首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Procollagen carboxyl-terminal proteinase, the enzyme which cleaves the carboxyl-terminal propeptides from type I procollagen, was extensively purified in a yield of 25% from pooled culture media of 17-day-old chick embryo tendons using a procedure which involved chromatography on Green A Dye matrix gel, concanavalin A-Sepharose and heparin-Sepharose, and filtration gels of Sephacryl S-300 and S-200. The purified enzyme is a neutral, Ca2+-dependent proteinase which is inhibited by metal chelators, but not by inhibitors for serine and cysteine proteinases. Calcium in a concentration of 5-10 mM is required for optimal activity. The molecular weight of the enzyme was determined to be 97,000-110,000 by gel filtration and by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Other properties of the carboxyl-terminal proteinase are: 1) the Km for the type I procollagen is 96 nM at pH 7.5 and 35 degrees C; 2) the activation energy for the reaction with type I procollagen is 21,000 cal mol-1; 3) amino acid sequencing of the released carboxyl-terminal propeptide indicated the enzyme specifically cleaves an -Ala-Asp- bond in both the pro-alpha 1(I) and pro-alpha 2(I) chains; 4) the enzyme specifically cleaves the carboxyl-terminal propeptides of a homotrimer of pro-alpha 1(I) chains and type II and III procollagens, but it does not cleave type IV procollagen. The results suggest that the enzyme is involved in the processing of type I procollagen in vivo.  相似文献   

2.
Procollagen N-proteinase (EC 3.4.24.14), the enzyme that cleaves the NH2-terminal propeptides from type I procollagen, was purified over 20,000-fold with a yield of 12% from extracts of 17-day-old chick embryo tendons. The procedure involved precipitation with ammonium sulfate, adsorption on concanavalin A-Sepharose, and five additional column chromatographic steps. The purified enzyme was a neutral, Ca2+-dependent proteinase (5-10 mM) that was inhibited by metal chelators. It had a molecular mass of 500 kDa as determined by gel filtration. The enzyme contained unreduced polypeptides of 61, 120, 135, and 161 kDa that were separated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The 135- and 161-kDa polypeptides were catalytically active after elution from the polyacrylamide gel. Other properties of 500-kDa enzyme are: 1) the Km for type I procollagen is 54 nM at pH 7.5 and 35 degrees C, and the kappa cat is 350 h-1; 2) the activation energy for reaction with type I procollagen is 7,100 cal mol-1; 3) the isoelectric point is 3.6; and 4) the enzyme specifically cleaves the NH2-terminal propeptides of type I and II procollagen, but not of type III procollagen. A minor form of N-proteinase with a 300-kDa mass was also purified and was found to contain a 90-kDa polypeptide as the major active polypeptide. The enzyme appeared to be a degraded form of the 500-kDa N-proteinase. The properties of the 300-kDa enzyme were similar to those observed for the 500-kDa enzyme.  相似文献   

3.
Type I procollagen secreted by matrix-free chick embryo tendon cells was labeled with L-[3,3'-3H] cystine and purified by DEAE-cellulose chromatography. After bacterial collagenase digestion, the NH2- and COOH-terminal propeptides were partially characterized by ion exchange chromatography and gel filtration. Similar experiments were then conducted after labeling with either D-[6-3H] glucosamine, D-[2-3H] mannose, or D-[U-14C] glucose. On the basis of these studies and subsequent carbohydrate analysis, it was concluded that the COOH-terminal peptide contained greater than 90% of the radioactive carbohydrate which consisted predominantly of glucosamine and mannose with traces of galactosamine and galactose. Only radioactive glucosamine could be detected in the NH2-terminal propeptide. Under conditions which inhibit hydroxylation of lysine and glycosylation of hydroxylysine, unhydroxylated procollagen (protocollagen) could still be labeled with [3H] glucosamine and [3H] mannose. This suggested that glycosylation of the propeptides is at least initiated at the level of the rough endoplasmic reticulum.  相似文献   

4.
The kinetic constants were examined for the cleavage of several types of procollagen by type I/II procollagen N-proteinase. The Km values were essentially the same (0.2 microM) for chick type I procollagen, human type I procollagen, and chick type II procollagen. However, the Vmax values differed over a 14-fold range. As reported previously, the enzyme did not cleave denatured type I or II procollagen. Also, it did not cleave human type III procollagen which contains the same scissle -Pro-Gln- bond as the pro-alpha 1(I) chain of type I procollagen. To explain the observations, Chou-Fasman rules were used to compare the secondary structures of the cleavage sites in the procollagens. The results supported a previous suggestion (Helseth, D. L., Jr., Lechner, J. L., and Veis, A. (1979) Biopolymers 18, 3005-3014) that the region carboxyl-terminal to cleavage site in the pro-alpha 1(I) chain of type I procollagen was in a hairpin conformation consisting of a beta-sheet, beta-turn, and beta-sheet. In both chick and human type I procollagen, the hairpin loop in the pro-alpha 1(I) chain consisted of about 18 amino acids. The cleavage site itself was in a short alpha-helical structure of four or five amino acids. The pro-alpha 2(I) chains had a similar hairpin loop of about 14 amino acids and alpha-helix of four or five amino acids containing the cleavage site. Chick type II procollagen, which had the highest Vmax value, had a longer hairpin structure of 22 amino acids, and the cleavage site was in a longer alpha-helical domain of 10 amino acids. In contrast, type III procollagen had a random-coil conformation in the same region. The results help to explain the unusual substrate requirements of type I/II N-proteinase. They also help explain why mutations that produce in-frame deletions of amino acids 84 or more residues carboxyl-terminal to the cleavage site make the protein resistant to the enzyme.  相似文献   

5.
Type I procollagen was purified from the medium of cultured human fibroblasts incubated with 14C-labeled amino acids, the NH2-terminal propeptides were cleaved with procollagen N-proteinase, and the resulting pC-collagen was isolated by gel filtration chromatography. pC-collagen did not assemble into fibrils or large aggregates even at concentrations of 0.5 mg.ml-1 at 34 degrees C in a physiological buffer. However, cleavage of pC-collagen to collagen with purified C-proteinase (Hojima, Y., (1985) J. Biol. Chem. 260, 15996-16003) generated fibrils that were visible by eye and that were large enough to be separated from solution by centrifugation at 13,000 x g for 4 min. With high concentrations of enzyme, the pC-collagen was completely cleaved in 1 h, and turbidity was near maximal in 3 h, but collagen continued to be incorporated in fibrils for over 10 h. Because the pC-collagen was uniformly labeled with 14C-aminoacids, the concentration of soluble collagen and, therefore, the critical concentration of polymerization were determined directly. The critical concentration was independent of the initial pC-collagen concentration and of the rate of cleavage. The critical concentration decreased with temperature between 29 and 41 degrees C and was 0.12 +/- 0.06 (S.E.) microgram.ml-1 at 41 degrees C. The thermodynamic parameters of assembly were essentially independent of temperature in the range 29 to 41 degrees C. The process was endothermic with a delta H value of +56 kcal.mol-1, but entropy driven with a delta S value of +220 cal.K-1.mol-1. The Gibbs energy change for polymerization was -13 kcal.mol-1 at 37 degrees C. The data demonstrate, for the first time, that type I collagen fibril formation de novo is a classical example of an entropy-driven self-assembly process similar to the polymerization of actin, flagella, and tobacco mosaic virus protein.  相似文献   

6.
A rapid assay procedure was developed for cleavage of the N-terminal propeptides of procollagen. With the assay a neutral procollagen N-protease was purified about 300-fold from chick embryo tendon extract. The enzyme had an apparent molecular weight of 260 000 and a pH optimum of 7.4. Ca2+ was required for enzymic activity but this requirement was partially replaced by Mg2+ or Mn2+. The enzyme was bound to concanavalin A-agarose and therefore was presumably a glycoprotein. The N-propeptides released from type I procollagen were of about 23 000 and 11 000 daltons as estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The partially purified enzyme was also found to cleave type II procollagen and the N-propeptide obtained was about 18 000 daltons. Heat denaturation of either type I or type II procollagen decreased the rate at which the proteins were cleaved by the N-protease.  相似文献   

7.
Folding of carboxyl domain and assembly of procollagen I   总被引:3,自引:0,他引:3  
An early form of procollagen I was found in acetic acid extracts of radioactively labeled chick embryo skull bones. It resembled native procollagen I, but sedimented slightly faster, and its component chains were slightly underhydroxylated and were not disulfide-linked to each other, although its propeptides were internally disulfide-bonded. Pulse-chase experiments showed its conversion to disulfide-linked procollagen. As the same conversion occurred when proline hydroxylation was blocked by 2,2'-dipyridyl, we infer that the formation of this precursor from its component chains does not require collagen triple helix formation. We suggest that interaction between the folded carboxyl propeptides of individual pro-alpha (I) chains is an important step in the formation of this precursor and of procollagen I. Studies of the refolding and association of fully reduced and denatured carboxyl propeptides supported this concept. In the presence of glutathione the correct disulfide bonds could be reestablished, as judged by a mapping of some tryptic peptides. Individual carboxyl propeptides refolded first, and this occurred even in 2 M urea. Recognition between folded carboxyl propeptides occurred only when less than 0.5 M urea was present. The presence of the carboxyl telopeptides was important for trimeric reassembly. Individual propeptides also folded spontaneously during cell-free translation of pro-alpha (I) chains and were recognized by specific antibodies. We consider the role of carboxyl propeptides in the formation of procollagen I molecules and suggest a model of self-assembly, possibly facilitated by interactions with the luminal surface of the rough endoplasmic reticulum.  相似文献   

8.
A child with the type VII form of the Ehlers-Danlos syndrome was shown to have a structural defect in the amino terminus of the pro-alpha 1(I) chain of type I procollagen. Normal and mutant amino-terminal cyanogen bromide peptides (pN-alpha 1(I) CB0,1 peptides) were purified from the medium of the patient's cultured fibroblasts. Amino acid sequencing of tryptic peptides derived from the mutant pN-alpha 1(I) CB0,1 peptide showed that an expected sequence of 24 amino acids (positions 136-159 of the normal pN-alpha 1(I) CB0,1 peptide) was deleted. The segment deleted from the mutant pro-alpha 1(I) chain contains the small globular region of the NH2-propeptide, the procollagen N-proteinase cleavage site, the NH2-telopeptide, and first triplet of the helix of the alpha I(I) collagen chain (Chu, M.-L., de Wet, W., Bernard, M., Ding, J.F., Morabito, M., Myers, J., Williams, C., and Ramirez, F. (1984) Nature 310, 337-340). Loss of the procollagen N-proteinase cleavage site from the mutant pro-alpha 1(I) chain accounted for the persistence of its NH2-propeptide despite normal production of the N-proteinase by cultured mutant fibroblasts. Collagen production by mutant fibroblasts was doubled possibly due to reduced feedback inhibition by the NH2-propeptides. The child appeared to be heterozygous for the peptide deletion and, as the parents did not show any evidence of the deletion, it is likely that the child had a new mutation of one allele of the pro-alpha 1(I) gene. The deleted peptide corresponds precisely to the sequence coded by exon 46 of the normal pro-alpha 1(I) gene (Chu, M.-L., de Wet, W., Bernard, M., Ding, J.F., Morabito, M., Myers, J., Williams, C., and Ramirez, F. (1984) Nature 310, 337-340).  相似文献   

9.
Cultured fibroblasts were examined from a patient with a nonlethal form of osteogenesis imperfecta. As reported previously (Nicholls, A. C., Pope, F. M., and Schloon, H. (1979) Lancet 1, 1193), the cells synthesized and secreted a type I procollagen which lacked pro-alpha 2(I) chains and consisted of a trimer of pro-alpha 1(I) chains. No pro-alpha 2(I) chains were recovered from the medium under conditions in which nonhelical pro-alpha 1(I) and pro-alpha 2(I) chains were readily detected in the medium of normal fibroblasts incubated with the hydroxylase inhibitor, alpha, alpha'-dipyridyl. Examination of cellular proteins demonstrated that the fibroblasts synthesized both pro-alpha 1(I) and pro-alpha 2(I) chains. The cellular pro-alpha 2(I) chains did not, however, become disulfide-linked into dimers or trimers of pro-alpha chains. Since the association of pro-alpha chains during the biosynthesis of type I procollagen is directed by the conformation of the COOH-terminal propeptides, the data suggest that the pro-alpha 2(I) chains synthesized by the fibroblasts have a mutated structure in the COOH-terminal propeptides which markedly reduces their affinity for pro-alpha 1(I) chains. A further observation was that the ratio of newly synthesized pro-alpha (I):pro-alpha 2(I) chains in the patient's fibroblasts was 7.18 +/- 0.58 S.E. instead of the value of 2.25 +/- 0.16 S.E. seen in control fibroblasts. One possible explanation for the high ratio is that the proband is homozygous for a mutation altering the structure of the pro-alpha 2(I) chain and that a secondary effect of the structural mutation is a decreased rate of synthesis of pro-alpha 2(I) chains.  相似文献   

10.
Cultured skin fibroblasts from a proband with an autosomal dominant variant of osteogenesis inperfecta were found to synthesize approximately equal amounts of normal pro-alpha 2(I) chains of type I procollagen and pro-alpha 2(I) chains which migrated more rapidly when examined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The structural alteration was present in alpha 2(I)-CB4, a cyanogen bromide fragment containing amino acid residues 7-327 of the alpha 2 chain, and it appeared to be a deletion of about 30 amino acids. The pro-alpha 2(I) chains with the apparent deletion associated with normal pro-alpha 1(I) chains synthesized by the same fibroblasts and formed triple-helical type I procollagen. The presence of the altered pro-alpha 2 chains in trimers of procollagen had two consequences in terms of the physical properties of the molecule. One was to decrease the thermal stability of the protein as judged by resistance to proteolysis at 37 degrees C and by the helix to coil transition as assayed by circular dichroism. The second consequence was to make type I procollagen containing the shortened pro-alpha 2(I) chains resistant to digestion by procollagen N-proteinase. The simplest explanation for the data is that the apparent deletion in half the pro-alpha 2(I) chains produced a partial unfolding of the N-terminal region of type I procollagen which prevented processing of the protein by procollagen N-proteinase.  相似文献   

11.
Type I/II procollagen N-proteinase was partially purified from chick embryos and used to examine the rate of cleavage of a series of purified type I procollagens synthesized by fibroblasts from probands with heritable disorders of connective tissue. The rate of cleavage was normal with procollagen from a proband with osteogenesis imperfecta that was overmodified by posttranslational enzymes. Therefore, posttranslational overmodification of the protein does not in itself alter the rate of cleavage under the conditions of the assay employed. Cleavage of the procollagen, however, was altered in several procollagens with known mutations in primary structure. Two of the procollagens had in-frame deletions of 18 amino acids encoded by exons 11 and 33 of the pro alpha 2(I) gene. In both procollagens, both the pro alpha 1(I) and the pro alpha 2(I) chains were totally resistant to cleavage. With a procollagen in which glycine-907 of the alpha 2(I) chain domain was substituted with aspartate, both pro alpha chains were cleaved but at a markedly decreased rate. The results, therefore, establish that mutations that alter the primary structure of the pro alpha chains of procollagen at sites far removed from the N-proteinase cleavage site can make the protein resistant to cleavage by the enzyme. The long-range effects of in-frame deletions or other changes in amino acid sequence are probably explained by their disruption of the hairpin structure that is formed by each of the three pro alpha chains in the region containing the cleavage site and that is essential for cleavage of the procollagen molecule by N-proteinase.  相似文献   

12.
Type V collagen is a quantitatively minor fibrillar collagen comprised of different chain compositions in different tissues. The most widely distributed form, an alpha1(V)2alpha2(V) heterotrimer, regulates the physical properties of type I/V heterotypic collagen fibrils via partially processed NH2-terminal globular sequences. A less characterized alpha1(V)alpha2(V)alpha3(V) heterotrimer has a much more limited distribution of expression and unknown function(s). We characterized the biosynthetic processing of pro-alpha1(V)2pro-alpha2(V) procollagen previously and showed it to differ in important ways from biosynthetic processing of the major fibrillar procollagens I-III. Here we have successfully produced recombinant pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers. We use these, and mouse embryo fibroblasts doubly homozygous null for the Bmp1 gene, which encodes the metalloproteinase bone morphogenetic protein-1 (BMP-1), and for a gene encoding the closely related metalloproteinase mammalian Tolloid-like 1, to characterize biosynthetic processing of pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers, thus completing characterization of type V collagen biosynthetic processing. Whereas pro-alpha1(V) and pro-alpha2(V) processing in pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers is similar to that which occurs in pro-alpha1(V)2pro-alpha2(V) heterotrimers, the processing of pro-alpha3(V) by BMP-1 occurs at an unexpected site within NH2-terminal globular sequences. We also demonstrate that, despite similarities in NH2-terminal domain structures, pro-alpha2(V) NH2-terminal globular sequences are not cleaved by ADAMTS-2, the metalloproteinase that cleaves the N-propeptides of the major fibrillar procollagen chains.  相似文献   

13.
Bleomycin treatment of primary chick skin fibroblasts and chick lung fibroblasts resulted in a selective dose-dependent increase of cell layer procollagen synthesis. Solid support hybridization of total cellular RNA to 32P-labeled pro-alpha 1(I) and pro-alpha 2(I) cDNAs did not indicate an increase of total cellular procollagen type I mRNAs in bleomycin-treated cells. However, bleomycin treatment of chick skin fibroblasts causes a redistribution of procollagen type I mRNAs within the nuclear, cytoplasmic, and polysomal subcellular fractions. Both the nuclear and cytoplasmic procollagen type I mRNAs are significantly decreased in concentration after bleomycin administration. In contrast, the polysomal procollagen type I mRNAs are significantly increased in both chick skin and lung fibroblasts treated with bleomycin. Administration of dexamethasone to bleomycin-treated fibroblasts resulted in a reversal of the bleomycin-induced increase in cell layer procollagen synthesis. The increased amounts of polysomal procollagen type I mRNAs in bleomycin-treated cells were also reduced by subsequent administration of dexamethasone. These data indicate that bleomycin treatment of chick skin and chick lung fibroblasts results in a specific increase in procollagen synthesis in the cell layer which is mediated by elevated levels of polysomal type I procollagen mRNAs via a repartitioning of these mRNAs within the fibroblast. Furthermore, dexamethasone reverses the bleomycin-induced elevations of both cell layer procollagen synthesis and polysomal type I procollagen mRNAs.  相似文献   

14.
Syrian hamster embryo fibroblasts transformed by 4-nitroquinoline-1-oxide (NQT-SHE cells) failed to synthesize the pro-alpha 1(I) subunit of type I procollagen but continued to synthesize altered forms of the other subunit, pro-alpha 2(I) (Peterkofsky, B., and Prather, W. (1986) J. Biol. Chem. 261, 16818-16826). This was unusual, since synthesis of the two subunits generally is coordinately regulated. Present experiments using cell-free translation and hybridization of RNA from normal and transformed Syrian hamster fibroblasts with labeled pro-alpha 1(I) DNA probes show that mRNA for pro-alpha 1(I) is absent from the transformant. In contrast, dot-blot and Southern blot hybridizations of cellular DNAs with pro-alpha 1(I) DNA probes demonstrated that the transformed cells contained pro-alpha 1(I) gene sequences and that the gross structure of the gene was unchanged by transformation. mRNA for the other type I procollagen subunit, pro-alpha 2(I), was present in transformed cells and the major collagenous polypeptide translated from this RNA migrated like the normal pro-alpha 2 subunit during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The translated procollagen chain was cleaved to an alpha 2(I)-sized collagen chain by pepsin at 4 degrees C. These studies provide a molecular basis for the observed collagen phenotype of NQT-SHE cells.  相似文献   

15.
Skin fibroblasts from a patient with a lethal form of osteogenesis imprefecta were found to synthesize equal amounts of normal pro-alpha 1(I) chains and pro-alpha 1(I) chains which are about 10% shorter because of a deletion of about 100 amino acids in the middle of the alpha chain domain. The pro-alpha 1(I) chains were incorporated into three different kinds of trimers: a normal type I trimer with normal length pro-alpha 1(I) chains; a type Is trimer with one shortened pro-alpha 1(I) chain and two normal length chains; and a type Iss trimer containing two shortened pro-alpha 1(I) chains and one normal length pro-alpha 2(I) chain. As judged by resistance to digestion by chymotrypsin and trypsin, the type Is and Iss trimers denatured at a temperature at least 3 degrees C lower than normal type I procollagen. Procollagen containing the shortened pro-alpha 1(I) chains was slowly secreted by the cells but was degraded by extracellular proteinases within 6 h of chase into the medium. The results indicated that the presence of the shortened pro-alpha 1(I) chains in procollagen trimers produces a delay in rate of helix formation, overmodification of the polypeptides by post-translational enzymes, a decrease in the thermal stability of the trimers, and increased susceptibility of the protein to endogenous proteinases. Additionally, the fibroblasts of this patient synthesized and secreted a type III-like species of procollagen with unusual chromatographic properties.  相似文献   

16.
The collagen phenotype of a 4-nitroquinoline-1-oxide-transformed line of Syrian hamster embryo fibroblasts, NQT-SHE, was markedly altered from that of normal Syrian hamster embryo cells, which synthesized mainly type I procollagen [pro-alpha 1(I)]2 pro-alpha 2(I). Total collagen synthesis in the transformant was reduced to about 30% of the control level primarily because synthesis of the pro-alpha 1(I) subunit was completely suppressed. The major collagenous products synthesized consisted of two polypeptides, designated as N-33 and N-50, which could be completely separated by precipitation with ammonium sulfate at 33 and 50% saturation, respectively. N-33 migrated similarly to pro-alpha 2(I) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-50 migrated slightly more slowly. The collagenous regions of these chains were more sensitive to protease than the analogous region of procollagen I, but alpha-chains could be obtained by digestion for 2 h at 4 degrees C with high ratios of protein:pepsin. Staphylococcus V8 protease and cyanogen bromide peptide maps of N-33 alpha and N-50 alpha chains indicated that the chains were homologous with, but different than, alpha 2(I) chains and that they differed from each other. Considering their similarity to pro-alpha 2(I), it was surprising to find that the N-collagens were secreted to the same extent as was type I procollagen from Syrian hamster embryo cells and that there were no disulfide bonds between N-collagen chains. Intrachain disulfides were present. One possible explanation for the unusual collagen phenotype of NQT-SHE cells is that transformation induced one or more mutations in the pro-alpha 2(I) structural gene while suppression of synthesis of the pro-alpha 1(I) subunit may be due to a mutation in the regulatory region of its gene or in a general regulatory gene.  相似文献   

17.
The specific mammalian collagenase isolated from cultures of metastatic mouse PMT sarcoma cells cleaves murine procollagen IV into two segments, of approximate mass ratio 3:1. These fragments were separated by velocity sedimentation, visualized by electron microscopy, and analyzed. The longer COOH-terminal procollagen segment has a 270-nm collagenous portion with a knob at one end. This knob consists of the three previously identified, noncollagenous carboxyl propeptides, of approximately 30,000 daltons each. These carboxyl propeptides are chain-specific, and the three chains of each segment have the same amino to carboxyl orientation. The collagenase cuts through all three chains at one site, and the three-component chains of both the longer COOH-terminal procollagen segment and the shorter NH2-terminal procollagen segment are linked by interchain disulfide bridges. The enzyme cuts off the same COOH-terminal procollagen segment from procollagen IV monomers and tetramers, and the flexibility of this segment is similar to that of interstitial collagen helices. The amino ends of the NH2-terminal procollagen segments derived from tetramers remain joined as the 32-nm long "7 S collagen" junctional complex, and the remaining 89-nm long projecting threads are significantly more flexible than the COOH-terminal procollagen segment. The electrophoretic mobilities of the enzyme cleavage products are consistent with a heterotrimeric composition of this procollagen IV.  相似文献   

18.
Glucocorticoids decrease the synthesis of type I procollagen mRNAs   总被引:2,自引:0,他引:2  
Glucocorticoids selectively decrease procollagen synthesis in animal and human skin fibroblasts. beta-Actin content and beta-actin mRNA are not affected by glucocorticoid treatment of chick skin fibroblasts. The inhibitory effect of glucocorticoids on procollagen synthesis is associated with a decrease in total cellular type I procollagen mRNAs in chick skin fibroblasts. These effects of dexamethasone are receptor mediated as determined by pretreatment with the glucocorticoid antagonists progesterone and RU-486 and with the agonist beta-dihydrocortisol. Dexamethasone has a small but significant inhibitory effect on cell growth of chick skin fibroblasts. The ability of this corticosteroid to decrease the steady-state levels of type I procollagen mRNAs in nuclei, cytoplasm, and polysomes varies. The largest decrease of type I procollagen mRNAs is observed in the nuclear and cytoplasmic subcellular fractions 24 h after dexamethasone treatment. Type I procollagen hnRNAs are also decreased as determined by Northern blot analysis of total nuclear RNA. The synthesis of total cellular type I procollagen mRNAs is reversibly decreased by dexamethasone treatment. In addition the synthesis of total nuclear type I procollagen mRNA sequences is decreased at 2, 4, and 24 h following the addition of radioactive nucleoside and dexamethasone to cell cultures. Although the synthesis of pro alpha 1(I) and pro alpha 2(I) mRNAs is decreased in dexamethasone-treated chick skin fibroblasts, the degradation of the total cellular procollagen mRNAs is not altered while the degradation of total cellular RNA is stabilized. These data indicate that the dexamethasone-mediated decrease of procollagen synthesis in embryonic chick skin fibroblasts results from the regulation of procollagen gene expression.  相似文献   

19.
We present, here, evidence for a pretranslational role of procollagen propeptides in the regulation of collagen synthesis. Amino- and carboxyl-terminal type I procollagen propeptides were isolated and purified from chick calvaria and tendon cultures. Human lung fibroblasts (IMR-90) were incubated in medium containing varying concentrations of propeptides. Amino-propeptides at 10 nM caused an 80% decrease in collagen synthesis compared to control. Higher concentrations of amino-propeptides did not decrease collagen synthesis further and no significant effect on non-collagen synthesis was found throughout the entire concentration range. Carboxyl-propeptides also inhibited collagen synthesis. At 10 nM, collagen synthesis was decreased by 30% and a concentration of 40 nM caused an 80% reduction. However, at the latter concentration non-collagen synthesis was also affected, decreasing by 20% relative to control. To assess possible pretranslational effects of propeptides, IMR-90 fibroblasts were treated with varying concentrations of each propeptide and levels of type I procollagen mRNA was determined by dot hybridization with a 32P-alpha 2(I) cDNA probe. Both propeptides caused significant concentration-dependent decreases in procollagen type I mRNA levels. At 10 nM, the amino-propeptide resulted in a 55% decrease in collagen mRNA levels while at 40 nM these levels decreased by 72% compared to control. Carboxyl-propeptides were also inhibitory, decreasing mRNA levels by 33% at 10 nM and 73% at 40 nM. Messenger RNA levels of a representative noncollagenous protein, beta-actin, were unaffected by either propeptide throughout the concentration range.  相似文献   

20.
Using cloned cDNAs for pro-alpha 1 and pro-alpha 2 collagen messenger ribonucleic acid (mRNA), we have investigated the regulation of collagen mRNA levels in Rous sarcoma virus (RSV) transformed chick embryo fibroblasts (CEF). We find that both pro-alpha 1 and pro-alpha 2 mRNA levels are decreased approximately 10-fold in CEF transformed by either the Bryan high-titer strain or the Schmidt-Ruppin strain of RSV. Using temperature-sensitive mutants in the transforming gene src, we also investigated the rate of change in the levels of the two mRNA species. We employed mutants of both the Bryan high-titre strain (BHTa) and the Schmidt-Ruppin strain (ts68). With both mutants the results were similar. Upon shift from the permissive temperature (35 degrees C) to the non-permissive temperature (41 degrees C), collagen mRNA synthesis, did not increase until more than 5 h had passed, suggesting that action of src on collagen gene expression is indirect. Upon shift from 41 to 35 degrees C, collagen mRNA levels fell with a half-life of 10 h. Whether this fall reflects the half-life of procollagen mRNA or an effect of src on procollagen RNA stability is unclear. Both pro-alpha 1 and pro-alpha 2 mRNA levels were coordinately controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号