首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The kinetic constants were examined for the cleavage of several types of procollagen by type I/II procollagen N-proteinase. The Km values were essentially the same (0.2 microM) for chick type I procollagen, human type I procollagen, and chick type II procollagen. However, the Vmax values differed over a 14-fold range. As reported previously, the enzyme did not cleave denatured type I or II procollagen. Also, it did not cleave human type III procollagen which contains the same scissle -Pro-Gln- bond as the pro-alpha 1(I) chain of type I procollagen. To explain the observations, Chou-Fasman rules were used to compare the secondary structures of the cleavage sites in the procollagens. The results supported a previous suggestion (Helseth, D. L., Jr., Lechner, J. L., and Veis, A. (1979) Biopolymers 18, 3005-3014) that the region carboxyl-terminal to cleavage site in the pro-alpha 1(I) chain of type I procollagen was in a hairpin conformation consisting of a beta-sheet, beta-turn, and beta-sheet. In both chick and human type I procollagen, the hairpin loop in the pro-alpha 1(I) chain consisted of about 18 amino acids. The cleavage site itself was in a short alpha-helical structure of four or five amino acids. The pro-alpha 2(I) chains had a similar hairpin loop of about 14 amino acids and alpha-helix of four or five amino acids containing the cleavage site. Chick type II procollagen, which had the highest Vmax value, had a longer hairpin structure of 22 amino acids, and the cleavage site was in a longer alpha-helical domain of 10 amino acids. In contrast, type III procollagen had a random-coil conformation in the same region. The results help to explain the unusual substrate requirements of type I/II N-proteinase. They also help explain why mutations that produce in-frame deletions of amino acids 84 or more residues carboxyl-terminal to the cleavage site make the protein resistant to the enzyme.  相似文献   

2.
Type I procollagen was purified from the medium of dermal fibroblasts cultured from four individuals with osteogenesis imperfecta (OI) type II who had mutations in the COL1A1 gene of type I procollagen. The procollagens were mixtures of normal molecules and molecules that contained substitutions of aspartate for glycine 97, arginine for glycine 550, cysteine for glycine 718, and aspartate for glycine 883 in one or both of the alpha 1 (I) chains of the molecule. The procollagens were cleaved more slowly than control type I procollagen by procollagen N-proteinase. Double-reciprocal plots of initial relative velocities and initial substrate concentrations indicated that the OI procollagens were all cleaved slowly by N-proteinase because of decreased Vmax, rather than increased Km. This suggested that slow cleavage of the OI procollagens by N-proteinase was the result of slow conversion of the N-proteinase-procollagen complex. Further experiments showed that the vertebrate collagenase A fragment of the aspartate for glycine alpha 1(I) 883 OI procollagen that contained the N-proteinase cleavage site but not the site of the substitution was also cleaved more slowly by N-proteinase than the normal vertebrate collagenase A fragments in the samples. These data show, for the first time, that an altered triple-helical structure is propagated from the site of a substitution of a bulky residue for glycine to the amino-terminal end of the procollagen molecule and disrupts the conformation of the N-proteinase cleavage site. Rotary shadowing electron microscopy of molecules in the preparation of cysteine for glycine alpha 1(I)-718 showed the presence of a kink in approximately 5% of a population of molecules in which 60% were abnormal and 20% contained a disulfide bond. In contrast, procollagens containing aspartate and arginine for glycine were indistinguishable by rotary shadowing electron microscopy from those in control samples. The results here confirm previous suggestions that substitution of cysteine for glycine in the alpha 1(I) chain of type I collagen can introduce a kink near the site of the substitution. However, the presence of a kink is not a prerequisite for delayed cleavage of abnormal procollagens by N-proteinase.  相似文献   

3.
The conversion of type I procollagen to type I collagen was studied by cleaving the protein with partically purified type I procollagen N-proteinase from chick embryos. Examination of the reaction products after incubation for varying times at 30 degrees C indicated that, during the initial stages of the reaction, pro alpha 1(I) and pro alpha 2(I) chains were cleaved at about the same rate. As a result, all the pro alpha 2(I) chains were converted to pC alpha 2(I) chains well before all the pro alpha 1 chains were cleaved. When the reaction products were examined by gel electrophoresis without reduction of interchain disulfide bonds, a distinct band of an intermediate was detected. The same intermediate was seen when the reaction was carried out at 35, 37, and 40 degrees C. The data established that over two-thirds of the type I procollagen was converted to the intermediate and that this intermediate was then slowly converted to the final product of pCcollagen. The kinetics for the reaction, however, did not fit a simple model for precursor-product relationship among substrate, intermediate, and product. Examination of the reaction products with a two-step gel procedure demonstrated that the intermediate consisted of three polypeptide chains in which the N propeptide was cleaved from one pro alpha 1 chain and one pro alpha 2(I) chain but the N propeptide was still present on one of the pro alpha 1(I) chains. In further experiments it was demonstrated that a similar intermediate was seen when a homotrimer of pro alpha 1(I) chains was partially cleaved by the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
In previous work (Vogel, B. E., Minor, R. R., Freund, M., and Prockop, D. J. (1987) J. Biol. Chem. 262, 14737-14744), we identified a single-base mutation that converted the glycine at position 748 of the alpha 1 chain of type I procollagen to a cysteine in a proband with a lethal variant of osteogenesis imperfecta. In addition to posttranslational overmodification, the abnormal molecules displayed decreased thermal stability and a decreased rate of secretion. An unexplained finding was that procollagen was poorly processed to pCcollagen in postconfluent cultures of skin fibroblasts. Here, we show that the procollagen synthesized by the proband's cells is resistant to cleavage by procollagen N-proteinase, a conformation-sensitive enzyme. Since the only detectable defect in the molecule was the cysteine for glycine substitution, we assembled several space-filling models to try to explain how the structure of the N-proteinase cleavage site can be affected by an amino acid substitution over 700 amino acid residues or 225 nm away. The models incorporated a phase shift of a tripeptide unit in one or both of the alpha 1 chains. The most satisfactory models produced a flexible kink of 30 degrees or 60 degrees at the site of the cysteine substitution. Therefore, we examined the procollagen by electron microscopy. About 25% of the molecules had a kink not seen in control samples, and the kink was at the site of the cysteine substitution.  相似文献   

6.
Procollagen N-proteinase, the enzyme which cleaves the NH2-terminal propeptides from type I procollagen, was purified over 15,000-fold from extracts of chick embryos by chromatography on columns of DEAE-cellulose, concanavalin A-agarose, heparin-agarose, pN-collagen-agarose, and a filtration gel. The purified enzyme had an apparent molecular weight of 320,000 as estimated by gel filtration and a pH optimum for activity of 7.4 to 9.0. The enzyme was inhibited by metal chelators and the thiol reagent dithiothreitol. Addition of calcium was required for maximal activity under the standard assay conditions, and the presence of calcium decreased thermal inactivation at 37 degrees C. The purified enzyme cleaved a homotrimer of pro-alpha 1(I) chains, an observation which indicated that the presence of pro-alpha 2(I) chain is not essential for the enzymic cleavage of NH2-terminal propeptides. Previous observations suggesting that the enzyme requires a substrate with a native conformation were explored further by reacting the enzyme with type I procollagen at different temperatures. Type I procollagen from chick embryo fibroblasts became resistant to cleavage at about 43 degrees C. Type I procollagen from human skin fibroblasts, which was previously shown to have a slightly lower thermal stability than chick embryo type I procollagen, became resistant to cleavage at temperatures that were about 2 degrees C lower. The results suggested that the enzyme is a sensitive probe for the three-dimensional structure of the NH2-terminal region of the procollagen molecule and that it requires the protein substrate to be triple helical.  相似文献   

7.
A general mechanism for the assembly of procollagens is proposed from a biosynthetic study of procollagen III. This was shown to proceed by a stepwise process punctuated by disulfide bond formation and an assembly intermediate was recovered. The biosynthesis of type III procollagen in excised chick embryo blood vessels was studied by radioactive labeling for 30 min. Velocity sedimentation under denaturing conditions and purified antibodies specific against bovine amino propeptide III were used to identify and characterize monomeric pro alpha 1 III chains and a type III procollagen intermediate which is interchain disulfide-linked only at the carboxyl end but not at the amino end. The monomeric chains presumably have intrachain disulfide bonds within the propeptides. The monomeric pro alpha 1 III chains were also found when alpha, alpha'-dipyridyl was present during incubation. Pulse-chase experiments show that the monomeric chains and the intermediate are biosynthetic precursors of type III procollagen. Furthermore, it is shown that monomeric pro alpha 1 chains are not triple helical when extracted under nondenaturing conditions. The results indicate that the assembly of pro alpha 1 III chains into type III procollagen starts with the association of the folded carboxyl propeptides and is followed by formation of disulfide bonds between carboxyl propeptides, folding of the triple helix, and formation of disulfide bonds between amino propeptides. All procollagens may follow a similar assembly sequence.  相似文献   

8.
Cultured skin fibroblasts from a proband with an autosomal dominant variant of osteogenesis inperfecta were found to synthesize approximately equal amounts of normal pro-alpha 2(I) chains of type I procollagen and pro-alpha 2(I) chains which migrated more rapidly when examined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The structural alteration was present in alpha 2(I)-CB4, a cyanogen bromide fragment containing amino acid residues 7-327 of the alpha 2 chain, and it appeared to be a deletion of about 30 amino acids. The pro-alpha 2(I) chains with the apparent deletion associated with normal pro-alpha 1(I) chains synthesized by the same fibroblasts and formed triple-helical type I procollagen. The presence of the altered pro-alpha 2 chains in trimers of procollagen had two consequences in terms of the physical properties of the molecule. One was to decrease the thermal stability of the protein as judged by resistance to proteolysis at 37 degrees C and by the helix to coil transition as assayed by circular dichroism. The second consequence was to make type I procollagen containing the shortened pro-alpha 2(I) chains resistant to digestion by procollagen N-proteinase. The simplest explanation for the data is that the apparent deletion in half the pro-alpha 2(I) chains produced a partial unfolding of the N-terminal region of type I procollagen which prevented processing of the protein by procollagen N-proteinase.  相似文献   

9.
We have shown that a child with Ehlers Danlos syndrome (EDS) type VII has a G to A transition at the first nucleotide of intron 6 in one of her COL1A2 alleles. Half of the cDNA clones prepared from the proband's pro alpha 2(I) mRNA lacked exon 6. The type I procollagen secreted by the proband's dermal fibroblasts in culture was purified, and collagen fibrils were generated in vitro by cleavage of the procollagen with the procollagen N- and C-proteinases. Incubation of the procollagen with N-proteinase resulted in a 1:1 mixture of pCcollagen and uncleaved procollagen. Incubation of this mixture with C-proteinase generated collagen and abnormal pNcollagen (pNcollagen-ex6) that readily copolymerized into fibrils. By electron microscopy these fibrils resembled the hieroglyphic fibrils seen in the N-proteinase-deficient skin of dermatosparactic animals and humans and were distinct from the near circular cross-section fibrils seen in the tissues of individuals with EDS type VII. Further incubation of the hieroglyphic fibrils with N-proteinase resulted in partial cleavage of the pNcollagen-ex6 in which the abnormal pN alpha 2(I) chains remained intact. These fibrils were not hieroglyphic but were near circular in cross-section. Fibrils formed from collagen and pNcollagen-ex6 that had been partially cleaved with elevated amounts of N-proteinase prior to fibril formation were also near circular in cross-section. The results are consistent with a model of collagen fibril formation in which the intact N-propeptides are located exclusively at the surface of the hieroglyphic fibrils. Partial cleavage of the pNcollagen-ex6 by N-proteinase allows the N-propeptides to be incorporated within the body of the fibrils. The model provides an explanation for the morphology and molecular composition of collagen fibrils in the tissues of patients with EDS type VII.  相似文献   

10.
Dermal fibroblasts from a fetus with perinatal lethal osteogenesis imperfecta synthesized normal and abnormal type I procollagen molecules. The abnormal molecules contained one or two pro alpha 1(I) chains in which glycine, alanine, and hydroxyproline at positions 874, 875, and 876 in the triple-helical region were deleted as the result of a 9-base pair genomic deletion. Molecules that contained abnormal chains were overmodified from the site of the deletion toward the amino-terminal region of the molecule. Secretion of the overmodified molecules was impaired. The thermal stability of molecules containing abnormal chains was lower than that of normally modified molecules. After cleavage of molecules with vertebrate collagenase, the temperature of thermal denaturation of the overmodified A fragments was greater than that of the fragments from the normal molecules. The rates of cleavage of the normal and the abnormal molecules by N-proteinase were indistinguishable. Our findings suggest that the tripeptide deletion introduces a shift in the phase of the chains in the triple helix. This structural change is propagated from the site of the deletion toward the amino terminus of the molecule, but the subsequent alteration in the structure of the N-proteinase cleavage site is not sufficient to cause a decrease in the rate of cleavage by the enzyme.  相似文献   

11.
Previous observations suggested that incubating fibroblasts at elevated temperature caused over-modification of type I procollagen by post-translational enzymes because of a delay in folding of the collagen triple helix. Here, human skin fibroblasts were incubated at 40.5 instead of 37 degrees C, and the type I procollagen secreted into the medium was isolated. Analysis of the protein indicated that there was an increase of about 5 residues of hydroxylysine/alpha chain and about 1 residue of glycosylated hydroxylysine/alpha chain. Assays with procollagen N-proteinase indicated that the N-propeptide of the over-modified collagen was cleaved at a decreased rate, apparently because the over-modification altered the conformation-dependent cleavage site for the enzyme. Assays in a system for assembly of collagen into fibrils demonstrated that the over-modified protein had a higher critical concentration for self-assembly. Also, the fibrils formed from the over-modified collagen at 31 and 29 degrees C had smaller diameters than fibrils formed from normal type I collagen. The results provide direct evidence for earlier suggestions that post-translational over-modification of a fibrillar collagen can alter the morphology of the fibrils formed. The results also indicate that some of the biological consequences of the mutations in type I procollagen causing heritable disorders must be ascribed to the effects of post-translational over-modifications that frequently occur as secondary consequences of changes in the primary structure of the protein.  相似文献   

12.
Fibroblasts from a proband with Ehlers-Danlos syndrome type VII synthesized approximately equal amounts of normal and shortened pro alpha 2(I) chains of type I procollagen. Nuclease S1 probe protection experiments with mRNA demonstrated that the pro alpha 2(I) chains were shortened because of a deletion of most or all of the 54 nucleotides in exon 6, the exon that contains codons for the cleavage site for procollagen N-proteinase. Sequencing of genomic clones revealed a single-base mutation that converted the first nucleotide of intron 6 from G to A. Therefore, the mutation was a change, in the -GT-consensus splice site, that produced efficient exon skipping. Allele-specific oligonucleotide hybridizations demonstrated that the proband's mother, father, and brother did not have the mutation. Therefore, the mutation was a sporadic one. Analysis of potential 5' splice sites in the 5' end of intron 6 indicated that none had favorable values by the two commonly employed techniques for evaluating such sites. The proband is the fourth reported proband with Ehlers-Danlos syndrome VII with a single-base mutation that causes skipping of exon 6 in the splicing of RNA from either the COL1A1 gene or COL1A2 gene. No other mutations in the two type I procollagen genes have been found in the syndrome. Therefore, such mutations may be a common cause of the phenotype. The primers developed should be useful in screening for the same or similar mutations causing the disease.  相似文献   

13.
Dermatosparaxis is a recessively inherited connective-tissue disorder that results from lack of the activity of type I procollagen N-proteinase, the enzyme that removes the amino-terminal propeptides from type I procollagen. Initially identified in cattle more than 20 years ago, the disorder was subsequently characterized in sheep, cats, and dogs. Affected animals have fragile skin, lax joints, and often die prematurely because of sepsis following avulsion of portions of skin. We recently identified two children with soft, lax, and fragile skin, which, when examined by transmission electron microscopy, contained the twisted, ribbon-like collagen fibrils characteristic of dermatosparaxis. Skin extracts from one child contained collagen precursors with amino-terminal extensions. Cultured fibroblasts from both children failed to cleave the amino-terminal propeptides from the pro alpha 1(I) and pro alpha 2(I) chains in type I procollagen molecules. Extracts of normal cells cleaved to collagen, the type I procollagen synthesized by cells from both children, demonstrating that the enzyme, not the substrate, was defective. These findings distinguish dermatosparaxis from Ehlers-Danlos syndrome type VII, which results from substrate mutations that prevent proteolytic processing of type I procollagen molecules.  相似文献   

14.
Type I procollagen was purified from cultured fibroblasts of a proband with a lethal variant of osteogenesis imperfecta. The protein was a mixture of normal procollagen and mutated procollagens containing a substitution of cysteine for glycine in either one pro alpha 1(I) chain or both pro alpha 1(I) chains, some or all of which were disulfide-linked through the cysteine at position alpha 1-748. The procollagen was then examined in a system for generating collagen fibrils de novo by cleavage of the pCcollagen to collagen with procollagen C-proteinase [Kadler et al. (1987) J. Biol. Chem. 262, 15696-15701]. The mutated collagens and normal collagens were found to form copolymers under a variety of experimental conditions. With two preparations of the protein that had a high content of alpha 1(I) chains disulfide-linked through the cysteine alpha 1-748, all the large structures formed had a distinctive, highly branched morphology that met one of the formal criteria for a fractal. Preparations with a lower content of disulfide-linked alpha 1(I) chains formed fibrils that were 4 times the diameter of control fibrils. The formation of copolymers was also demonstrated by the observation that the presence of mutated collagens decreased the rate of incorporation of normal collagen into fibrils. In addition, the solution-phase concentration at equilibrium of mixtures of mutated and normal collagens was 5-10-fold greater than that of normal collagen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Overlapping cDNA clones were isolated for human type II procollagen. Nucleotide sequencing of the clones provided over 2.5 kb of new coding sequences for the human pro alpha 1(II) gene and the first complete amino acid sequence of type II procollagen from any species. Comparison with published data for cDNA clones covering the entire lengths of the human type I and type III procollagens made it possible to compare in detail the coding sequences and primary structures of the three most abundant human fibrillar collagens. The results indicated that the marked preference in the third base codons for glycine, proline and alanine previously seen in other fibrillar collagens was maintained in type II procollagen. The domains of the pro alpha 1(II) chain are about the same size as the same domains of the pro alpha chains of type I and type III procollagens. However, the major triple-helical domain is 15 amino acid residues less than the triple-helical domain of type III procollagen. Comparison of hydropathy profiles indicated that the alpha chain domain of type II procollagen is more similar to the alpha chain domain of the pro alpha 1(I) chain than to the pro alpha 2(I) chain or the pro alpha 1(III) chain. The results therefore suggest that selective pressure in the evolution of the pro alpha 1(II) and pro alpha 1(I) genes is more similar than the selective pressure in the evolution of the pro alpha 2(I) and pro alpha 1(III) genes.  相似文献   

16.
The electrophoretic mobilities of the collagen and procollagen type I and III chains synthesized by the fibroblasts isolated from patients with type I Ehlers-Danlos syndrome as well as a set of peptides obtained by splitting of pro alpha 1(I) and pro alpha 2(I) type I procollagens by cyanbromide are not different from the normal ones. The fact demonstrates the absence of long insertions or deletions, or the sufficient defects in intracellular chain modifications. The changes were also nor registered for the ratio of type I and III collagens from the digested by pepsin preparations of protein accumulating in the culture media of the cultured skin fibroblasts from patients. The studied strains of cultured fibroblasts from patients suffering the Ehlers-Danlos syndrome have the trend to increased accumulation of partially processed chains of proc alpha 1(I) and proc alpha 2(I) type I procollagen and to the increased ratio of pro alpha 1(I) to pro alpha 2(I).  相似文献   

17.
In many embryonic tissues, type IIA procollagen is synthesized and deposited into the extracellular matrix containing the NH(2)-propeptide, the cysteine-rich domain of which binds to bone morphogenic proteins. To investigate whether matrix metalloproteinases (MMPs) synthesized during development and disease can cleave the NH(2) terminus of type II procollagens, we tested eight types of enzymes. Recombinant trimeric type IIA collagen NH(2)-propeptide encoded by exons 1-8 fused to the lectin domain of rat surfactant protein D was used as a substrate. The latter allowed trimerization of the propeptide domain and permitted isolation by saccharide affinity chromatography. Although MMPs 1, 2, and 8 did not show cleavage, MMPs 3, 7, 9, 13, and 14 cleaved the recombinant protein both at the telopeptide region and at the procollagen N-proteinase cleavage site. MMPs 7 and 13 demonstrated other cleavage sites in the type II collagen-specific region of the N-propeptide; MMP-7 had another cleavage site close to the COOH terminus of the cysteine-rich domain. To prove that an MMP can cleave the native type IIA procollagen in situ, we demonstrated that MMP-7 removes the NH(2)-propeptide from collagen fibrils in the extracellular matrix of fetal cartilage and identified the cleavage products. Because the N-proteinase and telopeptidase cleavage sites are present in both type IIA and type IIB procollagens and the telopeptide cleavage site is retained in the mature collagen fibril, this processing could be important to type IIB procollagen and to mature collagen fibrils as well.  相似文献   

18.
Mutations in the type I procollagen C-propeptide occur in ~6.5% of Osteogenesis Imperfecta (OI) patients. They are of special interest because this region of procollagen is involved in α chain selection and folding, but is processed prior to fibril assembly and is absent in mature collagen fibrils in tissue. We investigated the consequences of seven COL1A1 C-propeptide mutations for collagen biochemistry in comparison to three probands with classical glycine substitutions in the collagen helix near the C-propeptide and a normal control. Procollagens with C-propeptide defects showed the expected delayed chain incorporation, slow folding and overmodification. Immunofluorescence microscopy indicated that procollagen with C-propeptide defects was mislocalized to the ER lumen, in contrast to the ER membrane localization of normal procollagen and procollagen with helical substitutions. Notably, pericellular processing of procollagen with C-propeptide mutations was defective, with accumulation of pC-collagen and/or reduced production of mature collagen. In vitro cleavage assays with BMP-1 ± PCPE-1 confirmed impaired C-propeptide processing of procollagens containing mutant proα1(I) chains. Overmodified collagens were incorporated into the matrix in culture. Dermal fibrils showed alterations in average diameter and diameter variability and bone fibrils were disorganized. Altered ER-localization and reduced pericellular processing of defective C-propeptides are expected to contribute to abnormal osteoblast differentiation and matrix function, respectively.  相似文献   

19.
Patients with OI/EDS form a distinct subset of osteogenesis imperfecta (OI) patients. In addition to skeletal fragility, they have characteristics of Ehlers-Danlos syndrome (EDS). We identified 7 children with types III or IV OI, plus severe large and small joint laxity and early progressive scoliosis. In each child with OI/EDS, we identified a mutation in the first 90 residues of the helical region of alpha1(I) collagen. These mutations prevent or delay removal of the procollagen N-propeptide by purified N-proteinase (ADAMTS-2) in vitro and in pericellular assays. The mutant pN-collagen which results is efficiently incorporated into matrix by cultured fibroblasts and osteoblasts and is prominently present in newly incorporated and immaturely cross-linked collagen. Dermal collagen fibrils have significantly reduced cross-sectional diameters, corroborating incorporation of pN-collagen into fibrils in vivo. Differential scanning calorimetry revealed that these mutant collagens are less stable than the corresponding procollagens, which is not seen with other type I collagen helical mutations. These mutations disrupt a distinct folding region of high thermal stability in the first 90 residues at the amino end of type I collagen and alter the secondary structure of the adjacent N-proteinase cleavage site. Thus, these OI/EDS collagen mutations are directly responsible for the bone fragility of OI and indirectly responsible for EDS symptoms, by interference with N-propeptide removal.  相似文献   

20.
Expression of an engineered form of recombinant procollagen in mouse milk   总被引:8,自引:0,他引:8  
We have examined the suitability of the mouse mammary gland for expression of novel recombinant procollagens that can be used for biomedical applications. We generated transgenic mouse lines containing cDNA constructs encoding recombinant procollagen, along with the alpha and beta subunits of prolyl 4-hydroxylase, an enzyme that modifies the collagen into a form that is stable at body temperature. The lines expressed relatively high levels (50-200 micrograms/ml) of recombinant procollagen in milk. As engineered, the recombinant procollagen was shortened and consisted of a pro alpha 2(I) chain capable of forming a triple-helical homotrimer not normally found in nature. Analysis of the product demonstrated that (1) the pro alpha chains formed disulphide-linked trimers, (2) the trimers contained a thermostable triple-helical domain, (3) the N-propeptides were aligned correctly, and (4) the expressed procollagen was not proteolytically processed to collagen in milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号