首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Electron transfer rates were measured in RCs from three herbicide-resistant mutants with known amino acid changes to elucidate the structural requirements for last electron transfer. The three herbicide resistant mutants were IM(L229) (Ile-L229 Met), SP(L223) (Ser-L223 Pro) and YG(L222) (Tyr-L222 Gly). The electron transfer rate D+QA -QBD+QAQB (k AB) is slowed 3 fold in the IM(L229) and YG(L222) RCs (pH 8). The stabilization of D+QAQB - with respect to D+QAQB - (pH 8) was found to be eliminated in the IM(L229) mutant RCs (G0 0 meV), was partially reduced in the SP(L223) mutant RCs (G0=–30 meV), and was unaltered in the YG(L222) mutant RCs (G0=–60 meV), compared to that observed in the native RCs (G0=–60 meV). The pH dependences of the charge recombination rate D+QAQB -DQAQB (k BD) and the electron transfer from QA - (k QA -QA) suggest that the mutations do not affect the protonation state of Glu-L212 nor the electrostatic interactions of QB and QB - with Glu-L212. The binding affinities of UQ10 for the QB site were found in order of decreasing values to be native IM(L229) > YG(L222) SP(L223). The altered properties of the mutant RCs are used to deduce possible structural changes caused by the mutations and are dicscussed in terms of photosynthetic efficiency of the herbicide resistant strains.Abbreviations Bchl bacteriochlorophyll - Bphe bacteriopheophytin - cholate 3,7,12-trihydroxycholanic acid - D donor (bacteriochlorophyll dimer) - EDTA ethylenediamine tetraacetic acid - Fe2+ non-heme iron atom - LDAO lauryl dimethylamine oxide - PS II photosystem II - QA and QB primary and secondary quinone acceptors - RC bacterial reaction center - Tris tris(hydroxymethyl)aminomethane - UQ0 2,3-dimethoxy-5-methyl benzoquinone - UQ10 ubiquinone 50  相似文献   

2.
Photoinhibition was analyzed in O2-evolving and in Tris-treated PS II membrane fragments by measuring flash-induced absorption changes at 830 nm reflecting the transient P680+ formation and oxygen evolution. Irradiation by visible light affects the PS II electron transfer at two different sites: a) photoinhibition of site I eliminates the capability to perform a stable charge separation between P680+ and QA - within the reaction center (RC) and b) photoinhibition of site II blocks the electron transfer from YZ to P680+. The quantum yield of site I photoinhibition (2–3×10-7 inhibited RC/quantum) is independent of the functional integrity of the water oxidizing system. In contrast, the quantum yield of photoinhibition at site II depends strongly on the oxygen evolution capacity. In O2-evolving samples, the quantum yield of site II photoinhibition is about 10-7 inhibited RC/quantum. After selective elimination of the O2-evolving capacity by Tris-treatment, the quantum yield of photoinhibition at site II depends on the light intensity. At low intensity (<3 W/m2), the quantum yield is 10-4 inhibited RC/quantum (about 1000 times higher than in oxygen evolving samples). Based on these results it is inferred that the dominating deleterious effect of photoinhibition cannot be ascribed to an unique target site or a single mechanism because it depends on different experimental conditions (e.g., light intensity) and the functional status of the PS II complex.Abbreviations A830 absorption change at 830 nm - P680 primary electron donor of PS II - PS II photosystem II - Mes 2(N-morpholino)ethansulfonic acid - QA, QB primary and secondary acceptors of PS II - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbohydrazide - FWHM fullwidth at half maximum - Ph-p-BQ phenyl-p-benzoquinone - PFR photon fluence rate - Pheo pheophytin - RC reaction center  相似文献   

3.
We report here the first measurements on chlorophyll (Chl) a fluorescence characteristics of photoautotrophic soybean cells (cell lines SB-P and SBI-P). The cell fluorescence is free from severe distortion problems encountered in higher plant leaves. Chl a fluorescence spectra at 77 K show, after correction for the spectral sensitivity of the photomultiplier and the emission monochromator, peaks at 688, 696 and 745 nm, representing antenna systems of photosystem II-CP43 and CP47, and photosystem I, respectively. Calculations, based on the complementary area over the Chl a fluorescence induction curve, indicated a ratio of 6 of the mobile plastoquinone (including QB) to the primary stable electron acceptor, the bound plastoquinone QA. A ratio of one between the secondary stable electron acceptor, bound plastoquinone QB, and its reduced form QB - was obtained by using a double flash technique. Owing to this ratio, the flash number dependence of the Chl a fluorescence showed a distinct period of four, implying a close relationship to the S state of the oxygen evolution mechanism. Analysis of the QA - reoxidation kinetics showed (1) the halftime of each of the major decay components ( 300 s fast and 30 ms slow) increases with the increase of diuron and atrazine concentrations; and (2) the amplitudes of the fast and the slow components change in a complementary fashion, the fast component disappearing at high concentrations of the inhibitors. This implies that the inhibitors used are able to totally displace QB. In intact soybean cells, the relative amplitude of the 30 ms to 300 s component is higher (40:60) than that in spinach chloroplasts (30:70), implying a larger contribution of the centers with unbound QB. SB-P and SBI-P soybean cells display a slightly different sensitivity of QA - decay to inhibitors.Abbreviations CA complementary area over fluorescence induction curve - Chl chlorophyll, diuron - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F m maximum chlorophyll a fluorescence - F 0 minimum chlorophyll a fluorescence - F v = F t-F0 - where F v = variable chlorophyll a fluorescence - and Ft = chlorophyll a fluorescence at time t - PS II photosystem II - Q a primary (plastoquinone) electron acceptor of PS II - Q b secondary (plastoquinone) electron acceptor of PS II - t50 the time at which the concentration of reduced Q a is 50% of that at its maximum value  相似文献   

4.
The functional state of the PS II population localized in the stroma exposed non-appressed thylakoid region was investigated by direct analysis of the PS II content of isolated stroma thylakoid vesicles. This PS II population, possessing an antenna size typical for PS II, was found to have a fully functional oxygen evolving capacity in the presence of an added quinone electron acceptor such as phenyl-p-benzoquinone. The sensitivity to DCMU for this PS II population was the same as for PS II in control thylakoids. However, under more physiological conditions, in the absence of an added quinone acceptor, no oxygen was evolved from stroma thylakoid vesicles and their PS II centers were found to be incapable to pass electrons to PS I and to yield NADPH. By comparison of the effect of a variety of added quinone acceptors with different midpoint potentials, it is concluded that the inability of PS II in the stroma thylakoid membranes to contribute to NADPH formation probably is due to that QA of this population is not able to reduce PQ, although it can reduce some artificial acceptors like phenyl-p-benzoquinone. These data give further support to the notion of a discrete PS II population in the non-appressed stroma thylakoid region, PS II, having a higher midpoint potential of QA than the PS II population in the appressed thylakoid region, PS II. The physiological significance of a PS II population that does not produce any NADPH is discussed.Abbreviations pBQ p-benzoquinone - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCIP 2,6-dichloroindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - DQ duroquinone(tetramethyl-p-benzoquinone) - FeCN ferricyanide (potassium hexacyanoferrat) - MV methylviologen - NADPH,NADP+ reduced or oxidized form of nicotinamide adenine dinucleotide phosphate respectively - PpBQ phenyl-p-benzoquinone - PQ plastoquinone - PS II photosystem II - PS I photosystem I - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - E microEinstein  相似文献   

5.
It has been known for some time that bicarbonate reverses the inhibition, by formate under HCO3 --depletion conditions, of electron transport in thylakoid membranes. It has been shown that the major effect is on the electron acceptor side of photosystem II, at the site of plastoquinone reduction. After presenting a historical introduction, and a minireview of the bicarbonate effect, we present a hypothesis on how HCO3 - functions in vivo as (a) a proton donor to the plastoquinone reductase site in the D1-D2 protein; and (b) a ligand to Fe2+ in the QA-Fe-QB complex that keeps the D1-D2 proteins in their proper functional conformation. They key points of the hypothesis are: (1) HCO3 - forms a salt bridge between Fe2+ and the D2 protein. The carboxyl group of HCO3 - is a bidentate ligand to Fe2+, while the hydroxyl group H-bonds to a protein residue. (2) A second HCO3 - is involved in protonating a histidine near the QB site to stabilize the negative charge on QB. HCO3 - provides a rapidly available source of H+ for this purpose. (3) After donation of a H+, CO3 2- is replaced by another HCO3 -. The high pKa of CO3 2- ensures rapid reprotonation from the bulk phase. (4) An intramembrane pool of HCO3 - is in equilibrium with a large number of low affinity sites. This pool is a H+ buffering domain functionally connecting the external bulk phase with the quinones. The low affinity sites buffer the intrathylakoid [HCO3 -] against fluctuations in the intracellular CO2. (5) Low pH and high ionic strength are suggested to disrupt the HCO3 - salt bridge between Fe2+ and D2. The resulting conformational change exposes the intramembrane HCO3 - pool and low affinity sites to the bulk phase.Two contrasting hypotheses for the action of formate are: (a) it functions to remove bicarbonate, and the low electron transport left in such samples is due to the left-over (or endogenous) bicarbonate in the system; or (b) bicarbonate is less of an inhibitor and so appears to relieve the inhibition by formate. Hypothesis (a) implies that HCO3 - is an essential requirement for electron transport through the plastoquinones (bound plastoquinones QA and QB and the plastoquinone pool) of photosystem II. Hypothesis (b) implies that HCO3 - does not play any significant role in vivo. Our conclusion is that hypothesis (a) is correct and HCO3 - is an essential requirement for electron transport on the electron acceptor side of PS II. This is based on several observations: (i) since HCO3 -, not CO2, is the active species involved (Blubaugh and Govindjee 1986), the calculated concentration of this species (220 M at pH 8, pH of the stroma) is much higher than the calculated dissociation constant (Kd) of 35–60 M; thus, the likelihood of bound HCO3 - in ambient air is high; (ii) studies on HCO3 - effect in thylakoid samples with different chlorophyll concentrations suggest that the left-over (or endogenous) electron flow in bicarbonate-depleted chloroplasts is due to left-over (or endogenous) HCO3 - remaining bound to the system (Blubaugh 1987).Abbreviations DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (common name: diuron) - PSII photosystem II - QA first plastoquinone electron acceptor of PSII - QB second plastoquinone acceptor of PS II  相似文献   

6.
It is well known that two photosystems, I and II, are needed to transfer electrons from H2O to NADP+ in oxygenic photosynthesis. Each photosystem consists of several components: (a) the light-harvesting antenna (L-HA) system, (b) the reaction center (RC) complex, and (c) the polypeptides and other co-factors involved in electron and proton transport. First, we present a mini review on the heterogeneity which has been identified with the electron acceptor side of Photosystem II (PS II) including (a) L-HA system: the PS II and PS II units, (b) RC complex containing electron acceptor Q1 or Q2; and (c) electron acceptor complex: QA (having two different redox potentials QL and QH) and QB (QB-type; Q'B type; and non-QB type); additional components such as iron (Q-400), U (Em,7=–450 mV) and Q-318 (or Aq) are also mentioned. Furthermore, we summarize the current ideas on the so-called inactive (those that transfer electrons to the plastoquinone pool rather slowly) and active reaction centers. Second, we discuss the bearing of the first section on the ratio of the PS II reaction center (RC-II) and the PS I reaction center (RC-I). Third, we review recent results that relate the inactive and active RC-II, obtained by the use of quinones DMQ and DCBQ, with the fluorescence transient at room temperature and in heated spinach and soybean thylakoids. These data show that inactive RC-II can be easily monitored by the OID phase of fluorescence transient and that heating converts active into inactive centers.Abbreviations DCBQ 2,5 or 2,6 dichloro-p-benzoquinone - DMQ dimethylquinone - QA primary plastoquinone electron acceptor of photosystem II - QB secondary plastoquinone electron acceptor of photosystem II - IODP successive fluorescence levels during time course of chlorophyll a fluorescence: O for origin, I for inflection, D for dip or plateau, and P for peak  相似文献   

7.
Electric field-induced charge recombination in Photosystem II (PS II) was studied in osmotically swollen spinach chloroplasts (blebs) by measurement of the concomitant chlorophyll luminescence emission (electroluminescence). A pronounced dependence on the redox state of the two-electron gate QB was observed and the earlier failure to detect it is explained. The influence of the QB/QB oscillation on electroluminescence was dependent on the redox state of the oxygen evolving complex; at times around one millisecond after flash illumination a large effect was observed in the states S2 and S3, but not in the state S4 (actually Z+S3). The presence of the oxidized secondary electron donor, tyrosine Z+, appeared to prevent expression of the QB/QB effect on electroluminescence, possibly because this effect is primarily due to a shift of the redox equilibrium between Z/Z+ and the oxygen evolving complex.Abbreviations BSA bovine serum albumin - EDTA ethylene-diaminetetraacetic acid - EL electroluminescence - FCCP carbonylcyanide p-trifluoromethyloxyphenyl-hydrazone - HEPESI 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - I primary electron acceptor - MOPS 3-(N-morpholino) propane sulfonic acid - P680 primary electron donor of Photosystem II - P700 primary electron donor of Photosystem I - QA and QB secondary and tertiary electron acceptors of Photosystem II - Z secondary electron donor (D1 Tyr 161)  相似文献   

8.
Thermoluminescence experiments have been carried out to study the effect of a transmembrane proton gradient on the recombination properties of the S2 and S3 states of the oxygen evolving complex with QA - and QB -, the reduced electron acceptors of Photosystem II. We first determined the properties of the S2QA - (Q band), S2QB - and S3QB - (B bands) recombinations in the pH range 5.5 to 9.0, using uncoupled thylakoids. The, a proton gradient was created in the dark, using the ATP-hydrolase function of ATPases, in coupled unfrozen thylakoids. A shift towards low temperature of both Q and B bands was observed to increase with the magnitude of the proton gradient measured by the fluorescence quenching of 9-aminoacridine. This downshift was larger for S3QB - than for S2QB - and it was suppressed by nigericin, but not by valinomycin. Similar results were obtained when a proton gradient was formed by photosystem I photochemistry. When Photosystem II electron transfer was induced by a flash sequence, the reduction of the plastoquinone pool also contributed to the downshift in the absence of an electron acceptor. In leaves submitted to a flash sequence above 0°C, a downshift was also observed, which was supressed by nigericin infiltration. Thus, thermoluminescence provides direct evidence on the enhancing effect of lumen acidification on the S3S2 and S2S1 reverse-transitions. Both reduction of the plastoquinone pool and lumen acidification induce a shift of the Q and B bands to lower temperature, with a predominance of lumen acidification in non-freezing, moderate light conditions.Abbreviations 9-AA 9-aminoacridine - EA activation energy - F0 constant fluorescence level - FM maximum fluorescence, when all PS-II centers are closed - FV variable fluorescence (FM–F0) - PS I, PS II Photosystem I, photosystem II - PQ plastoquinone - TL thermoluminescence  相似文献   

9.
Flash-induced redox reactions in spinach PS II core particles were investigated with absorbance difference spectroscopy in the UV-region and EPR spectroscopy. In the absence of artificial electron acceptors, electron transport was limited to a single turnover. Addition of the electron acceptors DCBQ and ferricyanide restored the characteristic period-four oscillation in the UV absorbance associated with the S-state cycle, but not the period-two oscillation indicative of the alternating appearance and disappearance of a semiquinone at the QB-site. In contrast to PS II membranes, all active centers were in state S1 after dark adaptation. The absorbance increase associated with the S-state transitions on the first two flashes, attributed to the Z+S1ZS2 and Z+S2ZS3 transitions, respectively, had half-times of 95 and 380 s, similar to those reported for PS II membrane fragments. The decrease due to the Z+S3ZS0 transition on the third flash had a half-time of 4.5 ms, as in salt-washed PS II membrane fragments. On the fourth flash a small, unresolved, increase of less than 3 s was observed, which might be due to the Z+S0ZS1 transition. The deactivation of the higher S-states was unusually fast and occurred within a few seconds and so was the oxidation of S0 to S1 in the dark, which had a half-time of 2–3 min. The same lifetime was found for tyrosine D+, which appeared to be formed within milliseconds after the first flash in about 10% inactive centers and after the third and later flashes by active centers in Z+S3.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - D secondary electron donor of PS II - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0–3 redox state of the oxygen-evolving complex - Z secondary electron donor of PS II  相似文献   

10.
Paddock  M.L.  Senft  M.E.  Graige  M.S.  Rongey  S.H.  Turanchik  T.  Feher  G.  Okamura  M.Y 《Photosynthesis research》1998,55(2-3):281-291
The structural basis for proton coupled electron transfer to QB in bacterial reaction centers (RCs) was studied by investigating RCs containing second site suppressor mutations (Asn M44 Asp, Arg M233 Cys, Arg H177 His) that complement the effects of the deleterious Asp L213 Asn mutation [DN(L213)]. The suppressor RCs all showed an increased proton coupled electron transfer rate k AB (2)(QA QB + H+ QAQBH) by at least 103 (pH 7.5) and a recombination rate k BD (D+QAQB DQAQB) 15–40 times larger than the value found in DN(L213) RCs. Proton transfer was studied by measuring the dependence of k AB (2) on the free energy for electron transfer (Get). k AB (2) was independent of Get in DN(L213) RCs, but dependent on Get in native and all suppressor RCs. This shows that proton transfer limits the k AB (2) reaction with a rate of 0.1s–1 in DN(L213) RCs but is not rate limiting and at least 108-fold faster in native and 105-fold faster in the suppressor RCs. The increased rate of proton transfer by the suppressor mutations are proposed to be due to: (i) a reduction in the barrier to proton transfer by providing a more negative electrostatic potential near QB ; and/or (ii) structural changes that permit fast proton transfer through the network of protonatable residues and water molecules near QB.  相似文献   

11.
Inhibition of electron flow from H2O to methylviologen by 3-(34 dichlorophenyl)-1,1 dimethyl urea (DCMU), yields a biphasic curve — an initial high sensitivity phase and a subsequent low sensitivity phase. The two phases of electron flow have a different pH dependence and differ in the light intensity required for saturation.Preincubation of chloroplasts with ferricyanide causes an inhibition of the high sensitivity phase, but has no effect on the low sensitivity phase. The extent of inhibition increases as the redox potential during preincubation becomes more positive. Tris-treatment, contrary to preincubation with ferricyanide, affects, to a much greater extent, the low sensitivity phase.Trypsin digestion of chloroplasts is known to block electron flow between Q A and Q B, allowing electron flow to ferricyanide, in a DCMU insensitive reaction. We have found that in trypsinated chloroplasts, electron flow becomes progressively inhibited by DCMU with increase in pH, and that DCMU acts as a competitive inhibitor with respect to [H+]. The sensitivity to DCMU rises when a more negative redox potential is maintained during trypsin treatment. Under these conditions, only the high sensitivity, but not the low sensitivity phase is inhibited by DCMU.The above results indicate the existence of two types of electron transport chains. One type, in which electron flow is more sensitive to DCMU contains, presumably Fe in a Q A Fe complex and is affected by its oxidation state, i.e., when Fe is reduced, it allows electron flow to Q B in a DCMU sensitive step; and a second type, in which electron transport is less sensitive to DCMU, where Fe is either absent or, if present in its oxidized state, is inaccessible to reducing agents.Abbreviations DCMU 3-(34 dichlorophenyl)-1, 1 Dimethyl urea - MV methyl viologen - PS II Photosystem II - Tris tris (hydroxymethyl)aminomethane  相似文献   

12.
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a core complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the core complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II core complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.Abbreviations A 23187 ionophore that exchanges divalent cations with H+ - Chl chlorophyll - cyt cytochrome - DCPIP dichlorophenolindophenol - DPC diphenylcarbazide - EGTA ethyleneglycoltetraacetic acid - P680 the chlorophyll a reaction center of photosystem II - pheo pheophytin - PQ plastoquinone - PS photosystem - QA and QB primary and secondary plastoquinone electron acceptors of photosystem II - Sn (n=0, 1, 2, 3, 4) charge accumulating state of the oxygen evolving system - Signals IIvf, IIf and IIs epr-detectable free radicals associated with the oxidizing side of photosystem II - Z primary electron donor to the photosystem II reaction center The survey of literature for this review ended in September, 1984.  相似文献   

13.
Treatment of spheroplasts of Nostoc museorum with hypotonic buffer results in membranes depleted of cytochrome c-553, but still active in photosynthetic and respiratory electron transport. These membranes retain full photosystem II activity (H2ODADox). Complete linear electron transport (H2ONADP+), however, is decreased as compared with untreated spheroplasts. Addition of basic Nostoc cytochrome c-553 to depleted membranes reconstitutes NADP+ reduction and redox reactions of the photosystem I region as well.Using NADPH as electron donor, respiration of depleted membranes is also stimulated by adding cytochrome c-553, indicative of its function in respiratory electron transport.Cytochrome c-553 from Bumilleriopsis filiformis, Spirulina platensis (acidic types), Phormidium foveolarum (basic type), and mitochondrial horse-heart cytochrome c-550 are not effective in reconstituting both photosynthetic and respiratory electron transport, which points to a specific role of Nostoc cytochrome c-553.Abbreviations BSA bovine serum albumin - DAD 3,6-diaminodurene - DADox 3,6-diaminodurene oxidized by potassium ferricyanide - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - Fd ferredoxin - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(-N-morpholino)-ethanesulfonic acid - MV methylviologen (1,1-dimethyl-4,4-bipyridylium dichloride) - PS I photosystem I - PS II photosystem II - Tris tris-(hydroxymethyl)-aminomethane  相似文献   

14.
Electroluminescence   总被引:1,自引:1,他引:0  
An overview is presented of research based on the observation by Arnold and Azzi (1971) (Photochem Photobiol 14: 233–240), that an electric field induces charge-recombination luminescence in a suspension of photosynthetic membrane vesicles. The electroluminescence signals from Photosystems I and II are discussed in relation to the shape of the vesicles and the membrane potentials generated by the externally applied electric field. The use of the electroluminescence amplitude as a probe to study the kinetics and energetics of charge separation, and of its kinetics to monitor the electric-field induced charge recombination process are reviewed. Currently unresolved issues regarding the emission yield of electroluminescence are briefly discussed and the properties are summarized of the unexplained Photosystem II luminescence which is not sensitive to the membrane potential.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - EL electroluminescence - PS I, II Photosystem I, II - TPB tetraphenylboron, an artificial electron donor for PS II - P primary electron donor - Si Yz P680 Pheo QA QB sequence of electron transfer components in PS II - plastocyanin P700 A0 A1 Fx FA (or FB) sequence of electron transfer components in PS I  相似文献   

15.
The suggestion that the electron acceptor A1 in plant photosystem I (PSI) is a quinone molecule is tested by comparisons with the bacterial photosystem. The electron spin polarized (ESP) EPR signal due to the oxidized donor and reduced quinone acceptor (P 870 + Q-) in iron-depleted bacterial reaction centers has similar spectral characteristics as the ESP EPR signal in PSI which is believed to be due to P 700 + A 1 - , the oxidized PSI donor and reduced A1. This is also true for better resolved spectra obtained at K-band (24 GHz). These same spectral characteristics can be simulated using a powder spectrum based on the known g-anisotropy of reduced quinones and with the same parameter set for Q- and A1 -. The best resolution of the ESP EPR signal has been obtained for deuterated PSI particles at K-band. Simulation of the A1 - contribution based on g-anisotropy yields the same parameters as for bacterial Q- (except for an overall shift in the anisotropic g-factors, which have previously been determined for Q-). These results provide evidence that A1 is a quinone molecule. The electron spin polarized signal of P700 + is part of the better resolved spectrum from the deuterated PSI particles. The nature of the P700 + ESP is not clear; however, it appears that it does not exhibit the polarization pattern required by mechanisms which have been used so far to explain the ESP in PSI.Abbreviations hf hyperfine - A0 A0 acceptor of photosystem I - A1 A1 acceptor of photosystem I - Brij-58 polyoxyethylene 20 cetyl ether - CP1 photosystem I particles which lack ferridoxin acceptors - ESP electron spin polarized - EPR electron paramagnetic resonance - I intermediary electron acceptor, bacteriopheophytin - LDAO lauryldimethylamine - N-oxide, P700 primary electron donor of photosystem I - PSI photosystem I - P700 T triplet state of primary donor of photosystem I - P870 primary donor in R. sphaeroides reaction center - Q quinore-acceptor in photosynthetic bacteria - RC reaction center  相似文献   

16.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - LHCP1-3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

17.
The involvement of phospholipids in the regulation of photosynthetic electron transport activities was studied by incubating isolated pea thylakoids with phospholipase C to remove the head-group of phospholipid molecules. The treatment was effective in eliminating 40–50% of chloroplast phospholipids and resulted in a drastic decrease of photosynthetic electron transport. Measurements of whole electron transport (H2Omethylviologen) and Photosystem II activity (H2Op-benzoquinone) demonstrated that the decrease of electron flow was due to the inactivation of Photosystem II centers. The variable part of fluorescence induction measured in the absence of electron acceptor was decreased by the progress of phospholipase C hydrolysis and part of the signal could be restored on addition of 3-(3,4-dicholorophenyl)-1,1-dimethylurea. The B and Q bands of thermoluminescence corresponding to S2S3QB and S2S3QA charge recombination, respectively, was also decreased with a concomitant increase of the C band, which originated from the tyrosine D+QA charge recombination. These results suggest that phospholipid molecules play an important role in maintaining the membrane organization and thus maintaining the electron transport activity of Photosystem II complexes.Abbreviations DCMU 3-(3,4-dicholorophenyl)-1,1-dimethylurea - Fvar variable fluorescence - LHC light-harvesting complex - MGDG monogalactosyldiacylglycerol - PS photosystem  相似文献   

18.
Extraction of PS II particles with 50 mM cholate and 1 M NaCl releases several proteins (33-, 23-, 17- and 13 kDa) and lipids from the thylakoid membrane which are essential for O2 evolution, dichlorophenolindophenol (DCIP) reduction and for stable charge separation between P680+ and QA -. This work correlates the results on the loss of steady-state rates for O2 evolution and PS II mediated DCIP photo-reduction with flash absorption changes directly monitoring the reaction center charge separation at 830 nm due to P680+, the chlorophyll a donor. Reconstitution of the extracted lipids to the depleted membrane restores the ability to photo-oxidize P680 reversibly and to reduce DCIP, while stimulating O2 evolution minimally. Addition of the extracted proteins of masses 33-, 23- and 17- kDa produces no further stimulation of DCIP reduction in the presence of an exogenous donor like DPC, but does enhance this rate in the absence of exogenous donors while also stimulating O2 evolution. The proteins alone in the absence of lipids have little influence on charge separation in the reaction center. Thus lipids are essential for stable charge separation within the reaction center, involving formation of P680+ and QA -.Abbreviations A830 Absorption change at 830 nm - Chl Chlorophyll - D1 primary electron donor to P680 - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - MOPS 3-(N-morpholino)propanesulfonic acid - P680 reaction center chlorophyll a molecule of photosystem II - PPBQ Phenyl-p-benzoquinone - PS II Photosystem II - QA, QB first and second quinone acceptors in PS II - V-DCIP rate of DCIP reduction - V-O2 rate of oxygen evolution - Y water-oxidizing enzyme system - CHAPS 3-Cyclohexylamino-propanesulfonic acid  相似文献   

19.
PELDOR (Pulsed Electron eLectron DOuble Resonance) was applied to determinethe distance of between YZand QA -inYD-less mutant of Chlamydomonas reinhardtiiin Tris-treatedand Zn-substituted preparation of photosystem II. The value of distance wasfound to be 34.5 ± 1 Â. A 2+1 electron spin echo method has beenapplied to measure the orientation of the radius-vector RfomYDto ChlZin a membrane-oriented photosystem II. The anglebetween Rand the membrane normal nwas determined to be 50 ±5°, using the distance 29.4 ± 0.5 Â determined in non-orientedPS II.  相似文献   

20.
Oxygen evolving photosystem II particles were exposed to 100 and 250 W m–2 white light at 20°C under aerobic, anaerobic and strongly reducing (presence of dithionite) conditions. Three types of photoinactivation processes with different kinetics could be distinguished: (1) The fast process which occurs under strongly reducing (t 1/21–3 min) and anaerobic conditions (t 1/24–12 min). (2) The slow process (t 1/215–40 min) and (3) the very slow process (t 1/2>100 min), both of which occur under all three sets of conditions.The fast process results in a parallel decline of variable fluorescence (F v) and of Hill reaction rate, accompanied by an antiparallel increase of constant fluorescence (F o). We assume that trapping of QA in a negatively charged stable state, (QA )stab, is responsible for the effects observed.The slow process is characterized by a decline of maximal fluorescence (F m). In presence of oxygen this decline is due to the well known disappearance of F v which proceeds in parallel with the inhibition of the Hill reaction; F o remains essentially constant. Under anaerobic and reducing conditions the decline of F m represents the disappearance of the increment in F o generated by the fast process. We assume that the slow process consists in neutralization of the negative charge in the domain of QA in a manner that renders QA non-functional. The charge separation in the RC is still possible, but energy of excitation becomes thermally dissipated.The very slow photoinactivation process is linked to loss of charge separation ability of the PS II RC and will be analyzed in a forthcoming paper.Abbreviations F chlorophyll a fluorescence - F o, F v, F m constant, variable, maximum fluorescence - F o, F v, F m the same, measured in presence of dithionite (F v suppression method) - PS II photosystem II - RC reaction centre (P680. Pheo) - P680 primary electron donor - Pheo pheophytin, intermediary electron acceptor - QA, QB the primary and secondary electron acceptor - Z, D electron donors to P680 - (QA)stab, (QA H)stab hypothetical modifications of QA resulting from photoinactivation - O-, A- and R-conditions aerobic, anaerobic and strongly reducing (presence of dithionite) conditions - MES 2-(N-morpholine) ethanesulphonic acid - DCPIP 2,6-dichlorphenolindophenol - GGOC mixture of glucose, glucose oxidase and catalase - DT-20 oxygen-evolving PS II particles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号