首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Carotenoid pigments are commonly used as colorants of feathers and bare parts by birds. However, parrots (Aves: Psittaciformes) use a novel class of plumage pigments (called psittacofulvins) that, like carotenoids, are lipid-soluble and red, orange, or yellow in color. To begin to understand how and why parrots use these pigments and not carotenoids in their feathers, we must first describe the distribution of these two types of pigments in the diet, tissues, and fluids of these birds. Here, we studied the carotenoid content of blood in five species of parrots with red in their plumage to see if they show the physiological ability to accumulate carotenoids in the body. Although Scarlet (Ara macao) and Greenwing Macaws (Ara chloroptera) and Eclectus (Eclectus roratus), African Gray (Psittacus erithacus) and Blue-fronted Amazon (Amazona aestiva) Parrots all use psittacofulvins to color their feathers red, we found that they also circulated high concentrations of both dietary (lutein, zeaxanthin, beta-cryptoxanthin) and metabolically derived (anhydrolutein, dehydrolutein) carotenoids through blood at the time of feather growth, at levels comparable to those found in many other carotenoid-colored birds. These results suggest that parrots have the potential to use carotenoids for plumage pigmentation, but preferentially avoid depositing them in feathers, which is likely under the control of the maturing feather follicle. As there is no evidence of psittacofulvins in parrot blood at the tune of feather growth, we presume that these pigments are locally synthesized by growing feathers within the follicular tissue.  相似文献   

2.
The brilliant red, orange and yellow colours of parrot feathers are the product of psittacofulvins, which are synthetic pigments known only from parrots. Recent evidence suggests that some pigments in bird feathers function not just as colour generators, but also preserve plumage integrity by increasing the resistance of feather keratin to bacterial degradation. We exposed a variety of colourful parrot feathers to feather-degrading Bacillus licheniformis and found that feathers with red psittacofulvins degraded at about the same rate as those with melanin and more slowly than white feathers, which lack pigments. Blue feathers, in which colour is based on the microstructural arrangement of keratin, air and melanin granules, and green feathers, which combine structural blue with yellow psittacofulvins, degraded at a rate similar to that of red and black feathers. These differences in resistance to bacterial degradation of differently coloured feathers suggest that colour patterns within the Psittaciformes may have evolved to resist bacterial degradation, in addition to their role in communication and camouflage.  相似文献   

3.
Birds display a tremendous variety of carotenoid-based colors in their plumage, but the mechanisms underlying interspecific variability in carotenoid pigmentation remain poorly understood. Because vertebrates cannot synthesize carotenoids de novo, access to pigments in the diet is one proximate factor that may shape species differences in carotenoid-based plumage coloration. However, some birds metabolize ingested carotenoids and deposit pigments that differ in color from their dietary precursors, indicating that metabolic capabilities may also contribute to the diversity of plumage colors we see in nature. In this study, we investigated how the acquisition and utilization of carotenoids influence the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis). We supplemented the diet of captive goldfinches with red carotenoids to determine whether males, which are typically yellow in color, were capable of growing red plumage. We also deprived cardinals of red dietary pigments to determine whether they could manufacture red carotenoids from yellow precursors to grow species-typical red plumage. We found that American goldfinches were able to deposit novel pigments in their plumage and develop a striking orange appearance. Thus, dietary access to pigments plays a role in determining the degree to which goldfinches express carotenoid-based plumage coloration. We also found that northern cardinals grew pale red feathers in the absence of red dietary pigments, indicating that their ability to metabolize yellow carotenoids in the diet contributes to the bright red plumage that they display.  相似文献   

4.
Many studies have shown that the plumage coloration of male birds can act as an honest signal of quality, indicating benefits that a female could gain from pairing with a specific male. In some species, females also display ornamental plumage, but less is known about the function and potential adaptive significance of female coloration because most research has focused on male coloration. Male Mountain Bluebirds (Sialia currucoides) display full body, ultraviolet (UV)‐blue plumage, whereas female plumage is more subdued, with blue color focused on the rump, wing, and tail. During the 2011 and 2012 breeding seasons (May–July) near Kamloops, BC, Canada, we examined coloration of the rump and tail of female Mountain Bluebirds to determine if their plumage could act as an indicator of direct reproductive benefits (e.g., enhanced parental care or reproductive success) to potential mates. We found no relationship between female plumage coloration and either provisioning rate or fledging success. However, female coloration varied with age, with after‐second‐year (ASY) females having brighter, more UV‐blue tail feathers than second‐year (SY) females. In addition, ASY females with brighter, more UV‐blue tails had larger clutches. We also observed positive assortative mating by tarsus length. Because previous work with other species suggests that female body size may be a good predictor of breeding success, males could potentially benefit from pairing with larger females. However, reproductive success did not vary with female size in our study. Although our evidence that structural plumage coloration of female Mountain Bluebirds is a signal of direct reproductive benefits for males (e.g., higher reproductive success) is limited, our results (i.e., ASY females with brighter tails than SY females, and ASY females with brighter tails having larger clutches) do suggest the potential for sexual selection to act on female coloration.  相似文献   

5.

Background

Sexual signals, such as bright plumage coloration in passerine birds, reflect individual quality, and testosterone (T) may play a critical role in maintaining signal honesty. Manipulations of T during molt have yielded mixed effects on passerine plumage color, in most cases delaying molt or leading to production of drab plumage. However, the majority of these studies have been conducted on species that undergo a post-nuptial molt when T is low; the role of T in species that acquire breeding plumage during a pre-nuptial molt remains largely unexplored.

Methodology/Principal Findings

We experimentally tested the effects of increased T on plumage color in second-year male red-backed fairy-wrens (Malurus melanocephalus), a species in which after-second-year males undergo a pre-nuptial molt into red/black (carotenoid and melanin-based) plumage and second-year males either assume red/black or brown breeding plumage. T treatment stimulated a rapid and early onset pre-nuptial molt and resulted in red/black plumage acquisition, bill darkening, and growth of the sperm storage organ, but had no effect on body condition or corticosterone concentrations. Control males molted later and assumed brown plumage. T treated males produced feathers with similar but not identical reflectance parameters to those of unmanipulated after-second-year red/black males; while reflectance spectra of red back and black crown feathers were similar, black breast feathers differed in UV chroma, hue and brightness, indicating a potentially age and plumage patch-dependent response to T for melanin- vs. carotenoid-pigmentation.

Conclusions/Significance

We show that testosterone is the primary mechanism functioning during the pre-nuptial molt to regulate intrasexually variable plumage color and breeding phenotype in male red-backed fairy-wrens. Our results suggest that the effects of T on plumage coloration may vary with timing of molt (pre- vs. post-nuptial), and that the role of T in mediating plumage signal production may differ across age classes, plumage patches, and between pigment-types.  相似文献   

6.
Male eastern bluebirds (Sialia sialis) have two types of ornamentalplumage coloration: a brilliant blue-ultraviolet head, back,and wings, and a patch of chestnut breast feathers. The blue-UVcoloration is produced from feather microstructure, whereasthe chestnut coloration is produced by a combination of pheaomelaninand eumelanin pigments deposited in feathers. We tested thehypothesis that plumage coloration reflects male quality ineastern bluebirds, a socially monogamous, sexually dichromaticbird. We investigated whether male ornamentation correlateswith mate quality and parental effort. We quantified three aspectsof male ornament coloration: (1) size of the patch of chestnutbreast feathers, (2) reflectance properties of the chestnutplumage coloration, and (3) reflectance properties of the blue-ultravioletplumage coloration. We found that males with larger breast patchesand brighter plumage provisioned nestlings more often, fledgedheavier offspring, and paired with females that nested earlier.Males with plumage coloration that exhibit more ultraviolethues fledged more offspring. These results suggest that plumagecoloration is a reliable indicator of male mate quality andreproductive success. Both melanin-based and structural-basedplumages appear to be honest signals of male quality and parentalcare that can be assessed by competitors or by potential mates.  相似文献   

7.
Greater flamingos use cosmetic coloration by spreading uropygial secretions pigmented with carotenoids over their feathers, which makes the plumage redder. Because flamingos inhabit open environments that receive direct solar radiation during daytime, and carotenoids bleach when exposed to solar radiation, we expected that the plumage color would fade if there is no maintenance for cosmetic purposes. Here, we show that the concentrations of pigments inside feathers and on the surface of feathers were correlated, as well as that there was a correlation between the concentrations of pigments in the uropygial secretions and on the surface of feathers. There was fading in color (becoming less red) in feathers that received direct solar radiation when there was no plumage maintenance, but not so in others maintained in darkness. When we controlled for the initial color of feathers, the feathers of those individuals with higher concentration of pigments on the feather surfaces were those that lost less coloration after experimental exposure of feathers to sunny conditions. These results indicate that exposure to sunlight is correlated with the fading of feather color, which suggests that individuals need to regularly apply makeup to be more colorful. These results also reinforce the view that these birds use cosmetic coloration as a signal amplifier of plumage color. This may be important in species using highly variable habitats, such as wetlands, since the conditions experienced when molting may differ from those when the signal should be functional, usually months after molting.  相似文献   

8.
Carotenoids produce the brilliant red, orange, and yellow colors of many animals. However, melanin pigments can also confer some of these same hues. Because carotenoid and melanin colors are produced in different ways and may serve different signaling functions, either within or between species, it is important to establish whether one or both types of pigment are responsible for coloration. We have discovered what appears to be an evolutionary switch from carotenoid- to melanin-based color in two sexually dichromatic New World orioles. Using a combination of reflectance spectrometry and chromatographic analyses of plumage pigments, we found that the chestnut plumage of adult male orchard orioles Icterus spurius is produced predominantly by phaeomelanins. Orchard oriole feathers also contain carotenoids, which appear to be masked by the high concentration of phaeomelanins. In contrast, both carotenoids and phaeomelanins appear to contribute to color in adult male Fuertes's orioles I. fuertesi . Moreover, yellow yearling male and female plumage in both species is produced by carotenoids alone. The masking of carotenoids with phaeomelanins in orchard orioles is interesting in light of the signaling roles that carotenoids are thought to play. In addition, these plumage differences produce a unique case of age and sexual pigment dimorphism in orchard and Fuertes's orioles.  相似文献   

9.
The Florida Scrub-Jay is a monogamous cooperative breeder in which both males and females display extensive structurally based blue plumage. Juveniles of this species exhibit blue tail and wing feathers that they begin growing as nestlings, and some of these feathers are retained throughout their first year. Although the birds appear to be sexually monochromatic, we assessed whether cryptic dichromatism exists in both the magnitude and pattern of coloration in tail feathers of juvenile Florida Scrub-Jays. We then determined whether variation in plumage coloration is associated with nutritional condition during molt. Tails of juvenile male Florida Scrub-Jays exhibit a greater proportion of UV reflectance than those of females. Mass at age 11 days and ptilochronology of the juvenile tail feathers were used as measures of individual nutritional condition during feather growth, and the latter was found to be positively associated with UV chroma. These data demonstrate that Florida Scrub-Jays are sexually dichromatic and suggest that variation in plumage color may be condition dependent, although we cannot rule out alternative explanations. Juvenile plumage coloration, therefore, has the potential to function as a signal of individual quality in both males and females.  相似文献   

10.
Many animals use carotenoid pigments to produce yellow, orange, and red coloration. In birds, at least 10 carotenoid compounds have been documented in red feathers; most of these are produced through metabolic modification of dietary precursor compounds. However, it is poorly understood how lineages have evolved the biochemical mechanisms for producing red coloration. We used high‐performance liquid chromatography to identify the carotenoid compounds present in feathers from 15 species across two clades of blackbirds (the meadowlarks and allies, and the caciques and oropendolas; Icteridae), and mapped their presence or absence on a phylogeny. We found that the red plumage found in meadowlarks includes different carotenoid compounds than the red plumage found in caciques, indicating that these gains of red color are convergent. In contrast, we found that red coloration in two closely related lineages of caciques evolved twice by what appear to be similar biochemical mechanisms. The C4‐oxygenation of dietary carotenoids was responsible for each observed transition from yellow to red plumage coloration, and has been commonly reported by other researchers. This suggests that the C4‐oxygenation pathway may be a readily evolvable means to gain red coloration using carotenoids.  相似文献   

11.
Plumage coloration in birds plays a critical role in communication and can be under selection throughout the annual cycle as a sexual and social signal. However, for migratory birds, little is known about the acquisition and maintenance of colorful plumage during the nonbreeding period. Winter habitat could influence the quality of colorful plumage, ultimately carrying over to influence sexual selection and social interactions during the breeding period. In addition to the annual growth of colorful feathers, feather loss from agonistic interactions or predator avoidance could require birds to replace colorful feathers in winter or experience plumage degradation. We hypothesized that conditions on the wintering grounds of migratory birds influence the quality of colorful plumage. We predicted that the quality of American redstart (Setophaga ruticilla) tail feathers regrown after experimental removal in Jamaica, West Indies, would be positively associated with habitat quality, body condition, and testosterone. Both yearling (SY) and adult (ASY) males regrew feathers with lower red chroma, suggesting reduced carotenoid content. While we did not observe a change in hue in ASY males, SY males shifted from yellow to orange plumage resembling experimentally regrown ASY feathers. We did not observe any effects of habitat, testosterone, or mass change. Our results demonstrate that redstarts are limited in their ability to adequately replace colorful plumage, regardless of habitat, in winter. Thus, feather loss on the nonbreeding grounds can affect social signals, potentially negatively carrying over to the breeding period.  相似文献   

12.
Over the past three decades, the red‐winged blackbird Agelaius phoeniceus has served as a model species for studies of sexual selection and the evolution of ornamental traits. Particular attention has been paid to the role of the colorful red‐and‐yellow epaulets that are striking in males but reduced in females and juveniles. It has been assumed that carotenoid pigments bestow the brilliant red and yellow colors on epaulet feathers, but this has never been tested biochemically. Here, we use high‐performance liquid chromatography (HPLC) to describe the pigments present in these colorful feathers. Two red ketocarotenoids (astaxanthin and canthaxanthin) are responsible for the bright red hue of epaulets. Two yellow dietary precursors pigments (lutein and zeaxanthin) are also present in moderately high concentrations in red feathers. After extracting carotenoids, however, red feathers remained deep brown in color. HPLC tests show that melanin pigments (primarily eumelanin) are also found in the red‐pigmented barbules of epaulet feathers, at an approximately equal concentration to carotenoids. This appears to be an uncommon feature of carotenoid‐based ornamental plumage in birds, as was shown by comparable analyses of melanin in the yellow feathers of male American goldfinches Carduelis tristis and the red feathers of northern cardinals Cardinalis cardinalis, in which we detected virtually no melanins. Furthermore, the yellow bordering feathers of male epaulets are devoid of carotenoids (except when tinged with a carotenoid‐derived pink coloration on occasion) and instead are comprised of a high concentration of primarily phaeomelanin pigments. The dual pigment composition of red epaulet feathers and the melanin‐only basis for yellow coloration may have important implications for the honesty‐reinforcing mechanisms underlying ornamental epaulets in red‐winged blackbirds, and shed light on the difficulties researchers have had to date in characterizing the signaling function of this trait. As in several other birds, the melanic nature of feathers may explain why epaulets are used largely to settle aggressive contests rather than to attract mates.  相似文献   

13.
Elaborate and colorful feathers are important traits in female mate choice in birds. Plumage coloration can result from pigments deposited in feathers such as carotenoids and melanins, or can be caused by nano-scale reflective tissues (structurally based coloration), usually producing ultraviolet (UV) coloration. Structural colorations remain the least studied of the three most important feather colorations. Previous studies have found a female preference for UV color in the budgerigar, Melopsittacus undulatus, but it is not clear what information this ornament conveys, nor what is the possible cost associated with its production. We investigated possible correlations between immune response and plumage color of wild-type (green) male budgerigars. In particular we measured the wing web swelling resulting from injection of phytohaemagglutinin (PHA). We did not detect any correlation between the sedimentation rate and morphological and color variables. We found that UV chroma is the best predictor for the cutaneous immune activity. Indeed, male budgerigars with high UV reflectance in the breast feathers showed stronger immune responses. These results are consistent with the idea that UV colors are special signals conveying information about a bird’s condition.  相似文献   

14.
The effects of elevated testosterone on plumage hue in male House Finches   总被引:3,自引:0,他引:3  
The majority of studies examining the role of hormones in the proximate mechanisms of plumage coloration in birds have focused on intersexual differences (plumage dichromatism) and on structural- or melanin-based plumage coloration. The relationship between hormones and carotenoid-based plumage color, and in particular intrasexual plumage color variation, has received little attention. We manipulated testosterone levels of both captive and wild male House Finches to determine whether testosterone influences the expression of male plumage color in this species. We found that in captive male House Finches elevated testosterone delayed molt and resulted in drabber, less red plumage, even when birds were supplemented with dietary carotenoids. Elevated testosterone also resulted in drab plumage color in wild males, and appeared to delay molt in wild birds as well. Wild males implanted with testosterone showed wide variation in expression of plumage coloration. Those implanted early in the year molted plumage similar in color to their pre-treatment plumage, but those implanted later molted substantially duller plumage, possibly because delayed molt resulting from elevated testosterone caused these males to molt when carotenoid pigments were not available in sufficient amounts. These observations have the potential to explain previously reported relationships between plumage color and behavior in male House Finches, and highlight the importance of considering the proximate mechanisms of plumage coloration in avian sexual selection.  相似文献   

15.
Eumelanin and pheomelanin are the main endogenous pigments in animals and melanin-based coloration has multiple functions. Melanization is associated with major life-history traits, including immune and stress response, possibly because of pleiotropic effects of genes that control melanogenesis. The net effects on pheo- versus eumelanization and other life-history traits may depend on the antagonistic effects of the genes that trigger the biosynthesis of either melanin form. Covariation between melanin-based pigmentation and fitness traits enforced by pleiotropic genes has major evolutionary implications particularly for socio-sexual communication. However, evidence from non-model organisms in the wild is limited to very few species. Here, we tested the hypothesis that melanin-based coloration of barn swallow (Hirundo rustica) throat and belly feathers covaries with acquired immunity and activation of the hypothalamic–pituitary–adrenal (HPA) axis, as gauged by corticosterone plasma levels. Individuals of both sexes with darker brownish belly feathers had weaker humoral immune response, while darker males had higher circulating corticosterone levels only when parental workload was experimentally reduced. Because color of belly feathers depends on both eu- and pheomelanin, and its darkness decreases with an increase in the concentration of eu- relative to pheomelanin, these results are consistent with our expectation that relatively more eu- than pheomelanized individuals have better immune response and smaller activation of the HPA-axis. Covariation of immune and stress response arose for belly but not throat feather color, suggesting that any function of color as a signal of individual quality or of alternative life-history strategies depends on plumage region.  相似文献   

16.
Many of the brilliant plumage coloration displays of birds function as signals to conspecifics. One species in which the function of plumage ornaments has been assessed is the Eastern bluebird (Sialia sialis). Studies of a population breeding in Alabama (USA) have established that plumage ornaments signal quality, parental investment, and competitive ability in both sexes. Here we tested the additional hypotheses that (1) Eastern bluebird plumage ornamentation signals nest defense behavior in heterospecific competitive interactions and (2) individual variation in plumage ornamentation reflects underlying differences in circulating hormone levels. We also tested the potential for plumage ornaments to signal individual quality and parental investment in a population breeding in Oklahoma (USA). We found that Eastern bluebirds with more ornamented plumage are in better condition, initiate breeding earlier in the season, produce larger clutches, have higher circulating levels of the stress hormone corticosterone, and more ornamented males have lower circulating androgen levels. Plumage coloration was not related to nest defense behavior. Thus, plumage ornamentation may be used by both sexes to assess the physiological condition and parental investment of prospective mates. Experimental manipulations of circulating hormone levels during molt are needed to define the role of hormones in plumage ornamentation.  相似文献   

17.
Konrad Leniowski  Ewa Węgrzyn 《Ibis》2013,155(4):804-813
Carotenoid‐based plumage ornaments have the potential to signal individual condition and health in many species of birds. However, very little is known about the function of red plumage in woodpeckers. We assessed whether the red cap displayed by both male and female Middle Spotted Woodpeckers reflects individual quality, finding that the size of the cap is sex‐dependent, whereas the brightness of the cap correlates with the body condition of an individual. Furthermore, birds with brighter caps had larger clutches, suggesting that cap coloration may be an honest signal of parental quality in woodpeckers. Interestingly, more colourful individuals also occupied smaller territories, suggesting that territory size and territory quality may be inversely related in the Middle Spotted Woodpecker.  相似文献   

18.
ADRIAN SURMACKI 《Ibis》2008,150(2):335-341
The plumage coloration of wild birds often changes during the breeding season. One of the possible reasons for this is that sunlight, and particularly ultraviolet (UV) wavelengths, degrades the pigments responsible for plumage coloration. It has been suggested that birds may apply preen wax to feathers to protect feathers from bleaching. This hypothesis is tested by exposing carotenoid-based breast feathers of Great Tits to ambient light, light filtered to exclude UV and darkness. Preen waxes were experimentally removed from feather samples and the effect of light on coloration of treatment and control feathers compared. Ambient light had an effect on feather colour but preen wax did not. Feathers exposed to sun gradually became less saturated and hues shifted towards shorter wavelengths. This was not apparent in control feathers kept in darkness. Feathers exposed to full-spectra sunlight faded more than those that were kept in light with UV wavelengths removed. There was a decrease in brightness of feathers in both experimental and control groups, which was assumed to be an effect of dirt accumulation. This experiment confirmed earlier suspicions regarding the detrimental effects of UV irradiation on carotenoid-based coloration of avian feathers but failed to show any protective function of preen waxes. The possible consequences of these mechanisms of colour change for birds with regard to mating strategies are discussed.  相似文献   

19.
鸟类作为色彩最丰富的陆生脊椎动物,其体表覆盖着颜色多样的羽毛,在伪装、择偶、信号识别等多方面具有重要功能,因此羽毛颜色引起了研究者的极大兴趣。羽毛颜色总体分为由化学物质产生的色素色和由物理结构产生的结构色,其中常见色素有两大类。根据近年来对羽毛色素的研究进展,本文总结了黑色素和类胡萝卜素的类型、合成途径、获取途径以及相关基因,为深入研究羽毛色素合成、代谢的分子调控机制提供科学依据。  相似文献   

20.
Male eastern bluebirds Sialia sialis have striking ultraviolet (UV)-blue coloration on their heads, backs, rumps, wings, and tails and bold chestnut coloration on their breasts. These colored areas are ornaments that correlate with pairing date and reproductive effort, and thus probably influence the choice of mates by females. Such ornaments are expected to increase in color with age and body condition. We investigated the effects of age on body condition and the UV-blue and chestnut coloration of males over four years using both cross-sectional (comparing age classes) and longitudinal analyses (following individuals as they age). We found that both the body condition index and brightness of UV-blue rump coloration increased with age, while UV-blue tail plumage coloration increased between yearling and older males, and the chestnut breast coloration decreased in the oldest age class. The proximate mechanisms whereby individuals reliably signal age via rump brightness and tail coloration are probably different. Contour feathers, including rump feathers, are molted at approximately the same time in all age classes and are likely subject to the same production costs in all age classes. In contrast, the molt schedule of the tail and wing feathers differs between individuals of yearling and older age classes, with yearlings retaining wing and tail feathers for several months longer than adults. The relationship between tail color and age was probably, in part, a consequence of yearlings expressing tails that have increased feather wear and accumulation of dirt. In general, UV-blue coloration increased with age while chestnut plumage decreased with age, indicating that older individuals may tradeoff investing energy in structural and melanin ornaments. By assessing overall plumage coloration, female eastern bluebirds could estimate age class when choosing mates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号