首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UVB irradiation of human skin is known to induce pathophysiological processes as oxidative stress and inflammation. HaCaT keratinocytes represent a well-established in vitro model system to investigate the influence of UVB irradiation on cell cultures. It was the aim of these investigations to study the effects of moderate UVB doses on cellular and mitochondrial integrity of HaCaT keratinocytes, biomarkers of oxidative stress and antioxidant protection by superoxide dismutases. F2-isoprostane concentrations were UVB dose-dependently enhanced reaching a plateau at 50 mJ/cm2. Cell viability was reduced and apoptosis was enhanced with increasing UVB doses. The activities of the respiratory chain complexes were practically not altered at lower UVB doses, up to 50 mJ/cm2, whereas remarkable decreases, also for the levels of cardiolipin species, were seen at 100 mJ/cm2. As an adaptive response to the enhanced oxidative stress, protein levels of MnSOD increased about 3-fold at 50 mJ/cm2 and decreased at higher doses. From the data it can be concluded that keratinocytes are sufficiently protected at low UVB doses, whereas higher doses lead to irreversible cell damage.  相似文献   

2.
Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-Lα, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm2 irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm2 UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.  相似文献   

3.
Interferon-gamma (IFN-gamma) induces various apoptosis-related proteins, including Fas antigen (Fas) in keratinocytes. Ultraviolet B (UVB) irradiation produces "sunburn cells," a specific type of apoptosis. Previously, we reported that IFN-gamma augments Fas-dependent apoptosis of SV40-transformed human keratinocytes (SVHK cells). Caspases are a new class of cysteine proteinases that play an important role in apoptosis. We investigated the mechanism of UVB-induced apoptosis by examining activation of the caspase cascade. UVB irradiation of SVHK cells increased the activities of caspases 1, 3, and 8, which were detected at 3 h, and peak activities occurred at 6 h. Pretreatment of SVHK cells with IFN-gamma significantly increased the activity of caspases 1, 3, and 8. UVB-induced caspase 8 stimulation was significantly suppressed only by caspase 8 inhibitor, while inhibitors of caspases 1, 3, and 8 significantly suppressed UVB-induced caspase 1 stimulation. Caspase 3 and 8 inhibitors, but not caspase 1 inhibitor, significantly suppressed UVB-induced caspase 3 activity, suggesting sequential activation of caspases 8, 3, and 1 in UVB-irradiated SVHK cells. Cross-linking and immunoprecipitation analyses showed multimerization of Fas antigen following UVB irradiation of SVHK cells. Pretreatment of SVHK cells with IFN-gamma significantly augmented UVB-induced apoptosis that was accompanied by increased Fas expression. The susceptibility to UVB-induced apoptosis was also increased in Fas-transfected SVHK cells (F2 cells). Neutralizing anti-Fas antibody significantly suppressed caspase activation and Fas-dependent apoptosis of SVHK cells and F2 cells. In contrast, UVB-induced caspase activation and apoptosis were not inhibited by neutralizing anti-Fas antibody in both cell lines. Our results suggest that UVB directly activates Fas and subsequent caspase cascade resulting in apoptosis of SVHK cells. Furthermore, the expression level of Fas antigen in keratinocytes influenced their susceptibility to UVB-induced apoptosis.  相似文献   

4.
5.
UVB radiation damages keratinocytes, potentially inducing chronic skin damage, cutaneous malignancy, and suppression of the immune system. Naturally occurring agents have been considered for prevention and treatment of various kinds of cancer, including skin cancer. Inositol hexaphosphate (IP6), an antioxidant, is a naturally occurring polyphosphorylated carbohydrate that has shown a strong anticancer activity in several experimental models. We assessed the protective effects of IP6 against UVB irradiationinduced injury and photocarcinogenesis by using HaCaT cells (human immortalized keratinocytes) and SKH1 hairless mice. We found that IP6 counteracts the harmful effects of UVB irradiation and increases the viability and survival of UVB-exposed cells. Treatment with IP6 after UVB irradiation (30 mJ/cm(2)) arrested cells in the G(1) and G(2) M phases while decreasing the S phase of the cell cycle. Treatment with IP6 also decreased UVB-induced apoptosis and caspase 3 activation. Topical application of IP6 followed by exposure to UVB irradiation in SKH1 hairless mice decreased tumor incidence and multiplicity as compared with control mice. Our results suggest that IP6 protects HaCaT cells from UVB-induced apoptosis and mice from UVB-induced tumors.  相似文献   

6.
UVB radiation causes about 90% of non-melanoma skin cancers by damaging DNA either directly or indirectly by increasing levels of reactive oxygen species (ROS). Skin, chronically exposed to both endogenous and environmental pro-oxidant agents, contains a well-organised system of chemical and enzymatic antioxidants. However, increased or prolonged free radical action can overwhelm ROS defence mechanisms, contributing to the development of cutaneous diseases. Thus, new strategies for skin protection comprise the use of food antioxidants to counteract oxidative stress. Resveratrol, a phytoalexin from grape, has gained a great interest for its ability to influence several biological mechanisms like redox balance, cell proliferation, signal transduction pathways, immune and inflammatory response. Therefore, the potential of resveratrol to modify skin cell response to UVB exposure could turn out to be a useful option to protect skin from sunlight-induced degenerative diseases. To investigate into this matter, HaCaT cells, a largely used model for human skin keratinocytes, were treated with 25 or 100 µM resveratrol for 2 and 24 hours prior to UVB irradiation (10 to 100 mJ/cm2). Cell viability and molecular markers of proliferation, oxidative stress, apoptosis, and autophagy were analyzed. In HaCaT cells resveratrol pretreatment: reduces UVB-induced ROS formation, enhances the detrimental effect of UVB on HaCaT cell vitality, increases UVB-induced caspase 8, PARP cleavage, and induces autophagy. These findings suggest that resveratrol could exert photochemopreventive effects by enhancing UVB-induced apoptosis and by inducing autophagy, thus reducing the odds that damaged cells could escape programmed cell death and initiate malignant transformation.  相似文献   

7.
Although aldose reductase (AR) has been implicated in the cellular response to oxidative stress, the role of AR in ultraviolet-B (UVB)-induced cellular injury has not been investigated. Here, we show that an increased expression of AR in human keratinocytes modulates UVB-induced apoptotic cell death and senescence. Overexpression of AR in HaCaT cells significantly attenuated UVB-induced cellular damage and apoptosis, with a decreased generation of reactive oxygen species (ROS) and aldehydes. Ablation of AR with small interfering RNA or inhibition of AR activity abolished these effects. We also show that increased AR activity suppressed UVB-induced activation of the p38 and c-Jun N-terminal kinases, but did not affect the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Similarly, UVB-induced translocation of Bax and Bcl-2 to mitochondria and cytosol, respectively, was markedly attenuated in cells overexpressing AR. Knockdown or inhibition of AR activity in primary cultured keratinocytes enhanced UVB-induced cellular senescence and increased the level of a cell-cycle regulatory protein, p53. Finally, cellular apoptosis induced by UVB radiation was significantly reduced in the epidermis of transgenic mice overexpressing human AR. These findings suggest that AR plays an important role in the cellular response to oxidative stress by sequestering ROS and reactive aldehydes generated in keratinocytes.  相似文献   

8.
Apoptosis is an active form of cell death that is initiated by a variety of stimuli, including reactive oxygen species (ROS) and ultraviolet (UV) radiation. Poly (ADP-ribose) (PAR) is formed upon activation of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), and therefore was suggested as a new marker of apoptosis. Since DNA of epidermal cells represents a well-known chromophore for UVB irradiation, and UVB is known to generate H2O2 in keratinocytes, we hypothesized that PAR is a very sensitive marker of UVB- and H2O2-induced apoptosis in keratinocytes. In order to test this hypothesis, human immortalized keratinocytes (HaCaT) were UVB-irradiated or treated with H2O2, and subsequently apoptosis was identified by comparing conventional parameters such as morphological analysis, DNA laddering, and TUNEL assay, with PAR formation. Both, UVB and H2O2 treatment induced PAR formation in HaCaT cells in a dose-dependent manner, and its formation was detected as early as 4 h after irradiation, and at lower UVB doses (10 mJ/cm2) than observed by DNA laddering and the TUNEL assay. In conclusion, the detection of PAR formation is a very sensitive and early method for the identification of apoptotic cells in UVB-induced apoptosis of human keratinocytes.  相似文献   

9.
The silk protein sericin has been identified as a potent antioxidant and photoprotective agent against ultraviolet B (UVB) irradiation in mouse skin model. In this study, we have investigated the anti-apoptotic effect of sericin in UVB (30 mJ/cm2)-irradiated human keratinocytes. Flow cytometry analysis has shown that pre-treatment with sericin inhibits UVB-induced apoptosis. The pre-treatment with sericin suppresses bax expression, up-regulates the expression of bcl-2, prevents both the activation of caspase-3 and cleavage of Poly (ADP-ribose) polymerase. Generation of intracellular hydrogen peroxide in UVB-treated keratinocytes is inhibited through pre-treatment with sericin suggesting that sericin probably prevents mitochondrial damage. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Mounting evidence indicates that signaling via VEGF receptors (VEGFRs) extends beyond blood vessel formation. Recently, VEGFRs are also found to be constitutively expressed in keratinocytes and epidermal appendages. Here, we show that the expression of VEGFRs (including VEGFR-1, VEGFR-2, and NRP-1) was significantly enhanced by moderate dose of ultraviolet B (UVB) in normal human keratinocytes and epidermis. The elevated expression of VEGFRs by UVB was independent of autocrine stimulation by their natural ligand, VEGF, but mainly mediated through hypoxia and oxidative stress. Moderate dose UVB also promoted tyrosine phosphorylation of VEGFR-1 and VEGFR-2, this effect was again VEGF independent. Both α and δ isoforms of protein kinase C (PKC) were required for UVB-induced phosphorylation of VEGFR-1, but only the δ isoform was required for VEGFR-2 phosphorylation. The phosphorylation of VEGFRs or isoforms of PKC was completely inhibited by PP2, a specific inhibitor for Src family kinases (SFKs), indicating that SFKs are upstream of PKC and VEGFRs. Moderate dose UVB-induced VEGF exerted an anti-apoptotic effect for keratinocytes, whereas high dose UVB-induced VEGF played as an inflammatory factor. Of note, neutralization of VEGFR-2 but not VEGFR-1 exacerbated UVB-induced cell death and reduced survival of keratinocytes. Furthermore, VEGFR-2 neutralization inhibited the activation of ERK1/2 and Akt by UVB, suggesting that VEGFR-2 signaling was involved in the pro-survival mechanism via ERK1/2 and PI3-K/Akt pathway. Taken together, we demonstrate for the first time that VEGFR-2 signaling is activated and promotes survival of keratinocytes under moderate dose of UVB irradiation.  相似文献   

11.
Enzyme-linked immunosorbent assay (ELISA) is a common tool to test human sera on an antibody reaction against a specific antigen. The 60-kDa Ro/SS-A antigen for autoantibodies can be found in sera from systemic lupus erythematosus (SLE) patients. As in the case of 60-kDa Ro/SS-A, antigens used in ELISAs are recombinantly expressed in Escherichia coli and time-consuming purification steps are needed to get the proteins. To avoid these disadvantages, 60-kDa Ro/SS-A was expressed on the surface of E. coli using autodisplay, an efficient surface display system. Cells displaying 60-kDa Ro/SS-A on the surface were applied as an antigen source instead of the purified antigen. In total, 39 patients and 30 control sera were screened on a 60-kDa Ro/SS-A antibody reaction. To eliminate antibodies against native E. coli, human sera were preabsorbed with E. coli cells prior to the assay. The new ELISA protocol (surface display ELISA [SD-ELISA]) using E. coli with autodisplayed 60-kDa Ro/SS-A showed a sensitivity of 86.67% and a specificity of 83.33% by a cutoff value of 0.28. Our results show that autodisplay provides simple, rapid, and cheap access to human antigens for an ELISA to screen human sera against specific antibody reactions.  相似文献   

12.
This study aims at exploring the oxidative stress in keratinocytes induced by UVB irradiation and the protective effect of nutritional antioxidants. Cultured Colo-16 cells were exposed to UVB in vitro followed by measurement of reactive oxygen species (ROS), endogenous antioxidant enzyme activity, as well as cell death in the presence or absence of supplementation with vitamin C, vitamin E, or Ginsenoside Panoxatriol. Intracellular ROS content was found significantly reduced 1 h after exposure, but increased at later time points. After exposure to 150–600 J m−2 UVB, reduction of ROS content was accompanied by increased activity of catalase and CuZn-superoxide dismutase at early time points. Vitamins C and E, and Ginsenoside Panoxatriol counteracted the increase of ROS in the Colo-16 cells induced by acute UVB irradiation. At the same time, Ginsenoside Panoxatriol protected the activity of CuZn-superoxide dismutase, while vitamin E showed only a moderate protective role. Vitamins C and E, and Ginsenoside Panoxatriol in combination protected the Colo-16 cells from UVB-induced apoptosis, but not necrosis. These findings suggest that vitamins C and E as well as Ginsenoside Panoxatriol are promising protective agents against UVB-induced damage in skin cells.  相似文献   

13.
Two sodium-dependent vitamin C transporter isoforms (SVCT1 and SVCT2) were identified as ascorbic acid transporters, but their roles in skin have, as yet, not been elucidated. Here we analyze the expression and function of SVCTs in healthy human skin cells and skin tissues, and in UVB-induced cutaneous tissue injury. SVCT1 was primarily found in the epidermis expressed by keratinocytes, whereas SVCT2 expression was in the epidermis and dermis in keratinocytes, fibroblasts, and endothelial cells. Uptake experiments revealed that ascorbic acid affinity of SVCT1 was lower than SVCT2 (K(m)=75 muM and K(m)=44 muM, respectively), but maximal velocity was 9-times higher (36 nmol/min/well). In keratinocytes, SVCT1 was found to be responsible for vitamin C transport, although SVCT2 gene expression was higher. On UVB irradiation, SVCT1 mRNA expression in murine skin declined significantly in a time- and dose-dependent manner, whereas SVCT2 mRNA levels were unchanged. Furthermore, UVB irradiation of keratinocytes in vitro was accompanied by reduced ascorbic acid transport. In summary, these data indicate that the two vitamin C transporter isoforms fulfill specific functions in skin: SVCT1 is responsible for epidermal ascorbic acid supply, whereas SVCT2 mainly facilitates ascorbic acid transport in the dermal compartment. UVB-induced oxidative stress in mice resulted in depletion of SVCT1 mRNA levels and led to significantly decreased ascorbic acid uptake in keratinocytes, providing evidence on why ascorbic acid levels are decreased on UVB irradiation in vivo.  相似文献   

14.
目的:探讨白藜芦醇对紫外线照射后人皮肤角质形成细胞水通道蛋白3(AQP3)表达的影响及意义。方法:原代培养人皮肤角质形成细胞,采用UVB(20mJ/cm2,40mJ/cm2)照射角质形成细胞后,立即加入0.1mmol/L的白藜芦醇进行干预。RT-PCR检测照射前后角质形成细胞中AQP3 mRNA的表达量,并用羟胺法、比色法、TBA法检测照射前后细胞超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性及丙二醛(MDA)含量。结果:1.UVB照射后角质形成细胞AQP3 mRNA的表达量下降(P<0.05),且UVB照射剂量越大,AQP3 mRNA下降越显著(P<0.05)。2.白藜芦醇能显著增加UVB照射后角质形成细胞SOD和GSH-Px活性,并降低细胞MDA含量(P<0.05)。3.白藜芦醇能显著抑制UVB导致的角质形成细胞AQP3 mRNA下降(P<0.05)。结论:白藜芦醇可能通过抑制UVB导致的AQP3 mRNA下降,及提高氧化酶活性、清除自由基的功能,从而延缓皮肤衰老。  相似文献   

15.
Exposure of the skin to UVB light results in the formation of DNA photolesions that can give rise to cell death, mutations, and the onset of carcinogenic events. Specific proteins are activated by UVB and then trigger signal transduction pathways that lead to cellular responses. An alteration of these signaling molecules is thought to be a fundamental event in tumor promotion by UVB irradiation. RhoB, encoding a small GTPase has been identified as a DNA damage-inducible gene. RhoB is involved in epidermal growth factor (EGF) receptor trafficking, cytoskeletal organization, cell transformation, and survival. We have analyzed the regulation of RhoB and elucidated its role in the cellular response of HaCaT keratinocytes to relevant environmental UVB irradiation. We report here that the activated GTP-bound form of RhoB is increased rapidly within 5 min of exposure to UVB, and then RhoB protein levels increased concomitantly with EGF receptor (EGFR) activation. Inhibition of UVB-induced EGFR activation prevents RhoB protein expression and AKT phosphorylation but not the early activation of RhoB. Blocking UVB-induced RhoB expression with specific small interfering RNAs inhibits AKT and glycogen synthase kinase-3beta phosphorylation through inhibition of EGFR expression. Moreover, down-regulation of RhoB potentiates UVB-induced cell apoptosis. In contrast, RhoB overexpression protects keratinocytes against UVB-induced apoptosis. These results indicated that RhoB is regulated upon UVB exposure by a two-step process consisting of an early EGFR-independent RhoB activation followed by an EGFR-dependent induction of RhoB expression. Moreover, we have demonstrated that RhoB is essential in regulating keratinocyte cell survival after UVB exposure, suggesting its potential role in photocarcinogenesis.  相似文献   

16.
UVB irradiation can induce apoptotic, necrotic, and differentiation pathways in normal human keratinocytes. The present study was undertaken to determine at what dose of UVB each of these pathways is induced and whether these pathways are distinct or overlapping. We have observed that UVB induces fragmentation of DNA in human HaCaT keratinocytes, in a bimodal manner. Low doses of UVB, 5–20 mJ/cm2, increase the levels of apoptosis as shown by increased levels of fragmented DNA, Fas, PARP, and FasL protein, and the number of apoptotic cells as assessed by FACS analysis. At higher doses of UVB (20 and 30 mJ/cm2) the number of apoptotic cells becomes reduced, as does the amount of Fas, PARP, and FasL protein. At these higher doses, cell viability is decreased as measured by DNA synthesis (BrdU labeling) neutral red uptake, which represents an increasing necrotic phenotype. Expression of markers of keratinocyte differentiation, involucrin, keratin K1, and keratin K10, are also observed to decrease with increasing UVB dose. These changes are accompanied by a further increase in DNA fragmentation. We conclude that low doses of UVB (5–20 mJ/cm2) induced an apoptotic pathway, whereas increasing doses (greater than 20 mJ/cm2) of UVB produce a direct necrotic effect and inhibit terminal differentiation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A strong association between anti-SS-A/Ro and anti-SS-B/La antibodies and skin lesions has been well documented in subacute cutaneous lupus erythematosus and neonatal lupus erythematosis in which 70 to 80% of patients are female. In order to better understand the mechanisms of the influence of sex hormones on cutaneous lupus, we designed immunopathological in vitro experiments to evaluate the effects of estradiol and other sex steroids on the binding of SS-A/Ro- and SS-B/La-specific antibodies to cultured human keratinocytes from neonates. Cultured human keratinocytes incubated with antisera specific for SS-A/Ro or SS-B/La Ag were fixed with either acetone or paraformaldehyde and then analyzed in indirect immunofluorescent assays or by FACS analysis to detect cell surface IgG binding as an indirect measure of SS-A/Ro and SS-B/La Ag expression on the cell surface of keratinocytes. Estradiol (10(-5) to 10(-7) M) augmented binding of antiserum probes on the surface of cultured keratinocytes, with 10(-7) M estradiol showing the highest induction of cell surface binding of antisera specific for SS-A/Ro plus SS-B/La Ag (24.5% of cells were positive). In contrast, dihydrotestosterone, testosterone, and progesterone showed no augmentation. The augmentation by estradiol was partially inhibited by the antiestrogen nafoxidine. Estradiol augmented the relative incidence and absolute number of small or cuboidal cells binding antibodies specific for SS-A/Ro and SS-B/La Ag, whereas the number and incidence of larger differentiated cells binding anti-SS-A/Ro and anti-SS-B/La decreased significantly in cell cultures stimulated with estradiol. Flow cytometric analysis utilizing monospecific anti-SS-A/Ro or anti-SS-B/La sera showed that estradiol induced binding of anti-SS-A/Ro in 13.1% of cultured keratinocytes, of anti-SS-A/La in 14.4%, and of sera specific for both Ag in 21.4%. This direct association between estradiol and the augmentation of binding to the cell surface of human keratinocytes of IgG from antisera specific for SS-A/Ro and SS-B/La Ag may be a trigger factor of immunologic damage in lupus and may be important in the different sex rates observed in skin manifestation of subacute cutaneous and neonatal lupus erythematosis.  相似文献   

18.
Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.  相似文献   

19.
Exposure of human keratinocytes to ultraviolet B (UVB) light leads to the activation of a variety of cell-surface receptors; however, the biologic consequences of these activated receptors are still unclear. It was previously reported that inhibition of cellular tyrosine kinase activity suppressed UVB-dependent effects in human skin. We confirmed that the same suppression of UVB-induced apoptosis occurs in normal human keratinocytes grown in culture. Furthermore, we sought to determine the role of erbB receptor tyrosine kinases in human keratinocytes following UVB irradiation. Using a specific inhibitor of the erbB family of tyrosine kinase receptors, DAPH, we investigated the effects of UVB-dependent activation of these receptors on keratinocyte biology. The addition of DAPH to keratinocytes resulted in the concentration-dependent protection of UVB-induced apoptosis. The protection from apoptosis was not due to the induction of keratinocyte differentiation, the loss of keratinocyte viability, or inhibition of the proliferative potential of keratinocytes by DAPH. The effect of DAPH on apoptosis was specific for UVB as it had no effect on bleomycin-induced apoptosis. Furthermore, the inhibition of UVB-induced apoptosis could also be observed using neutralizing antibodies to either erbB1 or erbB2. Finally, we demonstrated that DAPH could also inhibit UVB-induced apoptosis in an epidermal organotypic model system. These studies suggest an important role for the erbB receptors in UVB-induced apoptosis of human keratinocytes.  相似文献   

20.
Inappropriate apoptosis results in the epidermal hyperplasia as in psoriasis and UVB irradiation has been successfully used to treat this kind of skin disorders. Previously, we reported that the novel phytosphingosine derivative, tetraacetyl phytosphingosine (TAPS) induced apoptosis in HaCaT cells. This study examined the effect of UVB irradiation and/or TAPS on the induction of apoptosis in HaCaT. 10 mJ/cm2 of UVB irradiation or 10 microM of TAPS alone exhibited weak cytotoxicity but co-treatment of UVB and TAPS synergistically enhanced the cytotoxicity and apoptosis in HaCaT. The cells treated with UVB and TAPS showed much higher levels of cleaved caspase-3, -8, -9 and Bax than with UVB or TAPS alone, whereas Bcl-2 level was decreased by co-administration of UVB and TAPS. In hairless mice, co-treatment of UVB and TAPS synergistically increased apoptosis, as shown in the HaCaT co-treated with UVB and TAPS. Furthermore, UVB irradiation caused an increase of apoptotic cells in the epidermis and the TAPS-treated mice showed an increase of apoptotic cells in the dermis as well as in the epidermis. These results suggest that the TAPS co-treatment synergistically increases the level of UVB-induced apoptosis via caspase activation by regulating the level of pro-apoptotic Bax and anti-apoptotic Bcl-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号