首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
A large carbon pool and small sink in boreal Holocene lake sediments   总被引:5,自引:0,他引:5  
Model‐based estimates suggest that lake sediments may be a significant, long‐term sink for organic carbon (C) at regional to global scales. These models have used various approaches to predict sediment storage at broad scales from very limited data sets. Here, we report a large‐scale direct assessment of the standing stock and sedimentation rate of C for a representative set of lakes in Finland. The 122 lakes were selected from the statistically selected Nordic Lake Survey database, they cover the entire country and the water quality represents the average lake water quality in Finland. Unlike all prior estimates, these data use sediment cores that comprise the entire sediment record. The data show that within Finland, aquatic ecosystems contain the second largest areal C stocks (19 kg C m?2) after peatlands (72 kg C m?2), and exceed by significant amounts stocks in the forest soil (uppermost 75cm; 7.2 kg C m?2) and woody biomass (3.4 kg C m?2). Kauppi et al. (1997). The Finnish estimate extrapolated over the boreal region gives a total C pool in lakes 19–27 Pg C, significantly lower than the previous model‐based estimates.  相似文献   

2.
The rate of change in atmospheric CO2 is significantly affected by the terrestrial carbon sink, but the size and spatial distribution of this sink, and the extent to which it can be enhanced to mitigate climate change are highly uncertain. We combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001–2016) in a 55 year old 30 km2 pine forest growing at the semiarid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semiarid lands, which cover ~18% of the global land area. The forest accumulated 145–160 g C m?2 year?1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m?2 year?1 indicating 20% uncertainty in carbon uptake estimates. Current total stocks are estimated at 7,943 ± 323 g C/m2 and 372 g N/m2. Carbon accumulated mostly in the soil (~71% and 29% for soil and standing biomass carbon, respectively) with long soil carbon turnover time (59 years). Regardless of unexpected disturbances beyond those already observed at the study site, the results support a considerable carbon sink potential in semiarid soils and forest plantations, and imply that afforestation of even 10% of semiarid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C/year over several decades.  相似文献   

3.
Using biomass for charcoal production in sub-Saharan Africa (SSA) may change carbon stock dynamics and lead to irreversible changes in the carbon balance, yet we have little understanding of whether these dynamics vary by biome in this region. Currently, charcoal production contributes up to 7% of yearly deforestation in tropical regions, with carbon emissions corresponding to 71.2 million tonnes of CO2 and 1.3 million tonnes of CH4. With a projected increased demand for charcoal in the coming decades, even low harvest rates may throw the carbon budget off-balance due to legacy effects. Here, we parameterized the dynamic global vegetation model LPJ-GUESS for six SSA biomes and examined the effect of charcoal production on net ecosystem exchange (NEE), carbon stock sizes and recovery time for tropical rain forest, montane forest, moist savanna, dry savanna, temperate grassland and semi-desert. Under historical charcoal regimes, tropical rain forests and montane forests transitioned from net carbon sinks to net sources, that is, mean cumulative NEE from −3.56 ± 2.59 kg C/m2 to 2.46 ± 3.43 kg C/m2 and −2.73 ± 2.80 kg C/m2 to 1.87 ± 4.94 kg C/m2 respectively. Varying charcoal production intensities resulted in tropical rain forests showing at least two times higher carbon losses than the other biomes. Biome recovery time varied by carbon stock, with tropical and montane forests taking about 10 times longer than the fast recovery observed for semi-desert and temperate grasslands. Our findings show that high biomass biomes are disproportionately affected by biomass harvesting for charcoal, and even low harvesting rates strongly affect vegetation and litter carbon and their contribution to the carbon budget. Therefore, the prolonged biome recoveries imply that current charcoal production practices in SSA are not sustainable, especially in tropical rain forests and montane forests, where we observe longer recovery for vegetation and litter carbon stocks.  相似文献   

4.
Papua New Guinean forests (PNG), sequestering up to 3% of global forest carbon, are a focus of climate change mitigation initiatives, yet few field‐based studies have quantified forest biomass and carbon for lowland PNG forest. We provide an estimate for the 10 770 ha Wanang Conservation Area (WCA) to investigate the effect of calculation methodology and choice of allometric equation on estimates of above‐ground live biomass (AGLB) and carbon. We estimated AGLB and carbon from 43 nested plots at the WCA. Our biomass estimate of 292.2 Mg AGLB ha?1 (95% CI 233.4–350.6) and carbon at 137.3 Mg C ha?1 (95% CI 109.8–164.8) is higher than most estimates for PNG but lower than mean global estimates for tropical forest. Calculation method and choice of allometric model do not significantly influence mean biomass estimates; however, the most recently calibrated allometric equation generates estimates 13% higher for lower 95% confidence intervals of mean biomass than previous allometric models – a value often used as a conservative estimate of biomass. Although large trees at WCA (>70 cm diameter at breast height) accounted for 1/5 total biomass, their density was lower than that seen in SE Asian and Australia forests. Lower density of large trees accounts for lower AGLB than in neighbouring forests – as large trees contribute disproportionately to forest biomass. Reduced frequency of larger trees at WCA is explained by the lack of diversity of large dipterocarp species common to neighbouring SE Asian forests and, potentially, higher rates of local disturbance dynamics. PNG is susceptible to the El Niño Southern Oscillation (ENSO) extreme drought events to which large trees are particularly sensitive and, with still over 20% carbon in large trees, differential mortality under increasing ENSO drought stress raises the risk of PNG forest switching from carbon sink to source with reduced long‐term carbon storage capacity.  相似文献   

5.
Trees allocate a large portion of gross primary production belowground for the production and maintenance of roots and mycorrhizae. The difficulty of directly measuring total belowground carbon allocation (TBCA) has limited our understanding of belowground carbon (C) cycling and the factors that control this important flux. We measured TBCA over 4 years using a conservation of mass, C balance approach in replicate stands of fast growing Eucalyptus saligna Smith with different nutrition management and tree density treatments. We measured TBCA as surface carbon dioxide (CO2) efflux (“soil” respiration) minus C inputs from aboveground litter plus the change in C stored in roots, litter, and soil. We evaluated this C balance approach to measuring TBCA by examining (a) the variance in TBCA across replicate plots; (b) cumulative error associated with summing components to arrive at our estimates of TBCA; (c) potential sources of error in the techniques and assumptions; (d) the magnitude of changes in C stored in soil, litter, and roots compared to TBCA; and (e) the sensitivity of our measures of TBCA to differences in nutrient availability, tree density, and forest age. The C balance method gave precise estimates of TBCA and reflected differences in belowground allocation expected with manipulations of fertility and tree density. Across treatments, TBCA averaged 1.88 kg C m−2 y−1 and was 18% higher in plots planted with 104 trees/ha compared to plots planted with 1111 trees/ha. TBCA was 12% lower (but not significantly so) in fertilized plots. For all treatments, TBCA declined linearly with stand age. The coefficient of variation (CV) for TBCA for replicate plots averaged 17%. Averaged across treatments and years, annual changes in C stored in soil, the litter layer, and coarse roots (−0.01, 0.06, and 0.21 kg C m−2 y−1, respectively) were small compared with surface CO2 efflux (2.03 kg C m−2 y−1), aboveground litterfall (0.42 kg C m−2 y−1), and our estimated TBCA (1.88 kg C m−2 y−1). Based on studies from similar sites, estimates of losses of C through leaching, erosion, or storage of C in deep soil were less than 1% of annual TBCA. Received 6 March 2001; accepted 7 January 2002.  相似文献   

6.
We investigated variation in carbon stock in soils and detritus (forest floor and woody debris) in chronosequences that represent the range of forest types in the US Pacific Northwest. Stands range in age from <13 to >600 years. Soil carbon, to a depth of 100 cm, was highest in coastal Sitka spruce/western hemlock forests (36±10 kg C m?2) and lowest in semiarid ponderosa pine forests (7±10 kg C m?2). Forests distributed across the Cascade Mountains had intermediate values between 10 and 25 kg C m?2. Soil carbon stocks were best described as a linear function of net primary productivity (r2=0.52), annual precipitation (r2=0.51), and a power function of forest floor mean residence time (r2=0.67). The highest rates of soil and detritus carbon turnover were recorded on mesic sites of Douglas‐fir/western hemlock forests in the Cascade Mountains with lower rates in wetter and drier habitats, similar to the pattern of site productivity. The relative contribution of soil and detritus carbon to total ecosystem carbon decreased as a negative exponential function of stand age to a value of ~35% between 150 and 200 years across the forest types. These age‐dependent trends in the portioning of carbon between biomass and necromass were not different among forest types. Model estimates of soil carbon storage based on decomposition of legacy carbon and carbon accumulation following stand‐replacing disturbance showed that soil carbon storage reached an asymptote between 150 and 200 years, which has significant implications to modeling carbon dynamics of the temperate coniferous forests following a stand‐replacing disturbance.  相似文献   

7.
森林是陆地生态系统中最大的碳库,在全球碳平衡和减缓全球气候变化方面发挥着不可替代的作用。当前主要利用森林资源清查数据和优势树种材积源-生物量的关系进行碳储量估算,在此基础上有效结合遥感影像数据将会更好的满足相关部门对国家和区域森林碳储量计算的需求。利用临安市2004年森林资源清查的930个样地数据和同年度Landsat TM影像数据,提取6个波段灰度值以及与碳储量相关性相对较大的3个波段组合,结合人工神经网络对研究区森林碳储量及其分布进行有效模拟。结果显示,用误差反向传播算法训练神经网络较好的重建了森林碳密度空间分布和变化,森林碳地上部分模拟结果与样地实测值之间的一致性好,全区域模拟结果森林碳平均值为0.98Mg(10.89Mg/hm2),总体森林碳密度模拟结果低于样地平均值约13%,进一步验证了人工神经网络在对大范围森林碳估算与模拟上具有较好的效果,为区域森林碳储量的估测研究提供有效的方法支持。  相似文献   

8.
Efforts to incentivize the reduction of carbon emissions from deforestation and forest degradation require accurate carbon accounting. The extensive tropical forest of Papua New Guinea (PNG) is a target for such efforts and yet local carbon estimates are few. Previous estimates, based on models of neotropical vegetation applied to PNG forest plots, did not consider such factors as the unique species composition of New Guinea vegetation, local variation in forest biomass, or the contribution of small trees. We analysed all trees >1 cm in diameter at breast height (DBH) in Melanesia's largest forest plot (Wanang) to assess local spatial variation and the role of small trees in carbon storage. Above‐ground living biomass (AGLB) of trees averaged 210.72 Mg ha?1 at Wanang. Carbon storage at Wanang was somewhat lower than in other lowland tropical forests, whereas local variation among 1‐ha subplots and the contribution of small trees to total AGLB were substantially higher. We speculate that these differences may be attributed to the dynamics of Wanang forest where erosion of a recently uplifted and unstable terrain appears to be a major source of natural disturbance. These findings emphasize the need for locally calibrated forest carbon estimates if accurate landscape level valuation and monetization of carbon is to be achieved. Such estimates aim to situate PNG forests in the global carbon context and provide baseline information needed to improve the accuracy of PNG carbon monitoring schemes.  相似文献   

9.
Forest ecosystems play dominant roles in global carbon budget because of the large quantities stored in live biomass, detritus, and soil organic matter. Researchers in various countries have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the relationship between stand age in different components (vegetation, forest floor detritus, and mineral soil) and C storage and sequestration remains poorly understood. In this paper, we assessed an age sequence of 18-, 20-, 25-, 38-, and 42-year-old Pinus tabulaeformis planted by analyzing the vertical distribution of different components biomass with similar site conditions on Mt. Taiyue, Shanxi, China. The results showed that biomass of P. tabulaeformis planted stands was ranged from 88.59 Mg ha?1 for the 25-year-old stand to 231.05 Mg ha?1 for the 42-year-old stand and the major biomass was in the stems. Biomass of the ground vegetation varied from 0.51 to 1.35 Mg C ha?1 between the five stands. The forest floor biomass increased with increasing stand age. The mean C concentration of total tree was 49.94%, which was higher than C concentrations of ground vegetation and forest floor. Different organs of trees C concentration were between 54.14% and 47.74%. C concentrations stored in the mineral soil for each stand experienced decline with increasing soil depth, but were age-independent. Total C storage of five planted forests ranged from 122.15 to 229.85 Mg C ha?1, of which 51.44–68.38% of C storage was in the soil and 28.46–45.21% in vegetation. The study provided not only with an estimation biomass of P. tabulaeformis planted forest in Mt. Taiyue, Shanxi, China, but also with accurately estimating forest C storage at ecosystem scale.  相似文献   

10.
Forest vegetation and soils have been suggested as potentially important sinks for carbon (C) with appropriate management and thus are implicated as effective tools in stabilizing climate even with increasing anthropogenic release of CO2. Drought, however, which is often predicted to increase in models of future climate change, may limit net primary productio (NPP) of dry forest types, with unknown effects on soil C storage. We studied C dynamics of a deciduous temperate forest of Hungary that has been subject to significant decreases in precipitation and increases in temperature in recent decades. We resampled plots that were established in 1972 and repeated the full C inventory by analyzing more than 4 decades of data on the number of living trees, biomass of trees and shrubs, and soil C content. Our analyses show that the decline in number and biomass of oaks started around the end of the 1970s with a 71% reduction in the number of sessile oak stems by 2014. Projected growth in this forest, based on the yield table's data for Hungary, was 4.6 kg C/m2. Although new species emerged, this new growth and small increases in oak biomass resulted in only 1.9 kg C/m2 increase over 41 years. The death of oaks increased inputs of coarse woody debris to the surface of the soil, much of which is still identifiable, and caused an increase of 15.5%, or 2.6 kg C/m2, in the top 1 m of soil. Stability of this fresh organic matter input to surface soil is unknown, but is likely to be low based on the results of a colocated woody litter decomposition study. The effects of a warmer and drier climate on the C balance of forests in this region will be felt for decades to come as woody litter inputs decay, and forest growth remains impeded.  相似文献   

11.
Biometric based carbon flux measurements were conducted over 5 years (1999–2003) in a temperate deciduous broad-leaved forest of the AsiaFlux network to estimate net ecosystem production (NEP). Biometric based NEP, as measured by the balance between net primary production (including NPP of canopy trees and of forest floor dwarf bamboo) and heterotrophic respiration (RH), clarified the contribution of various biological processes to the ecosystem carbon budget, and also showed where and how the forest is storing C. The mean NPP of the trees was 5.4 ± 1.07 t C ha−1 y−1, including biomass increment (0.3 ± 0.82 t C ha−1 y−1), tree mortality (1.0 ± 0.61 t C ha−1 y−1), aboveground detritus production (2.3 ± 0.39 t C ha−1 y−1) and belowground fine root production (1.8 ± 0.31 t C ha−1 y−1). Annual biomass increment was rather small because of high tree mortality during the 5 years. Total NPP at the site was 6.5 ± 1.07 t C ha−1 y−1, including the NPP of the forest floor community (1.1 ± 0.06 t C ha−1 y−1). The soil surface CO2 efflux (RS) was averaged across the 5 years of record using open-flow chambers. The mean estimated annual RS amounted to 7.1 ± 0.44 t C ha−1, and the decomposition of soil organic matter (SOM) was estimated at 3.9 ± 0.24 t C ha−1. RH was estimated at 4.4 ± 0.32 t C ha−1 y−1, which included decomposition of coarse woody debris. Biometric NEP in the forest was estimated at 2.1 ± 1.15 t C ha−1 y−1, which agreed well with the eddy-covariance based net ecosystem exchange (NEE). The contribution of woody increment (Δbiomass + mortality) of the canopy trees to NEP was rather small, and thus the SOM pool played an important role in carbon storage in the temperate forest. These results suggested that the dense forest floor of dwarf bamboo might have a critical role in soil carbon sequestration in temperate East Asian deciduous forests.  相似文献   

12.
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan.  相似文献   

13.
Kueppers LM  Southon J  Baer P  Harte J 《Oecologia》2004,141(4):641-651
Dead wood biomass can be a substantial fraction of stored carbon in forest ecosystems, and coarse woody debris (CWD) decay rates may be sensitive to climate warming. We used an elevation gradient in Colorado Rocky Mountain subalpine forest to examine climate and species effects on dead wood biomass, and on CWD decay rate. Using a new radiocarbon approach, we determined that the turnover time of lodgepole pine CWD (340±130 years) was roughly half as long in a site with 2.5–3°C warmer air temperature, as that of pine (630±400 years) or Engelmann spruce CWD (800±960 and 650±410 years) in cooler sites. Across all sites and both species, CWD age ranged from 2 to 600 years, and turnover time was 580±180 years. Total standing and fallen dead wood biomass ranged from 4.7±0.2 to 54±1 Mg ha–1, and from 2.8 to 60% of aboveground live tree biomass. Dead wood biomass increased 75 kg ha–1 per meter gain in elevation and decreased 13 Mg ha–1 for every degree C increase in mean air temperature. Differences in biomass and decay rates along the elevation gradient suggest that climate warming will lead to a loss of dead wood carbon from subalpine forest.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
Vegetation carbon sequestration in Chinese forests from 2010 to 2050   总被引:1,自引:0,他引:1  
Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr?1 with a 95% confidence interval of 0.28–0.42 Pg C yr?1, which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6–8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China.  相似文献   

15.
Forest soils store a substantial amount of carbon, often more than the forest vegetation does. Estimates of the amount of soil carbon, and in particular estimates of changes in these amounts are still inaccurate. Measuring soil carbon is laborious, and measurements taken at a few statistically unrepresentative sites are difficult to scale to larger areas. We combined a simple dynamic model of soil carbon with litter production estimated on the basis of stand parameters, models of tree allometry and biomass turnover rates of different biomass components. This integrated method was used to simulate soil carbon as forest stands develop. The results were compared with measurements of soil carbon from 64 forest sites in southern Finland. Measured carbon stocks in the organic soil layer increased by an average of 4.7±1.4 g m?2 a?1 with increasing stand age and no significant changes were measured in the amount of carbon in mineral soil. Our integrated method indicated that soil carbon stocks declined to a minimum 20 years after clear‐cutting and the subsequent increase in the soil carbon stock (F/H ? 1 m) was 5.8±1.0 g m?2 a?1 averaged over the period to next harvesting (~125 years). Simulated soil carbon accumulation slowed down considerably in stands older than 50 years. The carbon stock measured (F/H ? 1 m) for the study area averaged 6.8±2.5 kg m?2. The simulated carbon stock in soil was 7.0±0.6 kg m?2 on average. These tests of the validity of the integrated model suggest that this method is suitable for estimating the amount of carbon in soil and its changes on regional scales.  相似文献   

16.
To evaluate the carbon budget of a boreal deciduous forest, we measured CO2 fluxes using the eddy covariance technique above an old aspen (OA) forest in Prince Albert National Park, Saskatchewan, Canada, in 1994 and 1996 as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). We found that the OA forest is a strong carbon sink sequestering 200 ± 30 and 130 ± 30 g C m–2 y–1 in 1994 and 1996, respectively. These measurements were 16–45% lower than an inventory result that the mean carbon increment was about 240 g C m–2 y–1 between 1919 and 1994, mainly due to the advanced age of the stand at the time of eddy covariance measurements. Assuming these rates to be representative of Canadian boreal deciduous forests (area ≈ 3 × 105 km2), it is likely they can sequester 40–60 Tg C y–1, which is 2–3% of the missing global carbon sink. The difference in carbon sequestration by the OA forest between 1994 and 1996 was mainly caused by the difference in leaf emergence date. The monthly mean air temperature during March–May 1994, was 4.8 °C higher than in 1996, resulting in leaf emergence being 18–24 days earlier in 1994 than 1996. The warm spring and early leaf emergence in 1994 enabled the aspen forest to exploit the long days and high solar irradiance of mid-to-late spring. In contrast, the 1996 OA growing season included only 32 days before the summer solstice. The earlier leaf emergence in 1994 resulted 16% more absorbed photosynthetically active radiation and a 90 g C m–2 y–1 increase in photosynthesis than 1996. The concomitant increase in respiration in the warmer year (1994) was only 20 g C m–2 y–1. These results show that an important control on carbon sequestration by boreal deciduous forests is spring temperature, via the influence of air temperature on the timing of leaf emergence.  相似文献   

17.
More detailed knowledge of the density of organic carbon in soils of boreal forests is needed for accurate estimates of the size of this C stock. We investigated the effect of vegetation type and associated site fertility on the C density at 30 mature coniferous forest sites in southern Finland and evaluated the importance of deep layers to the total C store in the soil by extending the sampling at eight of the sites to the depth of ground water level (2.4–4.6 m). The C density in the organic horizon plus 1 m thick mineral soil layer ranged from 4.0 kg/m2 to 11.9 kg/m2, and, on the average, increased towards the more productive vegetation types. Between the depth of 1 m and the ground water level the C density averaged 1.3–2.4 kg/m2 at the studied vegetation types and these layers represented 18–28% of the total stock of C in the soil. The results emphasize the importance of also considering these deep layers to correctly estimate the total amount of C in these soils. At the least fertile sites the soil contained about 30% more C than phytomass, whereas at the more fertile sites the amount of C in soil was about 10% less than the amount bound in vegetation.  相似文献   

18.
The role of mid‐latitude forests in the sequestration of carbon (C) is of interest to an increasing number of scientists and policy‐makers alike. Net CO2 exchange can be estimated on an annual basis, using eddy‐covariance techniques or from ecological inventories of C fluxes to and from a forest. Here we present an intercomparison of annual estimates of C exchange in a mixed hardwood forest in the Morgan‐Monroe State Forest, Indiana, USA for two years, 1998 and 1999. Based on eddy‐covariance measurements made at 1.8 times canopy height from a tower, C uptake by the forest was 237 and 287 g C m?2 y?1 for 1998 and 1999, respectively. For the same time period, biometric and ecophysiological measures and modelled estimates of all significant carbon fluxes within deciduous forests were made, including: change in living biomass, aboveground and belowground detritus production, foliage consumption, and forest floor and soil respiration. Using this ecological inventory method for these same two time periods, C uptake was estimated to be 271 and 377 g C m?2 y?1, which are 14.3% and 31.4% larger, respectively, than the tower‐based values. The relative change between this method's annual estimates is consistent with that of the eddy‐covariance based values. Our results indicate that the difference in annual C exchange rates was due to reduced heterotrophic soil respiration in 1999.  相似文献   

19.
Changes in carbon storage and fluxes in a chronosequence of ponderosa pine   总被引:14,自引:1,他引:13  
Forest development following stand‐replacing disturbance influences a variety of ecosystem processes including carbon exchange with the atmosphere. On a series of ponderosa pine (Pinius ponderosa var. Laws.) stands ranging from 9 to> 300 years in central Oregon, USA, we used biological measurements to estimate carbon storage in vegetation and soil pools, net primary productivity (NPP) and net ecosystem productivity (NEP) to examine variation with stand age. Measurements were made on plots representing four age classes with three replications: initiation (I, 9–23 years), young (Y, 56–89 years), mature (M, 95–106 years), and old (O, 190–316 years) stands typical of the forest type in the region. Net ecosystem productivity was lowest in the I stands (?124 g C m?2 yr?1), moderate in Y stands (118 g C m?2 yr?1), highest in M stands (170 g C m?2 yr?1), and low in the O stands (35 g C m?2 yr?1). Net primary productivity followed similar trends, but did not decline as much in the O stands. The ratio of fine root to foliage carbon was highest in the I stands, which is likely necessary for establishment in the semiarid environment, where forests are subject to drought during the growing season (300–800 mm precipitation per year). Carbon storage in live mass was the highest in the O stands (mean 17.6 kg C m?2). Total ecosystem carbon storage and the fraction of ecosystem carbon in aboveground wood mass increased rapidly until 150–200 years, and did not decline in older stands. Forest inventory data on 950 ponderosa pine plots in Oregon show that the greatest proportion of plots exist in stands ~ 100 years old, indicating that a majority of stands are approaching maximum carbon storage and net carbon uptake. Our data suggests that NEP averages ~ 70 g C m?2 year?1 for ponderosa pine forests in Oregon. About 85% of the total carbon storage in biomass on the survey plots exists in stands greater than 100 years, which has implications for managing forests for carbon sequestration. To investigate variation in carbon storage and fluxes with disturbance, simulation with process models requires a dynamic parameterization for biomass allocation that depends on stand age, and should include a representation of competition between multiple plant functional types for space, water, and nutrients.  相似文献   

20.
We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome‐BGC simulations of fluxes. The young forest (Y site) was previously an old‐growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m?2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m?2 year?1), and it was largely from soils at both sites (77% of Re). The biological data show that above‐ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m?2 year?1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15‐km swath in the region, ANPP ranged from 76 g C m?2 year?1 at the Y site to 236 g C m?2 year?1 (overall mean 158 ± 14 g C m?2 year?1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome‐BGC model suggest that disturbance type and frequency, time since disturbance, age‐dependent changes in below‐ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget‐based observations to within ± 20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand‐replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10–20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long‐term pools (biomass and soils) in addition to short‐term fluxes has important implications for management of forests in the Pacific North‐west for carbon sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号