首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Binding of the bioactive component jatrorrhizine to human serum albumin   总被引:2,自引:0,他引:2  
The interaction between Jatrorrhizine with human serum albumin (HSA) were studied by fluorescence quenching technique, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K) are 7.278 x 10(4), 6.526 x 10(4), and 5.965 x 10(4) L.mol(-1) at 296, 303, and 310 K, respectively. The CD spectra and FT-IR spectra have proved that the protein secondary structure changed in the presence of Jatrorrhizine in aqueous solution. The effect of common ions on the binding constants was also investigated. In addition, the thermodynamic functions standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) for the reaction were calculated to be -10.891 kJ.mol(-1) and 56.267 J.mol(-1) K(-1), according to the van't Hoff equation. These data indicated that hydrophobic and electrostatic interactions played a major role in the binding of Jatrorrhizine to HSA. Furthermore, the displacement experiments indicated that Jatrorrhizine could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.  相似文献   

2.
Deng F  Dong C  Liu Y 《Molecular bioSystems》2012,8(5):1446-1451
The interaction of nitrofurazone (NF) and human serum albumin (HSA) has been studied by fluorescence spectroscopy, FT-IR spectroscopy and molecular modeling methods. The results showed that the fluorescence of HSA was quenched by NF in a static quenching mechanism. Thermodynamic parameters revealed that hydrogen bonds and van der Waals force played the major role during the interaction. The calculated binding distance (r) indicated that the non-radioactive energy transfer came into being in the interaction between NF and HSA. HSA had a single class of binding site at Sudlow' site I in subdomain IIA for NF, which was verified by the displacement experiment. The molecular modeling study further confirmed the specific binding sites of NF on HSA, such as the interaction between N11 and N14 of NF with Lue 283 and Ser 287 predominately through hydrogen bonds. Three-dimensional fluorescence spectra indicated that the polarity around the tryptophan residues decreased and the conformation of HSA changed after adding NF. FT-IR spectra showed that NF could induce the polypeptides of HSA unfolding because it changed α-helix and β-sheet into β-turn and random structure of HSA.  相似文献   

3.
Maiti TK  Ghosh KS  Dasgupta S 《Proteins》2006,64(2):355-362
(-)-Epigallocatechin-3-gallate (EGCG), the major constituent of green tea has been reported to prevent many diseases by virtue of its antioxidant properties. The binding of EGCG with human serum albumin (HSA) has been investigated for the first time by using fluorescence, circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, and protein-ligand docking. We observed a quenching of fluorescence of HSA in the presence of EGCG. The binding parameters were determined by a Scatchard plot and the results were found to be consistent with those obtained from a modified Stern-Volmer equation. From the thermodynamic parameters calculated according to the van't Hoff equation, the enthalpy change deltaH degrees and entropy change deltaS degrees were found to be -22.59 and 16.23 J/mol K, respectively. These values suggest that apart from an initial hydrophobic association, the complex is held together by van der Waals interactions and hydrogen bonding. Data obtained by fluorescence spectroscopy, CD, and FTIR experiments along with the docking studies suggest that EGCG binds to residues located in subdomains IIa and IIIa of HSA. Specific interactions are observed with residues Trp 214, Arg 218, Gln 221, Asn 295 and Asp 451. We have also looked at changes in the accessible surface area of the interacting residues on binding EGCG for a better understanding of the interaction.  相似文献   

4.
Interaction of formononetin with a model transport protein, human serum albumin (HSA), has been studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods. Upon binding with HSA, the fluorescence spectrum of formononetin exhibits appreciable hypsochromic shift along with an enhancement in the fluorescence intensity. Gradual addition of HSA led to a marked increase in fluorescence anisotropy (r). From the value of fluorescence anisotropy, it is argued that the drug is located in a restricted environment of protein. The binding constant (K approximately 1.6 x 10(5) M(-1)) and the standard free energy change (DeltaG(0) approximately -29.9 kJ/mol) of formononetin-HSA interaction have been calculated according to the relevant fluorescence data. Fourier transform infrared measurements have shown that the secondary structures of the protein have been changed by the interaction of formononetin with HSA. Computational mapping of the possible binding sites of formononetin revealed the molecule to be bound in the large hydrophobic cavity of subdomain IIA.  相似文献   

5.
利用荧光光谱法、紫外光谱法并结合计算机模拟技术在分子水平上研究了胡椒碱与人血清白蛋白(human serum albumin HSA)的键合作用.同步荧光及紫外光谱图表明,胡椒碱对HSA微环境有影响.位点竞争试验证明,胡椒碱分子键合在HSA的位点Ⅱ区.通过荧光光谱滴定数据求得不同温度下(300K 310K和318 K)药物与蛋白相互作用的结合常数及结合位点数.分子模拟的结果显示了胡椒碱与HSA的键合区域和键合模式,表明药物与蛋白有较强的键合作用;维持药物与蛋白质的相互作用力主要是疏水用,兼有氢键(位于氨基酸残基Arg 257,Arg 222及Arg218位).通过实验数据计算得到的热力学参数(ΔH0与ΔS0的值分别为原33.11 kJ·mol-1和原18.90 J·mol原1·K-1)确定了胡椒碱与HSA分子的相互作用力类型主要为氢键兼范德华力.  相似文献   

6.
The interaction between strictosamide (STM) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling under physiological pH 7.4. STM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding site number n and apparent binding constant Ka were determined at different temperatures by fluorescence quenching. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated as ?3.01 kJ/mol and 77.75 J/mol per K, respectively, which suggested that the hydrophobic force played major roles in stabilizing the HSA–STM complex. The distance r between donor and acceptor was obtained to be 4.10 nm according to Förster's theory. After the addition of STM, the synchronous fluorescence and three‐dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the circular dichroism spectral results showed that the α‐helix content of HSA decreased (from 61.48% to 57.73%). These revealed that the microenvironment and conformation of HSA were changed in the binding reaction. Furthermore, the study of molecular modeling indicated that STM could bind to site I of HSA and the hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The interactions between human serum albumin (HSA) and fluphenazine (FPZ) in the presence or absence of rutin or quercetin were studied by fluorescence, absorption and circular dichroism (CD) spectroscopy and molecular modeling. The results showed that the fluorescence quenching mechanism was static quenching by the formation of an HSA–FPZ complex. Entropy change (ΔS 0) and enthalpy change (ΔH 0) values were 68.42 J/(mol? K) and ?4.637 kJ/mol, respectively, which indicated that hydrophobic interactions and hydrogen bonds played major roles in the acting forces. The interaction process was spontaneous because the Gibbs free energy change (ΔG 0) values were negative. The results of competitive experiments demonstrated that FPZ was mainly located within HSA site I (sub‐domain IIA). Molecular docking results were in agreement with the experimental conclusions of the thermodynamic parameters and competition experiments. Competitive binding to HSA between flavonoids and FPZ decreased the association constants and increased the binding distances of FPZ binding to HSA. The results of absorption, synchronous fluorescence, three‐dimensional fluorescence, and CD spectra showed that the binding of FPZ to HSA caused conformational changes in HSA and simultaneous effects of FPZ and flavonoids induced further HSA conformational changes.  相似文献   

8.
The interaction between cyclophosphamide monohydrate with human serum albumin (HSA) and human serum transferrin (hTf) was studied with UV absorption, fluorescence and circular dichroism (CD) spectroscopies as well as molecular modeling. Based on the fluorescence quenching results, it was determined that HSA and hTf had two classes of apparent binding constants and binding sites at physiological conditions. The K(SV1), K(SV2), n(1) and n(2) values for HSA were found to be 8.6 x 10(8) Lmol(-1), 6.34 x 10(8) Lmol(-1), 0.7 and 0.8, respectively, and the corresponding results for hTf were 6.08 x 10(7) Lmol(-1), 4.65 x 10(7) Lmol(-1), 1.3 and 2.6, respectively. However, the binding affinity of cyclophosphamide monohydrate to HSA was more significant than to hTf. Circular dichroism results demonstrated that the binding of cyclophosphamide to HSA and hTf induced secondary changes in the structure and that the a-helix content became altered into b-sheet, turn and random coil forms. The participation of tyrosyl and tryptophan residues of proteins was also estimated in the drug-HSA and hTf complexes by synchronous fluorescence. The micro-environment of the HSA and hTf fluorophores was transferred to hydrophobic and hydrophilic conditions, respectively. The distance r between donor and acceptor was obtained by the Forster energy according to fluorescence resonance energy transfer (FRET) and found to be 1.84 nm and 1.73 nm for HSA and hTf, respectively. This confirmed the existence of static quenching for both proteins in the presence of cyclophosphamide monohydrate. Site marker competitive displacement experiments demonstrated that cyclophosphamide bound with high affinity to Site II, sub-domain IIIA of HSA, and for hTf, the C-lobe constituted the binding site. Furthermore, a study of molecular modeling showed that cyclophosphamide situated in domain II in HSA was bound through hydrogen bonding with Arg 257 and Ser 287, and that cyclophosphamide was situated in the C-lobe in hTf, presenting hydrogen bonding with Asp 625 and Arg 453. The modeling data thus confirmed the experimental results.  相似文献   

9.
Interaction of wogonin with bovine serum albumin   总被引:4,自引:0,他引:4  
The binding of wogonin with bovine serum albumin (BSA) was investigated at different temperatures by fluorescence, circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR) at pH7.40. The association constants K were determined by Stern-Volmer equation based on the quenching of the fluorescence of BSA in the presence of wogonin, which were in agreement with the constants calculated by Scatchard plots. The thermodynamic parameters were calculated according to the Van't Hoff equation and the result indicated that DeltaH(0) and DeltaS(0) had a negative value (-12.02 kJ/mol) and a positive value (58.72 J/mol K), respectively. On the basis of the displacement experimental and the thermodynamic results, it is considered that wogonin binds to site I (subdomain IIA) of BSA mainly by hydrophobic interaction. The studied results by FT-IR and CD experiment indicated that the secondary structures of protein have been perturbed by the interaction of wogonin with BSA.  相似文献   

10.
The interaction of new dinuclear copper(ii) complex 1; [Cu(2)(glygly)(2)(ppz)(H(2)O)(4)]·2H(2)O, derived from dipeptide (glycyl glycine) and piperazine as a metallopeptide drug with human serum albumin (HSA) was examined by means of fluorescence spectroscopy which revealed that complex 1 has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The alterations of HSA secondary structure in the presence of complex 1 were confirmed by UV-visible, FT-IR, CD and 3D fluorescence spectroscopy. The binding constants (K), and binding site number (n), corresponding thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were calculated. The molecular docking technique was utilized to ascertain the mechanism and mode of action towards the molecular target HSA indicating that complex 1 was located at the entrance of site I by electrostatic and hydrophobic forces, consistent with the corresponding experimental results. Complex 1 shows efficient photo-induced HSA cleavage activity, indicating the involvement of hydroxyl radicals as the reactive species. Furthermore, the cytotoxicity of 1 was examined on a panel of human tumor cell lines of different histological origins showing significant GI(50) values specifically towards MIAPACA2, A498 and A549 tumor cell lines. These results complement previous biological studies of new specific target metallopeptides, providing additional information about possibilities of their transport and disposition in blood plasma.  相似文献   

11.
The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were ?4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non‐radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na+, K+, Li+, Ni2+, Ca2+, Zn2+ and Al3+ were found to influence binding of the drug to protein. The 3D fluorescence, FT–IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone is one of the bioactive components isolated from Artemisia plants possessing antitumor therapeutic activities. In this paper, its binding properties and binding sites located on human serum albumin (HSA) have been studied using UV absorption spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectra. The results of fluorescence titration revealed that 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone could strongly quench the intrinsic fluorescence of HSA by static quenching and there was only one class of binding sites on HSA for this drug. The binding constants at four different temperatures (289, 298, 310, and 318 K) were 1.93, 1.56, 1.22, and 0.93x10(5) L mol-1, respectively. The FT-IR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 27.6% at the drug to protein molar ratio of 3. The thermodynamic functions standard enthalpy change (DeltaH0) and standard entropy change (DeltaS0) for the reaction were calculated to be -18.70 kJ mol-1 and 36.62 J mol-1 K-1 according to the van't Hoff equation. These results and the molecular modeling study suggested that hydrophobic interaction was the predominant intermolecular force stabilizing the complex, and 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone could bind to the site I of HSA (the Warfarin Binding site).  相似文献   

13.
The binding of rhein with human serum albumin (HSA) has been studied in detail by spectroscopic method including circular dichroism (CD), Fourier transformation infrared spectra (FT-IR), fluorescence spectra. The binding parameters for the reaction have been calculated according to Scatchard equation at different temperatures. The plots indicated that the binding of HSA to rhein at 303, 310 and 318 K is characterized by one binding site with the affinity constant K at (4.93+/-0.16)x10(5), (4.02+/-0.16)x10(5) and (2.69+/-0.16)x10(5) M-1, respectively. The secondary structure compositions of free HSA and its rhein complexes were estimated by the FT-IR spectra. FT-IR and curve-fitted results of amide I band are in good agreement with the analyses of CD spectra. Molecular Modeling method was used to calculate the interaction modes between the drug and HSA.  相似文献   

14.
Fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and molecular modeling methods were employed to analyze the binding of glycyrrhetinic acid (GEA) to human serum albumin (HSA) under physiological conditions with GEA concentrations from 4.0x10(-6) to 4.5x10(-5) mol L(-1). The binding of GEA to HSA was via two types of sites: the numbers of binding site for the first type was near 0.45 and for the second type it was approximately 0.75. The binding constants of the second type binding site were lower than those of the first type binding site at corresponding temperatures, the results suggesting that the first type of binding site had high affinity and the second binding site involved other sites with lower binding affinity and selectivity. The fluorescence titration results indicated that GEA quenched the fluorescence intensity of HSA through static mechanism. The FTIR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 26.2% at the drug to protein molar ratio of 3. Thermodynamic analysis showed that hydrogen bonds were the mainly binding force in the first type of binding site, and hydrophobic interactions might play a main role in the second type of binding site. Furthermore, the study of computational modeling indicated that GEA could bind to the site I of HSA and hydrophobic interaction was the major acting force for the second type of binding site, which was in agreement with the thermodynamic analysis.  相似文献   

15.
Alpinetin (7-hydroxy-5-methoxyflavanone), one of the main constituents from the seeds of Alpinia katsumadai Hayata, belongs to flavonoids with its usefulness as antibacterial, anti-inflammatory and other important therapeutic activities of significant potency and low systemic toxicity. In this paper, the interaction of alpinetin to human serum albumin (HSA) has been studied for the first time by spectroscopic method including Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD), and UV-absorption spectroscopy in combination with fluorescence quenching study under physiological conditions with drug concentrations of 3.3 x 10(-6)-2.0 x 10(-5)mol/L. The results of spectroscopic measurements and the thermodynamic parameters obtained (the enthalpy change DeltaH(0) and the entropy change DeltaS(0) were calculated to be -10.20 kJ/mol and 53.97 J/molK(-1) according to the Van't Hoff equation) suggest that hydrophobic interaction is the predominant intermolecular forces stabilizing the complex, which is also good agreement with the results of molecule modeling study. The alterations of protein secondary structure in the presence of alpinetin in aqueous solution were quantitatively estimated by the evidences from FT-IR and CD spectroscopy with reductions of alpha-helices about 24%, decreases of beta-sheet structure about 2%, and increases of beta-turn structure about 21%. The quenching mechanism and the number of binding site (n approximately 1) were obtained by fluorescence titration data. Fluorescent displacement measurements confirmed that alpinetin bind HSA on site III. In addition, the effects of common ions on the constants of alpinetin-HSA complex were also discussed.  相似文献   

16.
Thiopental (TPL) is a commonly used barbiturate anesthetic. Its binding with human serum albumin (HSA) was studied to explore the anesthetic-induced protein dysfunction. The basic binding interaction was studied by UV-absorption and fluorescence spectroscopy. An increase in the binding affinity (K) and in the number of binding sites (n) with the increasing albumin concentration was observed. The interaction was conformation-dependent and the highest for the F isomer of HSA, which implicates its slow elimination. The mode of binding was characterized using various thermodynamic parameters. Domain II of HSA was found to possess a high affinity binding site for TPL. The effect of micro-metal ions on the binding affinity was also investigated. The molecular distance, r, between donor (HSA) and acceptor (TPL) was estimated by fluorescence resonance energy transfer (FRET). Correlation between the stability of the TPL-N and TPL-F complexes and drug distribution is discussed. The structural changes in the protein investigated by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy reflect perturbation of the albumin molecule and provide an explanation for the heterogeneity of action of this anesthetic.  相似文献   

17.
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra‐red spectroscopy (FT‐IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern–Volmer quenching constants and binding constants for the MS–HSA system at 293, 298 and 303 K were obtained from the Stern–Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS–HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three‐dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS–HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.  相似文献   

18.
In the present research, the binding properties of diazinon (DZN), as an organophosphorus herbicide, to human serum albumin (HSA) were investigated using combination of spectroscopic, electrochemistry, and molecular modeling techniques. Changes in the UV–Vis and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. The obtained results from spectroscopic and electrochemistry experiments along with the computational studies suggest that DZN binds to residues located in subdomains IIA of HSA with binding constant about 1410.9 M?1 at 300 K. From the thermodynamic parameters calculated according to the van’t Hoff equation, the enthalpy change ΔH° and entropy change ΔS° were found to be ?16.695 and 0.116 KJ/mol K, respectively. The primary binding pattern is determined by hydrophobic interaction and hydrogen binding occurring in so-called site I of HSA. DZN could slightly alter the secondary structure of HSA. All of experimental results are supported by computational techniques such as docking and molecular dynamics simulation using a HSA crystal model.  相似文献   

19.
In this work, fluorescence spectroscopy in combination with circular dichroism spectroscopy and molecular modeling was employed to investigate the binding of 10-hydroxycamptothecin (HCPT) to human serum albumin (HSA) under simulative physiological conditions. The experiment results showed that the fluorescence quenching of HSA by HCPT was a result of the formation of HCPT–HSA complex. The corresponding association constants (K a) between HCPT and HSA at four different temperatures were determined according to the modified Stern–Volmer equation. The results of thermodynamic parameters ΔG, ΔH, and ΔS indicated that hydrogen bonds and van der Waals forces played major roles for HCPT–HSA association. Site marker competitive displacement experiment indicated that the binding of HCPT to HSA primarily took place in sub-domain IIA (site I). Molecular docking study further confirmed the binding mode and the binding site obtained by fluorescence and site marker competitive experiments. The conformational investigation showed that the presence of HCPT decreased the α-helical content of HSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of HSA molecules.  相似文献   

20.
The interaction between two proton pump inhibitors viz., omeprazole (OME) and esomeprazole (EPZ) with human serum albumin (HSA) was studied by fluorescence, absorption, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR), voltammetry, and molecular modeling approaches. The Stern–Volmer quenching constants (Ksv) for OME-HSA and EPZ-HSA systems obtained at different temperatures revealed that both OME and EPZ quenched the intensity of HSA through dynamic mode of quenching mechanism. The binding constants of OME-HSA and EPZ-HSA increased with temperature, indicating the increased stability of these systems at higher temperatures. Thermodynamic parameters viz., ?H°, ?S°, and ?G° were determined for both systems. These values revealed that both systems were stabilized by hydrophobic forces. The competitive displacement and molecular docking studies suggested that OME/EPZ was bound to Sudlow’s site I in subdomain IIA in HSA. The extent of energy transfer from HSA to OME/EPZ and the distance of separation in tryptophan (Trp214) Trp214-OME and Trp214-EPZ was determined based on the theory of fluorescence resonance energy transfer. UV absorption, 3D fluorescence, and CD studies indicated that the binding of OME/EPZ to HSA has induced micro environmental changes around the protein which resulted changes in its secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号