首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Matrix metalloproteinases (MMPs) play an important role in cancer metastasis. Here, we investigated the effect of fibroblast growth factor-2 (FGF-2) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the secretion of type IV collagenases (MMP-2, MMP-9) in breast cancer MCF-7 cells. As shown by gelatin zymography, both FGF-2 and TPA stimulated the secretion of MMP-9 in MCF-7 cells while they did not change the level of MMP-2 secretion. Signaling cascade studies indicated that both FGF-2 and TPA induced Ras activation, c-Raf phosphorylation, mitogen-activated protein kinase/ERK kinase (MEK(1/2)) phosphorylation, and extracellular signal-regulated kinase (ERK(1/2)) phosphorylation. The FGF-2- and TPA-induced MMP-9 secretion was significantly inhibited by transient transfection of MCF-7 cells with dominant negative Ras (Ras-N17) and by treatment with MEK(1/2) inhibitor PD98059. A pan-protein kinase C (PKC) inhibitor, GF109203X, was found to totally abolish the FGF-2- and TPA-induced MMP-9 secretion and ERK(1/2) phosphorylation. Use of isoform-specific PKC inhibitors such as Rotllerin and G?6976 suggested, moreover, that the PKC-delta isoform is a likely component of FGF-2 and TPA trophic signaling. These results demonstrated that FGF-2 and TPA induce MMP-9 secretion in MCF-7 cells mainly through PKC-dependent activation of the Ras/ERK(1/2) signaling pathway.  相似文献   

2.
The mitogen-activated protein kinase (MAPK) signaling pathway is the primary regulatory module of various cellular processes such as cell proliferation, differentiation, and stress responses. This pathway converts external stimuli to cellular responses via three major kinases: mitogen-activated protein kinase (MAPK), mitogen-activated protein kinase kinase (MAPKK), and mitogen-activated protein kinase kinase kinase (MAPKKK). Ubiquitination is a post-translational modification of proteins with ubiquitin, which results in the formation of mono- or poly-ubiquitin chains of substrate proteins. Conversely, removal of the ubiquitin by deubiquitinating enzymes (DUBs) is known as deubiquitination. This review summarizes mechanisms of the MAPK signaling pathways (ERK1/2, ERK5, p38, and JNK1/2/3 signaling pathway) in cancers, and of E3 ligases and DUBs that target the MAPK signaling components such as Raf, MEK1/2, ERK1/2, MEKK2/3, MEKK1-4, TAK1, DLK1, MLK1-4, ASK1/2, and MKK3-7.  相似文献   

3.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) are essential components of pathways through which signals received at membrane receptors are converted into specific changes in protein function and gene expression. As with other members of the mitogen-activated protein (MAP) kinase family, ERK1 and ERK2 are activated by phosphorylations catalyzed by dual-specificity protein kinases known as MAP/ERK kinases (MEKs). MEKs exhibit stringent specificity for individual MAP kinases. Indeed, MEK1 and MEK2 are the only known activators of ERK1 and ERK2. ERK2 small middle dotMEK1/2 complexes can be detected in vitro and in vivo. The biochemical nature of such complexes and their role in MAP kinase signaling are under investigation. This report describes the use of a yeast two-hybrid screen to identify point mutations in ERK2 that impair its interaction with MEK1/2, yet do not alter its interactions with other proteins. ERK2 residues identified in this screen are on the surface of the C-terminal domain of the kinase, either within or immediately preceding alpha-helix G, or within the MAP kinase insert. Some mutations identified in this manner impaired the two-hybrid interaction of ERK2 with both MEK1 and MEK2, whereas others had a predominant effect on the interaction with either MEK1 or MEK2. Mutant ERK2 proteins displayed reduced activation in HEK293 cells following epidermal growth factor treatment, consistent with their impaired interaction with MEK1/2. However, ERK2 proteins containing MEK-specific mutations retained kinase activity, and were similar to wild type ERK2 in their activation following overexpression of constitutively active MEK1. Unlike wild type ERK2, proteins containing MEK-specific point mutations were constitutively localized in the nucleus, even in the presence of overexpressed MEK1. These data suggest an essential role for the MAP kinase insert and residues within or just preceding alpha-helix G in the interaction of ERK2 with MEK1/2.  相似文献   

4.
The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.  相似文献   

5.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

6.
To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.  相似文献   

7.
Early growth response gene (Egr-1) is a stress response gene activated by various forms of stress and growth factor signaling. We report that supraphysiologic concentrations of O(2) (hyperoxia) induced Egr-1 mRNA and protein expression in cultured alveolar epithelial cells, as well as in mouse lung in vivo. The contribution of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), p38 MAPK and PI3-kinase pathways to the activation of Egr-1 in response to hyperoxia was examined. Exposure to hyperoxia resulted in a rapid phosphorylation of ERK 1/2 kinases in mouse alveolar epithelial cells LA4. MEK inhibitor PD98059, but not inhibitors of p38 MAPK or PI3-kinase pathway, prevented Egr-1 induction by hyperoxia. The signaling cascade preceding Egr-1 activation was traced to epidermal growth factor receptor (EGFR) signaling. Hyperoxia is used as supplemental therapy in some diseases and typically results in elevated levels of reactive oxygen intermediates (ROI) in many lung cell types, the organ that receives highest O(2) exposure. Our results support a pathway for the hyperoxia response that involves EGF receptor, MEK/ERK pathway, and other unknown signaling components leading to Egr-1 induction. This forms a foundation for analysis of detailed mechanisms underlying Egr-1 activation during hyperoxia and understanding its consequences for regulating cell response to oxygen toxicity.  相似文献   

8.
FTY720 is a novel immunosuppressive drug derived from a metabolite from Isaria sinclairii that is known to induce apoptosis of rat splenic T cells. In this study, we examined the intracellular signaling pathway triggered by FTY720. Treatment of human Jurkat T lymphocytes with FTY720-induced apoptosis characterized by DNA fragmentation. The same treatment induced activation of protein kinases such as c-Jun NH2-terminal kinase (JNK), p38/CSBP (CSAID-binding protein), and a novel 36-kDa myelin basic protein (MBP) kinase, but not extracellular signal-regulated kinase (ERK). Pretreatment of Jurkat cells with DEVD-CHO blocked FTY720-induced DNA fragmentation as well as the activation of p38/CSBP. However, DEVD-CHO treatment failed to inhibit FTY720-induced activation of JNK and the 36-kDa MBP kinase. We have also demonstrated that activation of the ERK signaling pathway completely suppressed the FTY720-induced apoptotic process including activation of caspase 3 and activation of JNK and the 36-kDa MBP kinase. Furthermore, transient expression of constitutively active mitogen-activated protein kinase/ERK kinase (MEK) protected the cells from FTY720-induced cell death. The effect of MEK was canceled by coexpression of a mitogen-activated protein kinase phosphatase, CL100. These results indicate that JNK and p38 pathways are differentially regulated during FTY720-induced apoptosis and that activation of ERK pathway alone is sufficient to cancel the FTY720-induced death signal.  相似文献   

9.
Siglecs, an immunoglobulin-like lectin family that recognizes the sialic acid moiety, regulate various aspects of immune responses. In the present study, we investigated the effects of Siglecs on the macrophage cell line RAW264, which was stimulated with interleukin-4 (IL-4). The induction of arginase-1 (Arg1) by IL-4 was stronger in Siglec-9-expressing cells than in mock cells. Mutations in the cytoplasmic tyrosine-based inhibitory motifs in Siglec-9 markedly reduced the expression of Arg1. The phosphorylation of Akt by IL-4 and extracellular signal-regulated kinase (ERK) without IL-4 was stronger in Siglec-9-expressing cells, indicating the enhanced activation of the phosphatidylinositol 3 kinase (PI-3K) and mitogen-activated protein kinase kinase (MEK)/ERK pathways, respectively. The enhanced expression of Arg1 was inhibited by MEK inhibitors, but not by PI-3K inhibitor. These results indicate that Siglec-9 affects several different signaling pathways in IL-4-stimulated macrophages, which resulted in enhanced induction of Arg1 in Siglec-9-expressing RAW264 cells.  相似文献   

10.
Heparin is well known to suppress vascular smooth muscle cell (VSMC) proliferation, and attempts to exploit this therapeutically have led to recognition of multiple pathways for heparin's anti-mitogenic actions. At low concentrations (ca. 1 microg.ml(-1)), these suppressive effects may reflect physiological activities of endogenous heparan sulfates, and appear to be rapid responses to extracellular or cell surface-associated heparin. Because heparin has been shown to influence expression of caveolin proteins, and caveolae/lipid rafts are critical structures modulating cell signaling, we examined the effect of heparin on signaling involving cholesterol-rich membrane microdomains. The VSMC line PAC-1 activates the MAP kinase Erk in response to the cholesterol-sequestering agents methyl-beta-cyclodextrin and nystatin. This follows a temporal sequence that involves Ras-GTP activation of MEK, and is independent of PKC, Src, and PI3 kinase. However, ligand-independent phosphorylation of the EGF receptor (EGFR) by removal of cholesterol precedes Ras activation, and the EGFR kinase inhibitor AG1478 blocks Erk phosphorylation, supporting occurrence of the signaling sequence EGFR-Ras-MEK-Erk. Phosphorylation of EGFR occurs predominantly in caveolin-rich microdomains as identified by Western blotting of fractions from density gradient centrifugation of membranes prepared under detergent-free conditions. In these situations, heparin inhibits phosphorylation of EGFR on the Src-dependent site Tyr(845), but not the autophosphorylation of Tyr(1173), and decreases Ras activation and Erk phosphorylation. We conclude that heparin can suppress Erk signaling in VSMC with effects on site-specific phosphorylation of EGFR localized in caveolin-enriched lipid rafts.  相似文献   

11.
Aim of the present paper was to investigate the signaling pathways of P2Y2 in rat thyroid PC Cl3 cell line and its effects on proliferation. This study demonstrates that P2Y2 activation provoked: (a) a cytosol-to-membrane translocation of PKC-alpha, -betaI and -epsilon; (b) the phosphorylation of the extra cellular signal-regulated kinases 1 and 2 (ERK1/2); (c) the expression of c-Fos protein; (d) no effects on the G1/S progression and overall cell proliferation. The P2Y2-stimulated ERK1/2 phosphorylation was: (a) completely blocked by PD098059, a mitogen-activated protein kinase (MEK) inhibitor or by W-7, a Ca2+-calmodulin (CaM) antagonist; (b) reduced by GF109203X, inhibitor of PKCs, or AG1478, inhibitor of EGFR tyrosine kinase, or LY294002/wortmannin, inhibitors of phosphoinositide 3-kinases, or cytochalasin D, inhibitor of actin microfilament bundles polymerization. The c-Fos induction was greatly diminished by Go6976 or PD098059, and completely abolished when combined. In conclusion, data indicate that the P2Y2-induced phosphorylation of ERK1/2 and the induction of c-Fos are due to the operation of CaM, with PKC, PI3K, EGFR and receptor endocytosis mechanisms endorsing the signalling. On the other hand, no mitogenic effects of P2Y2 are whatsoever noticed in PC Cl3 cells.  相似文献   

12.
p21(Waf1/Cip1) (hereafter referred to as p21) is up-regulated in differentiating and DNA-damaged cells, but it is also up-regulated by serum and growth factors. We show here that fibroblast growth factor-2 (FGF-2), platelet-derived growth factor (PDGF), and transforming growth factor-beta1 (TGF-beta1) all induce p21 expression in mouse fibroblasts, but with markedly different kinetics. We link their effect on p21 to Ras and mitogen-activated protein kinase kinase-1(/2) [MEK1(/2)]-regulated pathways using either a specific MEK1(/2) inhibitor (PD 098059) or cells expressing conditionally activated Ras or dominant negative Ras. We demonstrate that p21 induction by PDGF and TGF-beta1 requires MEK1(/2) and, additionally, that the TGF-beta1 effect on p21 depends on Ras, whereas the PDGF effect does not. In contrast, FGF-2 regulation of p21 is largely independent of MEK and Ras. However, PD 098059 efficiently inhibited S-phase entry of quiescent cells induced by either FGF-2 or PDGF, suggesting separate signaling pathways for FGF-2 in induction of p21 and in S-phase entry. The results suggest different but partly overlapping signaling pathways in growth factor regulation of p21.  相似文献   

13.
Successful implantation requires synergism between the developing embryo and the receptive endometrium. In the baboon, infusion of chorionic gonadotropin (CG) modulates both morphology and physiology of the epithelial and stromal cells of the receptive endometrium. This study explored the signal transduction pathways activated by CG in endometrial epithelial cells from baboon (BE) and human (HES). Incubations of BE and HES cells with CG did not significantly alter adenylyl cyclase activity or increase intracellular cAMP when compared with Chinese hamster ovarian cells stably transfected with the full-length human CG/luteinizing hormone (LH) receptor (CHO-LH cells). However, in BE and HES cells, CG induced the phosphorylation of several proteins, among them, extracellular signal-regulated protein kinases 1 and 2 (ERK 1/2). Phosphorylation of ERK 1/2 in uterine epithelial cells was protein kinase A (PKA) independent. This novel signaling pathway is functional because, in response to CG stimulation, prostaglandin E(2) (PGE(2)) was released into the media and increased significantly 2 h following CG stimulation. CG-stimulated PGE(2) synthesis in epithelial cells was inhibited by a specific mitogen-activated protein kinase (MEK 1/2) inhibitor, PD 98059. In conclusion, immediate signal transduction pathways induced by CG in endometrial epithelial cells are cAMP independent and stimulate phosphorylation of ERK 1/2 via a MEK 1/2 pathway, leading to an increase in PGE(2) release as the possible result of cyclooxygenase-2 activation.  相似文献   

14.
Extracellular signal-regulated kinase (ERK), also known as classical mitogen-activated protein kinase, plays critical roles in cell regulation. ERK is activated through phosphorylation by a cascade of protein kinases including MEK. Various ligands activate the MEK/ERK pathway through receptor-dependent cell signaling. In cultured cells, many ligands such as growth factors, hormones, cytokines and vasoactive peptides elicit transient activation of MEK/ERK, often peaking at ~10 min after the cell treatment. Here, we describe a novel biological event, in which ligand-mediated cell signaling results in the dephosphorylation of MEK/ERK. Neuromedin N and neurotensin, peptides derived from the same precursor polypeptide, elicit cell signaling through the neurotensin receptors. In cultured human pulmonary artery smooth muscle cells (PASMCs), but not in human pulmonary artery endothelial cells (PAECs), we found that both neuromedin N and neurotensin promoted the dephosphorylation of ERK and MEK. Human PASMCs were found to express neurotensin receptor (NTR)-1, −2 and −3, while human PAECs only express NTR3. Neuromedin N-mediated dephosphorylation was suppressed by small chemical inhibitors of protein phosphatase 1/2A and peptidyl-prolyl isomerase. Transmission electron microscopy showed the formation of endocytic vesicles in response to neuromedin N treatment, and dephosphorylation did not occur when sorting nexin 9, a critical regulator of the endocytic vesicle formation, was knocked down. We conclude that neuromedin N and neurotensin elicit a unique dephosphorylation signaling in the MEK/ERK pathway that is regulated by endocytosis. Considering the pathophysiological importance of the MEK/ERK pathway, this discovery of the dephosphorylation mechanism should advance the field of cell signaling.  相似文献   

15.
Although basic fibroblast growth factor (FGF-2) had been shown to inhibit type I collagen gene expression in osteoblast, its inhibitory mechanism is unknown. In the present study, we investigated the underlying mechanisms by which growth factors downregulate type I collagen gene expression. Treatment of mouse osteoblastic MC3T3-E1 cells with okadaic acid (40 ng/ml), an inhibitor of phosphoserine/threonine-specific protein phosphatase and activator of ERK1/2, for 24 h and 48 h completely inhibited steady-state mRNA levels of type I collagen. FGF-2 (30 ng/ml), platelet-derived growth factor-BB (PDGF-BB), 30 ng/ml, and serum, which activate ERK mitogen-activated protein kinase (MAPK) pathway also inhibited collagen type I gene expression, suggesting that the activation of ERK pathway mediates inhibition of type I collagen mRNA. This observation was further confirmed by experiments using inhibitors of the ERK pathway (i.e., PD and U0126), which increased type I collagen mRNA in MC3T3-E1 cells, indicating that the inhibition of ERK pathway upregulates type I collagen gene expression. Low serum (0.3%) markedly increased type I collagen mRNA. MEK inhibitor PD inhibited c-fos induction by FGF-2 and PDGF-BB, suggesting that c-fos is the downstream target of ERK pathway. Our data have clearly demonstrated for the first time that the ERK MAPK pathway play an important role in the regulation of type I collagen gene expression in osteoblastic cells. Results also showed that one of the mechanisms by which FGF-2 and PDGF-BB downregulate type I collagen gene expression in the osteoblast is through the activation of ERK signaling pathway.  相似文献   

16.
Stimulation of osteoblast survival signals may be an important mechanism of regulating bone anabolism. Protein kinase B (PKB/Akt), a serine-threonine protein kinase, is a critical regulator of normal cell growth, cell cycle progression, and cell survival. In this study we have investigated the signaling pathways activated by growth factors PDGF-BB, EGF, and FGF-2 and determined whether PDGF-BB, EGF, and FGF-2 activated Akt in human or mouse osteoblastic cells. The results demonstrated that both ERK1 and ERK2 were activated by FGF-2 and PDGF-BB. Activation of ERK1 and ERK2 by PDGF-BB and FGF-2 was inhibited by PD 098059 (100 microM), a specific inhibitor of MEK. Wortmannin (500 nM), a specific inhibitor of phosphatidylinositol 3-kinase ( PI 3-K), inhibited the activation of ERK1 and ERK2 by PDGF-BB but not by FGF-2 suggesting that PI 3-K mediated the activation of ERK MAPK pathway by PDGF-BB but not by FGF-2. Rapamycin, an inhibitor of p70 S6 protein kinase and a downstream target of ERK1/2 and PI 3-K, did not affect the activation of ERK1 and ERK2 by the growth factors. Furthermore, our results demonstrated that Akt, a downstream target of PI 3-K, was activated by PDGF-BB but not by FGF-2. Akt activation by PDGF-BB was inhibited by PI 3-kinase inhibitor LY294002. Rapamycin had no effect on Akt activation. Epidermal growth factor (EGF) also activated Akt in osteoblastic cells which was inhibited by LY294002 but not by rapamycin. Taken together, our data for the first time revealed that the activation of ERK1/2 by PDGF-BB is mediated by PI 3-K, and secondly, Akt is activated by PDGF-BB and EGF but not by FGF-2 in human and mouse osteoblastic cells. These results are of critical importance in understanding the role of these growth factors in apoptosis and cell survival. PDGF-BB and EGF but not FGF-2 may stimulate osteoblast cell survival.  相似文献   

17.
Mitogen-activated protein kinases (MAP kinases) are intracellular signaling kinases activated by phosphorylation in response to a variety of extracellular stimuli. Mammalian MAP kinase pathways are composed of three major pathways: MEK1 (mitogen-activated protein kinase kinase 1)/ERK 1/2 (extracellular signal-regulated kinases 1/2)/p90 RSK (p90 ribosomal S6 kinase), JNK (c-Jun amino (N)-terminal kinase)/c-Jun, and p38 MAPK pathways. These pathways coordinately mediate physiological processes such as cell survival, protein synthesis, cell proliferation, growth, migration, and apoptosis. The involvement of MAP kinase in noise-induced hearing loss (NIHL) has been implicated in the cochlea; however, it is unknown how expression levels of MAP kinase change after the onset of NIHL and whether they are regulated by transient phosphorylation or protein synthesis. CBA/J mice were exposed to 120-dB octave band noise for 2 h. Auditory brainstem response confirmed a component of temporary threshold shift within 0–24 h and significant permanent threshold shift at 14 days after noise exposure. Levels and localizations of phospho- and total- MEK1/ERK1/2/p90 RSK, JNK/c-Jun, and p38 MAPK were comprehensively analyzed by the Bio-Plex® Suspension Array System and immunohistochemistry at 0, 3, 6, 12, 24 and 48 h after noise exposure. The phospho-MEK1/ERK1/2/p90 RSK signaling pathway was activated in the spiral ligament and the sensory and supporting cells of the organ of Corti, with peaks at 3–6 h and independently of regulations of total-MEK1/ERK1/2/p90 RSK. The expression of phospho-JNK and p38 MAPK showed late upregulation in spiral neurons at 48 h, in addition to early upregulations with peaks at 3 h after noise trauma. Phospho-p38 MAPK activation was dependent on upregulation of total-p38 MAPK. At present, comprehensive data on MAP kinase expression provide significant insight into understanding the molecular mechanism of NIHL, and for developing therapeutic models for acute sensorineural hearing loss.  相似文献   

18.
Small differences in amplitude, duration, and temporal patterns of change in the concentration of free intracellular Ca2+ ([Ca2+](i)) can profoundly affect cell physiology, altering programs of gene expression, cell proliferation, secretory activity, and cell survival. We report a novel mechanism for amplitude modulation of [Ca2+](i) that involves mitogen-activated protein kinase (MAPK). We show that epidermal growth factor (EGF) potentiates gastrin-(1-17) (G17)-stimulated Ca2+ release from intracellular Ca2+ stores through a MAPK-dependent pathway. G17 activation of the cholecystokinin/gastrin receptor (CCK(2)R), a G protein-coupled receptor, stimulates release of Ca2+ from inositol 1,4,5-triphosphate-sensitive Ca2+ stores. Pretreating rat intestinal epithelial cells expressing CCK(2)R with EGF increased the level of G17-stimulated Ca2+ release from intracellular stores. The stimulatory effect of EGF on CCK(2)R-mediated Ca2+ release requires activation of the MAPK kinase (MEK)1,2/extracellular signal-regulated kinase (ERK)1,2 pathway. Inhibition of the MEK1,2/ERK1,2 pathway by either serum starvation or treatment with selective MEK1,2 inhibitors PD98059 and U0126 or expression of a dominant-negative mutant form of MEK1 decreased the amplitude of the G17-stimulated Ca2+ release response. Activation of the MEK1,2/ERK1,2 pathway either by pretreating cells with EGF or by expression of constitutively active K-ras (K-rasV12G) or MEK1 (MEK1*) increased the amplitude of G17-stimulated Ca2+ release. Although EGF, MEK1*, and K-rasV12G activated the MEK1,2/ERK1,2 pathway, they did not increase [Ca2+](i) in the absence of G17. These data demonstrate that the activation state of the MEK1,2/ERK1,2 pathway can modulate the amplitude of the CCK(2)R-mediated Ca2+ release response and identify a novel mechanism for cross-talk between EGF receptor- and CCK(2)R-regulated signaling pathways.  相似文献   

19.
Basic fibroblast growth factor (FGF2) stimulates photoreceptor survival in vivo and in vitro, but the molecular signaling mechanism(s) involved are unknown. Immunohistochemical and immunoblotting analyses of pure photoreceptors, inner retinal neurons, and Müller glial cells (MGC) in vitro revealed differential expression of the high affinity FGF receptors (FGFR1-4), as well as many cytoplasmic signaling intermediates known to mediate the extracellular signal-regulated kinase (ERK1/2) pathway. FGF2-induced tyrosine phosphorylation in vitro exhibited distinct profiles for each culture type, and FGF2-induced ERK1/2 activation was observed for all three preparations. Whereas U0126, a specific inhibitor of ERK kinase (MEK), completely abolished FGF2-induced ERK1/2 tyrosine phosphorylation and survival in cultured photoreceptors, persistent ERK1/2 phosphorylation was observed in cultured inner retinal cells and MGC. Furthermore U0126 treatment entirely blocked nerve growth factor-induced ERK1/2 activation in MGC, as well as FGF2-induced ERK1/2 activation in cerebral glial cells. Taken together, these data indicate that FGF2-induced ERK1/2 activation is entirely mediated by MEK within photoreceptors, which is responsible for FGF2-stimulated photoreceptor survival. In contrast, inner retina/glia possess alternative, cell type, and growth factor-specific MEK-independent ERK1/2 activation pathways. Hence signaling and biological effects elicited by FGF2 within retina are mediated by cell type-specific pathways.  相似文献   

20.
We have identified a direct physical interaction between the stress signaling p38alpha MAP kinase and the mitogen-activated protein kinases ERK1 and ERK2 by affinity chromatography and coimmunoprecipitation studies. Phosphorylation and activation of p38alpha enhanced its interaction with ERK1/2, and this correlated with inhibition of ERK1/2 phosphotransferase activity. The loss of epidermal growth factor-induced activation and phosphorylation of ERK1/2 but not of their direct activator MEK1 in HeLa cells transfected with the p38alpha activator MKK6(E) indicated that activated p38alpha may sequester ERK1/2 and sterically block their phosphorylation by MEK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号