首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroluminescence   总被引:1,自引:1,他引:0  
An overview is presented of research based on the observation by Arnold and Azzi (1971) (Photochem Photobiol 14: 233–240), that an electric field induces charge-recombination luminescence in a suspension of photosynthetic membrane vesicles. The electroluminescence signals from Photosystems I and II are discussed in relation to the shape of the vesicles and the membrane potentials generated by the externally applied electric field. The use of the electroluminescence amplitude as a probe to study the kinetics and energetics of charge separation, and of its kinetics to monitor the electric-field induced charge recombination process are reviewed. Currently unresolved issues regarding the emission yield of electroluminescence are briefly discussed and the properties are summarized of the unexplained Photosystem II luminescence which is not sensitive to the membrane potential.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - EL electroluminescence - PS I, II Photosystem I, II - TPB tetraphenylboron, an artificial electron donor for PS II - P primary electron donor - Si Yz P680 Pheo QA QB sequence of electron transfer components in PS II - plastocyanin P700 A0 A1 Fx FA (or FB) sequence of electron transfer components in PS I  相似文献   

2.
Flash-induced redox reactions in spinach PS II core particles were investigated with absorbance difference spectroscopy in the UV-region and EPR spectroscopy. In the absence of artificial electron acceptors, electron transport was limited to a single turnover. Addition of the electron acceptors DCBQ and ferricyanide restored the characteristic period-four oscillation in the UV absorbance associated with the S-state cycle, but not the period-two oscillation indicative of the alternating appearance and disappearance of a semiquinone at the QB-site. In contrast to PS II membranes, all active centers were in state S1 after dark adaptation. The absorbance increase associated with the S-state transitions on the first two flashes, attributed to the Z+S1ZS2 and Z+S2ZS3 transitions, respectively, had half-times of 95 and 380 s, similar to those reported for PS II membrane fragments. The decrease due to the Z+S3ZS0 transition on the third flash had a half-time of 4.5 ms, as in salt-washed PS II membrane fragments. On the fourth flash a small, unresolved, increase of less than 3 s was observed, which might be due to the Z+S0ZS1 transition. The deactivation of the higher S-states was unusually fast and occurred within a few seconds and so was the oxidation of S0 to S1 in the dark, which had a half-time of 2–3 min. The same lifetime was found for tyrosine D+, which appeared to be formed within milliseconds after the first flash in about 10% inactive centers and after the third and later flashes by active centers in Z+S3.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - D secondary electron donor of PS II - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0–3 redox state of the oxygen-evolving complex - Z secondary electron donor of PS II  相似文献   

3.
The involvement of phospholipids in the regulation of photosynthetic electron transport activities was studied by incubating isolated pea thylakoids with phospholipase C to remove the head-group of phospholipid molecules. The treatment was effective in eliminating 40–50% of chloroplast phospholipids and resulted in a drastic decrease of photosynthetic electron transport. Measurements of whole electron transport (H2Omethylviologen) and Photosystem II activity (H2Op-benzoquinone) demonstrated that the decrease of electron flow was due to the inactivation of Photosystem II centers. The variable part of fluorescence induction measured in the absence of electron acceptor was decreased by the progress of phospholipase C hydrolysis and part of the signal could be restored on addition of 3-(3,4-dicholorophenyl)-1,1-dimethylurea. The B and Q bands of thermoluminescence corresponding to S2S3QB and S2S3QA charge recombination, respectively, was also decreased with a concomitant increase of the C band, which originated from the tyrosine D+QA charge recombination. These results suggest that phospholipid molecules play an important role in maintaining the membrane organization and thus maintaining the electron transport activity of Photosystem II complexes.Abbreviations DCMU 3-(3,4-dicholorophenyl)-1,1-dimethylurea - Fvar variable fluorescence - LHC light-harvesting complex - MGDG monogalactosyldiacylglycerol - PS photosystem  相似文献   

4.
The functional size of Photosystem II (PS II) was investigated by radiation inactivation. The technique provides an estimate of the functional mass required for a specific reaction and depends on irradiating samples with high energy -rays and assaying the remaining activity. The analysis is based on target theory that has been modified to take into account the temperature dependence of radiation inactivation of proteins. Using PS II enriched membranes isolated from spinach we determined the functional size of primary charge separation coupled to water oxidation and quinone reduction at the QB site: H2O (Mn)4 Yz P680 Pheophytin Q phenyl-p-benzoquinone. Radiation inactivation analysis indicates a functional mass of 88 ± 12 kDa for electron transfer from water to phenyl-p-benzoquinone. It is likely that the reaction center heterodimer polypeptides, D1 and D2, contribute approximately 70 kDa to the functional mass, in which case polypeptides adding up to approximately 20 kDa remain to be identified. Likely candidates are the and subunits of cytochrome b 559and the 4.5 kDa psbI gene product.Abbreviations Cyt cytochrome - PS Photosystem - P680 primary electron donor of Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II - Yz tyrosine donor to P680  相似文献   

5.
Photoinhibition of Photosystem II in unicellular algae in vivo is accompanied by thylakoid membrane energization and generation of a relatively high pH as demonstrated by 14C-methylamine uptake in intact cells. Presence of ammonium ions in the medium causes extensive swelling of the thylakoid membranes in photoinhibited Chlamydomonas reinhardtii but not in Scenedesmus obliquus wild type and LF-1 mutant cells. The rise in pH and the related thylakoid swelling do not occur at light intensities which do not induce photoinhibition. The rise in pH and membrane energization are not induced by photoinhibitory light in C. reinhardtii mutant cells possessing an active Photosystem II but lacking cytochrome b6/f, plastocyanin or Photosystem I activity and thus being unable to perform cyclic electron flow around Photosystem I. In these mutants the light-induced turnover of the D1 protein of Reaction Center II is considerably reduced. The high light-dependent rise in pH is induced in the LF-1 mutant of Scenedesmus which can not oxidize water but otherwise possesses an active Reaction Center II indicating that PS II-linear electron flow activity and reduction of plastoquinone are not required for this process. Based on these results we conclude that photoinhibition of Photosystem II activates cyclic electron flow around Photosystem I which is responsible for the high membrane energization and pH rise in cells exposed to excessive light intensities.Abbreviations cyt b6/f cytochrome b6/f - Diuron 3-(3,4-dichlorophenyl)-1 dimethyl urea - QB the secondary quinone acceptor of reaction center II - DNP 2,4,Dinitrophenol - FCCP carbonyl cyanide trifluoromethoxy phenylhydrazone - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis  相似文献   

6.
Photosynthetic control describes the processes that serve to modify chloroplast membrane reactions in order to co-ordinate the synthesis of ATP and NADPH with the rate at which these metabolites can be used in carbon metabolism. At low irradiance, optimisation of the use of excitation energy is required, while at high irradiance photosynthetic control serves to dissipate excess excitation energy when the potential rate of ATP and NADPH synthesis exceed demand. The balance between pH, ATP synthesis and redox state adjusts supply to demand such that the [ATP]/[ADP] and [NADPH]/[NADP+] ratios are remarkably constant in steady-state conditions and modulation of electron transport occurs without extreme fluctuations in these pools.Abbreviations FBPase Fructose-1,6-bisphosphatase - PS I Photosystem I - PS II Photosystem II - Pi inorganic phosphate - PGA glycerate 3-phosphate - PQ plastoquinone - QA the bound quinone electron acceptor of PS II - qP Photochemical quenching of chlorophyll fluorescence associated with the oxidation of QA - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching associated with the high energy state of the membrane - RuBP ribulose-1,5-bisphosphate - TP triose phosphate - intrinsic quantum yield of PS II - quantum yield of electron transport - quantum yield of CO2 assimilation  相似文献   

7.
Electron transfer rates were measured in RCs from three herbicide-resistant mutants with known amino acid changes to elucidate the structural requirements for last electron transfer. The three herbicide resistant mutants were IM(L229) (Ile-L229 Met), SP(L223) (Ser-L223 Pro) and YG(L222) (Tyr-L222 Gly). The electron transfer rate D+QA -QBD+QAQB (k AB) is slowed 3 fold in the IM(L229) and YG(L222) RCs (pH 8). The stabilization of D+QAQB - with respect to D+QAQB - (pH 8) was found to be eliminated in the IM(L229) mutant RCs (G0 0 meV), was partially reduced in the SP(L223) mutant RCs (G0=–30 meV), and was unaltered in the YG(L222) mutant RCs (G0=–60 meV), compared to that observed in the native RCs (G0=–60 meV). The pH dependences of the charge recombination rate D+QAQB -DQAQB (k BD) and the electron transfer from QA - (k QA -QA) suggest that the mutations do not affect the protonation state of Glu-L212 nor the electrostatic interactions of QB and QB - with Glu-L212. The binding affinities of UQ10 for the QB site were found in order of decreasing values to be native IM(L229) > YG(L222) SP(L223). The altered properties of the mutant RCs are used to deduce possible structural changes caused by the mutations and are dicscussed in terms of photosynthetic efficiency of the herbicide resistant strains.Abbreviations Bchl bacteriochlorophyll - Bphe bacteriopheophytin - cholate 3,7,12-trihydroxycholanic acid - D donor (bacteriochlorophyll dimer) - EDTA ethylenediamine tetraacetic acid - Fe2+ non-heme iron atom - LDAO lauryl dimethylamine oxide - PS II photosystem II - QA and QB primary and secondary quinone acceptors - RC bacterial reaction center - Tris tris(hydroxymethyl)aminomethane - UQ0 2,3-dimethoxy-5-methyl benzoquinone - UQ10 ubiquinone 50  相似文献   

8.
Persistent photochemical hole burned profiles are reported for the primary electron donor state P700 of the reaction center of PS I. The hole profiles at 1.6 K for a wide range of burn wavelengths (B) are broad (FWHM310 cm-1) and for the 45:1 enriched particles studied exhibit no sharp zero-phonon hole feature coincident with B. The B hole profiles are analyzed using the theory of Hayes et al. [J Phys Chem 1986, 90: 4928] for hole burning in the presence of arbitrarily strong linear electron-phonon coupling. A Huang-Rhys factor S in the range 4–6 and a corresponding mean phonon frequency in the range 35–50 cm-1 together with an inhomogeneous line broadening of100 cm-1 are found to provide good agreement with experiment. The zero-point level of P700* is predicted to lie at710 nm at 1.6K with an absorption maximum at702 nm. The hole spectra are discussed in the context of the hole spectra for the primary electron donor states of PS II and purple bacteria.Abbreviations NPHB nonphotochemical hole burning - O.D. optical density - PSBH phonon sideband hole - PS I Photosystem I P680 - P700, P870, P960 the primary electron donors of Photosystem II, Photosystem I, Rhodobacter sphaeroides, Rhodopseudomonas viridis - PED primary electron donor - RC reaction center - ZPH zero-phonon holes  相似文献   

9.
The protonophoric uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2,3,4,5,6-pentachlorophenol (PCP) and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) inhibited the Hill reaction with K3[Fe(CN)6] (but not with SiMo) in chloroplast and cyanobacterial membranes (the I50 values were approx. 1–2, 4–6 and 0.04–0.10 M, respectively). The inhibition is due to oxidation of the uncouplers on the Photosystem II donor side (ADRY effect) and their subsequent reduction on the acceptor side, ie. to the formation of a cyclic electron transfer chain around Photosystem II involving the uncouplers as redox carriers. The relative amplitude of nanosecond chlorophyll fluorescence in chloroplasts was increased by DCMU or HQNO and did not change upon addition of uncouplers, DBMIB or DNP-INT; the HQNO effect was not removed by the uncouplers. The uncouplers did not inhibit the electron transfer from reduced TMPD or duroquinol to methylviologen which is driven by Photosystem I. These data show that CCCP, PCP and TTFB oxidized on the Photosystem II donor side are reduced by the membrane pool of plastoquinone (Qp) which is also the electron donor for K3 [Fe(CN)6] in the Hill reaction as deduced from the data obtained in the presence of inhibitors. Inhibition of the Hill reaction by the uncouplers was maximum at the pH values corresponding to the pK of these compounds. It is suggested that the tested uncouplers serve as proton donors, and not merely as electron donors on the oxidizing side of Photosystem II.Abbreviations ADRY- acceleration of the deactivation reactions of the water-splitting enzyme system Y - ANT2p- 2-(3-chloro-4-trifluoromethyl) anilino-3,5-dinitrothiophene - CCCP- carbonyl cyanide m-chlorophenylhydrazone - DBMIB- 2,5-dibromo-3-methyl 6-isopropyl-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT- 2-iodo-6-isopropyl-3-methyl 2,4,4-trinitrodiphenyl ether - DPC- 1,5-diphenylcarbazide - DPIP- 2,6-dichlorophenolindophenol - FCCP- carbonyl cyanide p-trifuoromethoxyphenylhydrazone - FeCy- potassium ferricyanide - HQNO- 2-n-heptyl-4-hydroxyquinoline N-oxide - (MN)4- the tetranuclear Mn cluster of water oxidizing complex - P680- photoactive Chl of the reaction center of Photosystem II - PCP- 2,3,4,5,6-pentachlorophenol - PS- photosystem - QA and QB- primary and secondary plastoquinones of PS II - QC and QZ- plastoquinone binding sites in the cytochrome blf complex - Qp- membrane pool of plastoquinone - SiMo- sodium silicomolybdate - TMPD- N,N,N-tetramethyl-p-phenylenediamine - TTFB- 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole - WOC- water oxidixing complex - YZ- tyrosine-161 of the Photosystem II D1 polypeptide  相似文献   

10.
In Photosystem II (PS II), water is oxidized to molecular oxygen and plastoquinone is reduced to plastoquinol. The oxidation of water requires the accumulation of four oxidizing equivalents, through the so-called S-states of the oxygen evolving complex; the production of plastoquinol requires the accumulation of two reducing equivalents on a bound plastoquinone, QB. It has been generally believed that during the flash-induced transition of each of the S-states (Sn Sn+1, where n=0, 1, 2 and 3), a certain small but equal fraction of the PS II reaction centers are unable to function and, thus, miss being turned over. We used thoroughly dark-adapted thylakoids from peas (Pisum sativum) and Chenopodium album (susceptible and resistant to atrazine) starting with 100% of the oxygen evolving complex in the S1 state. Thylakoids were illuminated with saturating flashes, providing a double hit parameter of about 0.07. Our experimental data on flashnumber dependent oscillations in the amount of oxygen per flash fit very well with a binary pattern of misses: 0, 0.2, 0, 0.4 during S0 S1, S1 S2, S2 S3 and S3 S0 transitions. Addition of 2 mM ferricyanide appears to shift this pattern by one flash. These results are consistent with the bicycle model recently proposed by V. P. Shinkarev and C. A. Wraight (Oxygen evolution in photosynthesis: From unicycle to bicycle, 1993, Proc Natl Acad Sci USA 90: 1834–1838), where misses are due to the presence of P+ or QA - among the various equilibrium states of PS II centers.Abbreviations miss parameter - double hit parameter - PS II Photosystem II - QA primary one-electron acceptor of PS II, a plastoquinone molecule - QB secondary plastoquinone two-electron acceptor of PS II - S-states (Sn, where n=0, 1, 2, 3 or 4) redox states of the oxygen evolving complex  相似文献   

11.
The yield of photosynthetic O2 evolution was measured in cultures of Dunaliella C9AA over a range of light intensities, and a range of low temperatures at constant light intensity. Changes in the rate of charge separation at Photosystem I (PS I) and Photosystem II (PS II) were estimated by the parameters PS I and PS II . PS I is calculated on the basis of the proportion of centres in the correct redox state for charge separation to occur, as measured spectrophotometrically. PS II is calculated using chlorophyll fluorescence to estimate the proportion of centres in the correct redox state, and also to estimate limitations in excitation delivery to reaction centres. With both increasing light intensity and decreasing temperature it was found that O2 evolution decreased more than predicted by either PS I or PS II. The results are interpreted as evidence of non-assimilatory electron flow; either linear whole chain, or cyclic around each photosystem.Abbreviations F0 dark level of chlorophyll fluorescence yield (PS II centres open) - Fm maximum level of chlorophyll fluorescence yield (PS II centres closed) - Fv variable fluorescence (Fm-F0) - PS I Photosystem I - PS II Photosystem II - P700 reaction centre chlorophyll(s) of PS I - qN coefficient of non-photochemical quenching of chlorophyll fluorescence - qP coefficient of photochemical quenching of fluorescence yield - qE high-energy-state quenching coefficient - PS I yield of PS I - PS II yield of PS II - S yield of photosynthetic O2 evolution - P intrinsic yield of open PS II centres  相似文献   

12.
In this article, the three-dimensional structures of photosynthetic reaction centers (RCs) are presented mainly on the basis of the X-ray crystal structures of the RCs from the purple bacteria Rhodopseudomonas (Rp.) viridis and Rhodobacter (Rb.) sphaeroides. In contrast to earlier comparisons and on the basis of the best-defined Rb. sphaeroides structure, a number of the reported differences between the structures cannot be confirmed. However, there are small conformational differences which might provide a basis for the explanation of observed spectral and functional discrepancies between the two species.A particular focus in this review is on the binding site of the secondary quinone (QB), where electron transfer is coupled to the uptake of protons from the cytoplasm. For the discussion of the QB site, a number of newlydetermined coordinate sets of Rp. viridis RCs modified at the QB site have been included. In addition, chains of ordered water molecules are found leading from the cytoplasm to the QB site in the best-defined structures of both Rp. viridis and Rb. sphaeroides RCs.Abbreviations BA accessory bacteriochlorophyll in the active branch - BB accessory bacteriochlorophyll in the inactive branch - D primary electron donor (special pair) - DL special pair bacteriochorophyll bound by the L subunit - DM special pair bacteriochorophyll bound by the M subunit - QA primary electron acceptor quinone - QB secondary electron acceptor quinone - RC reaction center - Rb. Rhodobacter - Rp. Rhodopseudomonas - A bacteriopheophytin in the active branch - B bacteriopheophytin in the inactive branch  相似文献   

13.
The temperature dependence of the electric field-induced chlorophyll luminescence in photosystem II was studied in Tris-washed, osmotically swollen spinach chloroplasts (blebs). The system II reaction centers were brought in the state Z+P+-QA -QB - by preillumination and the charge recombination to the state Z+PQAQB - was measured at various temperatures and electrical field strengths. It was found that the activation enthalpy of this back reaction was 0.16 eV in the absence of an electrical field and diminished with increasing field strength. It is argued that this energy is the enthalpy difference between the states IQA - and I-QA and accounts for about half of the free energy difference between these states. The redox state of QB does not influence this free energy difference within 150 s after the photoreduction of QA. The consequences for the interpretation of thermodynamic properties of QA are discussed.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - I intermediary electron acceptor - Mops 3-(N-morpholino)propanesulphonic acid - P (P680) primary electron donor - PS II photosystem II - QA and QB first and second quinone electron acceptors - Tricine N-tris(hydroxymethyl)methylglycine - Tris tris-(hydroxymethyl)aminomethane - Z secondary electron donor Dedicated to Professor L.N.M. Duysens on the occasion of his retirement  相似文献   

14.
Redox changes of the oxygen evolving complex in PS II core particles were investigated by absorbance difference spectroscopy in the UV-region. The oscillation of the absorbance changes induced by a series of saturating flashes could not be explained by the minimal Kok model (Kok et al. 1970) consisting of a 4-step redox cycle, S0 S1 S2 S3 S0, although the values of most of the relevant parameters had been determined experimentally. Additional assumptions which allow a consistent fit of all data are a slow equilibration of the S3 state with an inactive state, perhaps related to Ca2+-release, and a low quantum efficiency for the first turnover after dark-adaptation. Difference spectra of the successive S-state transitions were determined. At wavelengths above 370 nm, they were very different due to the different contribution of a Chl bandshift in each spectrum. At shorter wavelengths, the S1 S2 transition showed a difference spectrum similar to that reported by Dekker et al. 1984b and attributed to an Mn(III) to Mn(IV) oxidation. The spectrum of absorbance changes associated with the S2 S3 transition was similar to that reported by Lavergne 1991 for PS II membranes. The S0 S1 transition was associated with a smaller but still substantial absorbance increase in the UV. Differences with the spectra reported by Lavergne 1991 are attributed to electrostatic effects on electron transfer at the acceptor side associated with the S-state dependence of proton release in PS II membranes.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0 to S4 redox state of the oxygen evolving complex - Z secondary electron donor of PS II  相似文献   

15.
Photosystem-two (PSII) in the chloroplasts of higher plants and green algae is not homogeneous. A review of PSII heterogeneity is presented and a model is proposed which is consistent with much of the data presented in the literature. It is proposed that the non-quinone electron acceptor of PSII is preferentially associated with the sub-population of PSII known as PSIIß.Abbreviations and symbols ATP Adenosine triphosphate - Chl Chlorophyll - C550 Absorbance bandshift at 550 nm; proportional to [QA -] - D, D Components involved ir electron donation to P680 - pH Transthylakoid proton gradient - Transthylakoid electrical gradient - DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea referred to as diuron - E h Oxidation-reduction potential - E m Cxidation-reduction midpoint potential - EPR Electron paramagnetic resonance - Fm Fluorescence yield when all traps are closed - Fo Fluorescence yield when all traps are open - Fv Variable fluorescence equal to Fm-Fo - Fi Initial fluorescence yield, (usually equivalent to Fo in dark-adapted thylakoids) - Hepes 2-hydroxyethylpiperazine-N-2-ethane sulphonic acid - LHCP Light-harvesting chlorophyll a/b binding protein - PQ Plastoquinone - PSII Photosystem II - P680 Reaction centre chlorophyll of PSII - P518 Absorbance bandshift at 518 nm, reflects asymmetric charge distribution across the thylakoid membrane - QA, QH , Q1 Primary stable plastoquinone electron acceptor of PSII; a quencher of fluorescence - Q B , B, R Plastoquinone associated with the Q B -protein, the two-electron gate - Q D , Q2, X a Non-quinone electron acceptor of PSII - X320 Absorbance bandshift at 320 nm; semiquinone anion indicator  相似文献   

16.
The Photosystem I reaction centre protein CP1, isolated from barley using polyacrylamide gel electrophoresis showed an EPR (Electron Paramgnetic Resonance) spectrum with the polarisation pattern AEEAAE, typical of the primary donor triplet state 3P700, created via radical pair formation and recombination. 3P700 could also be detected by Fluorescence Detected Magnetic Resonance (FDMR) at f > 700 nm even in the presence of a large number of chlorophyll antennae. Its zero field splitting parameters, D=282.5×10-4 cm-1 and E=38.5×10-4 cm-1, were independent of the detection wavelength, and agreed with ADMR (Absorption Detected Magnetic Resonance) and EPR values. The signs of the 3P700 D+E and D-E transitions were positive (increase in fluorescence intensity on applying a resonance microwave field). In contrast, in the emission band 685 < f < 700 nm FDMR spectra with negative D+E and D-E transitions were detected, and the D value was wavelength-dependent. These FDMR results support an excitation energy transfer model for CP1, derived from time-resolved fluorescence studies, in which two chlorophyll antenna forms are distinguished, with fluorescence at 685 < f < 700 nm (inner core antennae, F690), and f > 700 nm (low energy antenna sites, F720), in addition to the P700. The FDMR spectrum in F690 emission can be interpreted as that of 3P700, observed via reverse singlet excitation energy transfer and added to the FDMR spectrum of the antenna triplet states generated via intramolecular intersystem crossing. This would indicate that reversible energy transfer between F690 and P700 occurs even at 4.2 K.Abbreviations Chl chlorophyll - CP1 core chlorophyll protein of Photosystem I - EPR electron paramagnetic resonance - F690, F720 chlorophyll forms having fluorescence maximum at 690–695 and 720 nm, respectively - F(A)(O)DMR fluorescence (absorption) (optical) detected magnetic resonance - FF fluorescence fading - ISC intramolecular intersystem crossing - f fluorescence emission wave-length - LHC I light harvesting chlorophyll a/b protein of Photosystem I - P700 primary donor of Photosystem I - PS I Photosystem I - RC reaction centre - RP radical pair - SDS sodium dodecyl sulphate - ZFS zero field splitting  相似文献   

17.
Paddock  M.L.  Senft  M.E.  Graige  M.S.  Rongey  S.H.  Turanchik  T.  Feher  G.  Okamura  M.Y 《Photosynthesis research》1998,55(2-3):281-291
The structural basis for proton coupled electron transfer to QB in bacterial reaction centers (RCs) was studied by investigating RCs containing second site suppressor mutations (Asn M44 Asp, Arg M233 Cys, Arg H177 His) that complement the effects of the deleterious Asp L213 Asn mutation [DN(L213)]. The suppressor RCs all showed an increased proton coupled electron transfer rate k AB (2)(QA QB + H+ QAQBH) by at least 103 (pH 7.5) and a recombination rate k BD (D+QAQB DQAQB) 15–40 times larger than the value found in DN(L213) RCs. Proton transfer was studied by measuring the dependence of k AB (2) on the free energy for electron transfer (Get). k AB (2) was independent of Get in DN(L213) RCs, but dependent on Get in native and all suppressor RCs. This shows that proton transfer limits the k AB (2) reaction with a rate of 0.1s–1 in DN(L213) RCs but is not rate limiting and at least 108-fold faster in native and 105-fold faster in the suppressor RCs. The increased rate of proton transfer by the suppressor mutations are proposed to be due to: (i) a reduction in the barrier to proton transfer by providing a more negative electrostatic potential near QB ; and/or (ii) structural changes that permit fast proton transfer through the network of protonatable residues and water molecules near QB.  相似文献   

18.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

19.
Thermoluminescence experiments have been carried out to study the effect of a transmembrane proton gradient on the recombination properties of the S2 and S3 states of the oxygen evolving complex with QA - and QB -, the reduced electron acceptors of Photosystem II. We first determined the properties of the S2QA - (Q band), S2QB - and S3QB - (B bands) recombinations in the pH range 5.5 to 9.0, using uncoupled thylakoids. The, a proton gradient was created in the dark, using the ATP-hydrolase function of ATPases, in coupled unfrozen thylakoids. A shift towards low temperature of both Q and B bands was observed to increase with the magnitude of the proton gradient measured by the fluorescence quenching of 9-aminoacridine. This downshift was larger for S3QB - than for S2QB - and it was suppressed by nigericin, but not by valinomycin. Similar results were obtained when a proton gradient was formed by photosystem I photochemistry. When Photosystem II electron transfer was induced by a flash sequence, the reduction of the plastoquinone pool also contributed to the downshift in the absence of an electron acceptor. In leaves submitted to a flash sequence above 0°C, a downshift was also observed, which was supressed by nigericin infiltration. Thus, thermoluminescence provides direct evidence on the enhancing effect of lumen acidification on the S3S2 and S2S1 reverse-transitions. Both reduction of the plastoquinone pool and lumen acidification induce a shift of the Q and B bands to lower temperature, with a predominance of lumen acidification in non-freezing, moderate light conditions.Abbreviations 9-AA 9-aminoacridine - EA activation energy - F0 constant fluorescence level - FM maximum fluorescence, when all PS-II centers are closed - FV variable fluorescence (FM–F0) - PS I, PS II Photosystem I, photosystem II - PQ plastoquinone - TL thermoluminescence  相似文献   

20.
Old and very recent experiments on the extent and the rate of proton release during the four reaction steps of photosynthetic water oxidation are reviewed. Proton release is discussed in terms of three main sources, namely the chemical production upon electron abstraction from water, protolytic reactions of Mn-ligands (e.g. oxo-bridges), and electrostatic response of neighboring amino acids. The extent of proton release differs between the four oxidation steps and greatly varies as a function of pH both, but differently, in thylakoids and PS II-membranes. Contrastingly, it is about constant in PS II-core particles. In any preparation, and on most if not all reaction steps, a large portion of proton transfer can occur very rapidly (<20 s) and before the oxidation of the Mn-cluster by Yz + is completed. By these electrostatically driven reactions the catalytic center accumulates bases. An additional slow phase is observed during the oxygen evolving step, S3S4S0. Depending on pH, this phase consists of a release or an uptake of protons which accounts for the balance between the number of preformed bases and the four chemically produced protons. These data are compatible with the hypothesis of concerted electron/proton-transfer to overcome the kinetic and energetic constraints of water oxidation.Abbreviations BBY-membranes Photosystem II-enriched membrane fragments prepared after Berthold, Babcock and Yocum (1981) - BSA bovine serum albumin - Chl chlorophyll - CAB-protein chlorophyll a/b-binding protein - core particles oxygen evolving reaction center core particles of Photosystem II - Cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - IML intermittent light - P-680 primary electron donor of Photosystem II - PS II Photosystem II - Yz tyrosine residue on the D1 polypeptide, electron carrier between manganese and P-680 - photochemical reaction   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号