developed and validated in dog, rat, and mouse plasma by using the deprotonated ion as the precursor ion. To support clinical studies, an LC–MS/MS method with LLOQ of 0.1 ng/mL, was developed and validated in human plasma by using the formate adduct as the precursor ion. Formic acid (0.01%) in water and acetonitrile was found to be the most favorable mobile phases for both deprotonated and formate adduct ions in negative electrospray ionization mode. A combination of a 3M Empore™ C18 plate for SPE and a Waters Atlantis dC18 analytical column for separation was used to achieve a highly selective solid phase extraction and chromatographic procedure from plasma without dry down and reconstitution steps. In the development of an assay for BMS-708163 in cerebral spinal fluid (CSF), significant non-specific binding of BMS-708163 was observed and resolved with pre- or post-spike of 0.2% Tween 20 into CSF samples. A dilute-and-shoot LC–MS/MS method with LLOQ of 0.1 ng/mL was developed and validated to assess BMS-708163 exposure in human CSF.  相似文献   

15.
A sensitive, specific, accurate and reproducible analytical method employing a divalent cation chelating agent (disodium EDTA) for sample treatment was developed to quantitate reserpine in FVB/N mouse plasma. Samples pretreated with 40 μl of 2% disodium EDTA in water were extracted by a semi-automated 96-well liquid–liquid extraction (LLE) procedure to isolate reserpine and a structural analog internal standard (I.S.), rescinnamine, from mouse plasma. The extracts were analyzed by turbo ionspray liquid chromatography–tandem mass spectrometry (LC–MS–MS) in the positive ion mode. Sample preparation time for conventional LLE was dramatically reduced by the semi-automated 96-well LLE approach. The assay demonstrated a lower limit of quantitation of 0.02 ng/ml using 0.1-ml plasma sample aliquots. The calibration curves were linear from 0.02 to 10 ng/ml for reserpine. The intra- and inter-assay precision of quality control (QC) samples ranged from 1.75 to 10.9% for reserpine. The intra- and inter-assay accuracy of QC samples ranged from −8.17 to 8.61%. Reserpine and the I.S. were found to be highly bound to FVB/N mouse plasma protein. This is the first report of disodium EDTA employed as a special protein-bound release agent to recover protein-bound analytes from plasma. These matrix effects and the effects of pH in the HPLC mobile phase on the sensitivities of LC–MS–MS are discussed in this paper.  相似文献   

16.
A simple multidimensional liquid chromatography system utilizing an isocratic pump and a HPLC system is described for the comprehensive proteomic analysis of complex peptide digest mixtures by coupled LC–LC–MS–MS techniques. A binary ion-exchange separation was achieved through the use of a strong cation-exchange column followed by a reversed-phase column for data-dependent LC–MS–MS analysis of the unbound analytes, and following salt elution (and concomitant column reequilibration), the bound analytes. Off-line validation of the platform showed near quantitative recovery of fractionated peptides and essentially complete ion-exchange partitioning. In comparative analyses of a highly complex peptide digest mixture a >40% increase in the number of peptide and protein identifications was achieved using this multidimensional platform compared to an unfractionated control.  相似文献   

17.
A fully automated screening using liquid chromatography–mass spectrometric method applying data-dependent acquisition was developed to identify toxicologically relevant substances in serum and urine. A library including more than 405 spectra of about 365 compounds (main drugs and important metabolites) was established. An easy to use program was created to automate and accelerate library search. Drugs were identified based on their relative retention times, molecular ions and fragment ions. Limits of detection were tested with 100 of the 365 compounds the majority of these were lower than 100 μg/l (67%). The developed LC–MS–MS system seems to be a valuable alternative to other general unknown screening methods allowing fast and specific identification of drugs in serum and urine samples.  相似文献   

18.
For the first time, an LC–MS–MS method has been developed for the simultaneous analysis of buprenorphine (BUP), norbuprenorphine (NBUP), and buprenorphine–glucuronide (BUPG) in plasma. Analytes were isolated from plasma by C18 SPE and separated by gradient RP-LC. Electrospray ionization and MS–MS analyses were carried out using a PE-Sciex API-3000 tandem mass spectrometer. The m/z 644→m/z 468 transition was monitored for BUPG, whereas for BUP, BUP-d4, NBUP, and NBUP-d3 it was necessary to monitor the surviving parent ions in order to achieve the required sensitivity. The method exhibited good linearity from 0.1 to 50 ng/ml (r2≥0.998). Extraction recovery was higher than 77% for BUPG and higher than 88% for both BUP and NBUP. The LOQ was established at 0.1 ng/ml for the three analytes. The method was validated on plasma samples collected in a controlled intravenous and sublingual buprenorphine administration study. Norbuprenorphine–glucuronide was also tentatively detected in plasma by monitoring the m/z 590→m/z 414 transition.  相似文献   

19.
Determination of estrogens in plasma is important in evaluation of effects of some anticancer drugs, such as aromatase inhibitors. However, as reported previously, high performance liquid chromatography–radio immunoassay (HPLC–RIA) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) with chemical derivatization require complicated sample preparation. In this study, a highly sensitive and simple method for determination of estrone (E1), 17β-estradiol (E2) and estrone 3-sulfate (E1S) in human plasma has been developed. Following diethylether extraction from plasma, analytes were purified by immunosorbents and then determined by LC–MS/MS using electrospray ionization (ESI). Immunosorbents were prepared by immobilization of specific antibodies raised against each analyte onto solid support. Use of selective immunosorbents in sample preparation removed interference in plasma samples that would cause ionization suppression, and markedly improved the sensitivity of LC–MS/MS for these analytes, without derivatization. Calibration curves of each analyte showed good linearity and reproducibility over the range of 0.05–50 pg/injection for E1, 0.2–50 pg/injection for E2 and 0.05–300 pg/injection for E1S, respectively. The mean values of lower limits of quantification (LLOQ) in human plasma corrected by recovery of deuterated estrogens (internal standard, I.S.) were 0.1892 pg/mL for E1, 0.7064 pg/mL for E2 and 0.3333 pg/mL for E1S, respectively. These LLOQ values were comparable to those previous reported using HPLC–RIA and LC–MS/MS. Using this method, the normal levels of three estrogens in healthy female plasma (n = 5) were determined. The mean values of E1, E2 and E1S were 38.0 pg/mL (range 24.8–53.0), 34.3 pg/mL (22.6–46.6) and 786 pg/mL (163–2080), respectively. The immunoaffinity LC–MS/MS described here allows sensitive and accurate quantification of E1, E2 and E1S without laborious sample preparation.  相似文献   

20.
A simple high-performance liquid chromatographic (HPLC) method was developed for the determination of losartan and its E-3174 metabolite in human plasma, urine and dialysate. For plasma, a gradient mobile phase consisting of 25 mM potassium phosphate and acetonitrile pH 2.2 was used with a phenyl analytical column and fluorescence detection. For urine and dialysate, an isocratic mobile phase consisting of 25 mM potassium phosphate and acetonitrile (60:40, v/v) pH 2.2 was used. The method demonstrated linearity from 10 to 1000 ng/ml with a detection limit of 1 ng/ml for losartan and E-3174 using 10 μl of prepared plasma, urine or dialysate. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of losartan in patients with kidney failure undergoing continuous ambulatory peritoneal dialysis (CAPD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号