首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The giant grasshopper Tropidacris collaris (Stoll, 1813) (Orthoptera: Romaleidae) is a Neotropical species that causes economic damage to diverse and unrelated crops. We report herein the occurrence of this grasshopper in orchards of dwarf cashew Anacardium occidentale L. (Anacardiaceae) located in the state of Ceará, one of the main cashew‐producing areas of Brazil. Nymphs and adults were observed feeding on cashew leaves during June and July 2016, causing partial or total defoliation of some plants. This report updates the feeding plants of T. collaris and its distribution in Brazil and serves as an early warning of possible future attacks by the pest on cashew orchards in the northeastern region of the country.  相似文献   

2.
Anthracnose, caused by Elsinoë ampelina, is an economically important grapevine disease in south and southeast Brazil. Control is achieved by lime sulphur application during grapevine dormancy and foliar fungicide sprays until the berries are half-grown. This study assessed the temporal and spatial progress of grapevine anthracnose under field conditions in order to describe the disease dynamics and its relationship to pathogen survival. The experiment was carried out in a vineyard of table grape Vitis labrusca in Brazil, during the 2014 and 2015 growing seasons. The incidence of vines with diseased leaves, stems and berries and the disease severity on leaves were recorded from bud break to veraison. Monomolecular, logistic and Gompertz models were fitted by non-linear regression to the incidence and severity data over time to characterize the temporal progress. Ordinary runs, dispersion index, modified Taylor's power law and spatial hierarchy analyses were used to characterize the spatial pattern of diseased plants. The monomolecular model showed the best fit for the incidence progress, with disease progress rates ranging from 0.051 to 0.136 per day. In both seasons, the incidence of diseased plants reached 100% 1 month after bud break. However, the incidence of diseased leaves per plant was around 60% and leaf disease severity was lower than 5% for both years. Ordinary runs and dispersion index analyses revealed that diseased grapevines were distributed randomly on the majority of the assessment dates. Meanwhile, a slight aggregation of diseased vines was observed in the modified Taylor's power law analysis. Our results suggested that the progress of anthracnose incidence and severity over time was governed mainly by the income of the primary inoculum, which survived in the vineyard. Therefore, anthracnose control measures in Brazilian vineyards should be focused on the reduction in inoculum within the vineyard.  相似文献   

3.
柑桔爆皮虫羽化孔的空间分布   总被引:1,自引:1,他引:0  
通过调查柑桔爆皮虫成虫羽化孔的分布,经空间分布型检验和聚集度指标的测定以及Taylor幂法则和m*- m(Iwao)回归分析,结果表明,柑桔爆皮虫的羽化孔在柑桔树树体内和桔园内均呈聚集分布: 在枯树内呈负二项分布,在半枯树内呈负二项分布或奈曼A型分布,在桔园内呈负二项分布,在树体内和桔园内分布的基本成分均为为个体群,个体间相互吸引。树势较差的柑桔树容易受柑桔爆皮虫危害,在树势强的树体内不能完成世代发育。因此,柑桔爆皮虫采用多次聚集攻击的策略攻击寄主。在桔园内聚集危害部分寄主,在树体内聚集危害寄主主枝的中下部,主枝的死亡导致整株树势下降,下一代虫源进而再次攻击寄主,在树势下降的树体内柑桔爆皮虫完成世代发育并羽化出孔,成虫继续为害健康的柑桔树。  相似文献   

4.
VERTICILLIUM WILT OF BRUSSELS SPROUT   总被引:1,自引:0,他引:1  
A wilt disease of Brussels-sprout plants caused by Verticillium dahliae Kleb, is described. Field observations indicate that the disease is more severe in a wet than in a dry season, the various stages of the pathological symptoms appearing earlier and developing more rapidly. This was corroborated by experiment; under dry conditions the onset of wilt symptoms was delayed and the severity of attack diminished. Since nine different strains and/or species of Verticillium wound-inoculated into Brussels sprouts failed to induce wilt, and since the isolate from this host proved to be non-pathogenic to a wide range of plants usually susceptible to attack by Verticillium spp., it is suggested that the V. dahliae from Brussels sprouts is a distinct physiological strain. Variations in the amounts of the different chemical constituents of the soil (calcium, nitrogen from two different sources, phosphate and potassium) have no apparent effect upon the incidence of disease. The pathogen is not seed-borne but it may be spread by the dissemination of infected plant tissues. Some control measures are suggested and farmers are advised to grow in the infected soil runner beans, cauliflower and broccoli which are resistant to attack by this fungus.  相似文献   

5.

Background and Aims

Epidemiological simulation models coupling plant growth with the dispersal and disease dynamics of an airborne plant pathogen were devised for a better understanding of host–pathogen dynamic interactions and of the capacity of grapevine development to modify the progress of powdery mildew epidemics.

Methods

The first model is a complex discrete mechanistic model (M-model) that explicitly incorporates the dynamics of host growth and the development and dispersion of the pathogen at the vine stock scale. The second model is a simpler ordinary differential equations (ODEs) compartmental SEIRT model (C-model) handling host growth (foliar surface) and the ontogenic resistance of the leaves. With the M-model various levels of vine development are simulated under three contrasting climatic scenarios and the relationship between host and disease variables are examined at key periods in the epidemic process. The ability of the C-model to retrieve the main dynamics of the disease for a range of vine growth given by the M-model is investigated.

Key Results

The M-model strengthens experimental results observed regarding the effect of the rate of leaf emergence and of the number of leaves at flowering on the severity of the disease. However, it also underlines strong variations of the dynamics of disease depending on the vigour and indirectly on the climatic scenarios. The C-model could be calibrated by using the M-model provided that different parameters before and after shoot topping and for various vigour levels and inoculation time are used. Biologically relevant estimations of the parameters that could be used for its extension to the vineyard scale are obtained.

Conclusions

The M-model is able to generate a wide range of growth scenarios with a strong impact on disease evolution. The C-model is a promising tool to be used at a larger scale.  相似文献   

6.
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host’s immune system influences the pathogen’s transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence–transmission trade-offs and evolution in vector-borne pathogen–host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the \({\mathcal {R}}_0\) maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen \({\mathcal {R}}_0\), but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.  相似文献   

7.
The cashew tree, native to Brazil was introduced into India in the 16th century for the purpose of checking erosion on the coasts. India is a world leader in the production and export of cashew nuts, while cultivation of this crop in the western hemisphere has remained negligible. Present demand far exceeds the supply. New developments in processing methods and machinery, and new uses for by-products, particularly cashew shell oil, have stimulated cashew culture in East Africa and Brazil and should give impetus to establishment of this lucrative crop on a commercial basis in other tropical areas.  相似文献   

8.
The purpose of this study was to investigate native species of parasitoids of frugivorous larvae and their associations with host plants in commercial guava orchards and in typical native dry forests of a caatinga-cerrado ecotone in the State of Minas Gerais, Brazil. Nine species of parasitoids were associated with larvae of Anastrepha (Tephritidae) and Neosilba (Lonchaeidae) in fruit of Psidium guajava L. (Myrtaceae), Ziziphus joazeiro Mart. (Rhamnaceae), Spondias tuberosa Arruda (Anacardiaceae), Spondias dulcis Forst. (Anacardiaceae), Syzygium cumini (L.) Skeels (Myrtaceae), and Randia armata (Sw.) DC. (Rubiaceae). Doryctobracon areolatus was the most abundant species, obtained from puparia of Anastrepha zenildae, An. sororcula, An. fraterculus, An. obliqua, and An. turpiniae. This is the first report of Asobara obliqua in Brazil and of As. anastrephae and Tropideucoila weldi in dry forests of Minas Gerais State. The number of species of parasitoids was higher in areas with greater diversity of cultivated species and lower pesticide use. The forest fragments adjacent to the orchards served as shelter for parasitoids of frugivorous larvae.  相似文献   

9.
Rice seedlings maintained under uncontrolled glasshouse conditions were inoculated with conidial suspensions of a fungal pathogen, Helminthosporium oryzae, at various times during the 24 h. Significant increase in the percent germination and germ tube length of conidia were observed in the rice samples inoculated at 02:00 and 06:00h. The 24 h temporal variation in leaf temperature was positively correlated with variation in stomatal movements. The results indicate a 24 h rhythm in the behavior of the fungal pathogen on the host in relation to the conditions of the growing environment. In all the inoculated seedlings, the appearance of a large number of brown leaf spots was confined to the light span. Among the plants inoculated, earlier initiation of brown leaf spot appearance, maximum number of leaf spots, and highest disease severity were observed when plants were inoculated at 02:00h. There was a positive correlation between disease severity of the host and in vivo values of percent germination of conidia and germ tube length of the pathogen in plants inoculated between 02:00 and 06:00h. The findings of this study implicate that light intensity and temperature could play a predominant role in controlling disease susceptibility rhythms in plants.  相似文献   

10.
Rice seedlings maintained under uncontrolled glasshouse conditions were inoculated with conidial suspensions of a fungal pathogen, Helminthosporium oryzae, at various times during the 24 h. Significant increase in the percent germination and germ tube length of conidia were observed in the rice samples inoculated at 02:00 and 06:00h. The 24 h temporal variation in leaf temperature was positively correlated with variation in stomatal movements. The results indicate a 24 h rhythm in the behavior of the fungal pathogen on the host in relation to the conditions of the growing environment. In all the inoculated seedlings, the appearance of a large number of brown leaf spots was confined to the light span. Among the plants inoculated, earlier initiation of brown leaf spot appearance, maximum number of leaf spots, and highest disease severity were observed when plants were inoculated at 02:00h. There was a positive correlation between disease severity of the host and in vivo values of percent germination of conidia and germ tube length of the pathogen in plants inoculated between 02:00 and 06:00h. The findings of this study implicate that light intensity and temperature could play a predominant role in controlling disease susceptibility rhythms in plants.  相似文献   

11.
Many generalist pathogens are influenced by the spatial distributions and relative abundances of susceptible host species. The spatial structure of host populations can influence patterns of infection incidence (or disease outbreaks), and the effects of a generalist pathogen on host community dynamics in a spatially heterogeneous community may differ from predictions derived via simple models. In this paper, we model the transmission of a generalist pathogen within a patch framework that incorporates the movement of vectors between discrete host patches to investigate the effects of local host community composition and vector movement rates on disease dynamics.  相似文献   

12.
We investigated whether lines of transgenic tomato (Solanum lycopersicum) expressing the Bs2 resistance gene from pepper, a close relative of tomato, demonstrate improved resistance to bacterial spot disease caused by Xanthomonas species in replicated multi-year field trials under commercial type growing conditions. We report that the presence of the Bs2 gene in the highly susceptible VF 36 background reduced disease to extremely low levels, and VF 36-Bs2 plants displayed the lowest disease severity amongst all tomato varieties tested, including commercial and breeding lines with host resistance. Yields of marketable fruit from transgenic lines were typically 2.5 times that of the non-transformed parent line, but varied between 1.5 and 11.5 fold depending on weather conditions and disease pressure. Trials were conducted without application of any copper-based bactericides, presently in wide use despite negative impacts on the environment. This is the first demonstration of effective field resistance in a transgenic genotype based on a plant R gene and provides an opportunity for control of a devastating pathogen while eliminating ineffective copper pesticides.  相似文献   

13.
Citrus gummosis, caused by Phytophthora spp., is an important citrus disease in Brazil. Almost all citrus rootstock varieties are susceptible to it to some degree, whereas resistance is present in Poncirus trifoliata, a closely related species. The objective of this study was to detect QTLs linked to citrus Phytophthora gummosis resistance. Eighty individuals of the F1 progeny, obtained by controlled crosses between Sunki mandarin Citrus sunki (susceptible) and Poncirus trifoliata cv. Rubidoux (resistant), were evaluated. Resistance to Phytophthora parasitica was evaluated by inoculating stems of young plants with a disc of fungal mycelia and measuring lesion lengths a month later. Two QTLs linked to gummosis resistance were detected in linkage groups 1 and 5 of the P. trifoliata map, and one QTL in linkage group 2 of the C. sunki map. The phenotypic variation explained by individual QTLs was 14% for C. sunki and ranged from 16 to 24% for P. trifoliata. The low character heritability (h2 = 18.7%) and the detection of more than one QTL associated with citrus Phytophthora gummosis resistance showed that inheritance of the resistance is quantitative.  相似文献   

14.
In Argentina, amaranth is a promising crop due to high nutritional quality and ability to grow in a diversity of environments. In areas cultivated with amaranth, were observed plants exhibiting slow growth, deformed leaves, proliferation of shoots and malformed lateral panicles. Field survey revealed up to 96% disease incidence and 92% of the seeds collected from mother plants produced diseased seedlings. A phytoplasma was detected in association with seedlings and adult plants using nested PCR assays. Molecular identification by computer‐simulated RFLP and phylogenetic analysis evidenced the occurrence of a ‘Candidatus Phytoplasma hispanicum’‐related strain, affiliated with 16SrXIII‐A subgroup. The findings implicate amaranth as a new host for this subgroup and as a potential reservoir of the pathogen for other cultivated species. In addition, to the best of our knowledge, this study reports for the first time the presence of 16SrXIII‐A phytoplasma in Argentina and in South America. Furthermore, transmission assays pointed that naturally infected seed is an important vehicle of dissemination of the pathogen, threatening the expansion of the crop for new geographical areas.  相似文献   

15.
Summary The incidence and severity of Rhynchosporium secalis infections were assessed in a large population of Hordeum leporinum. Transects were set out in four directions from five trees to determine the effect of shading. Under the tree canopy 60.3% of H. leporinum plants were infected while only 11.2% were infected away from the canopy. Disease severity, on those plants which were infected, was higher under the canopy (mean 12.4% and 13.0% leaf area diseased for the flag and first leaves, respectively) than away from the canopy (means of 7.8% and 5.0% for the flag and first leaves respectively). Plants under the tree canopy contained on average 23% more nitrogen, raising the possibility that the susceptibility of the host changed in response to nitrogen levels. However, the observed pattern is also consistent with the hypothesis that shade-associated changes in the environment enhanced the ability of the pathogen to infect and develop on the host. The data clearly demonstrate the importance of small-scale environmental factors on natural host-pathogen interactions. These environmental factors may cause differential selection for disease resistance within a host population, which may ultimately lead to the formation of sub-populations with differing levels of resistance.  相似文献   

16.
Bacterial speck, caused by Pseudomonas syringae pv. tomato (Pst), is an economically important disease of tomato, resulting in yield loss of marketable fruit. Management of bacterial speck is a challenge in commercial production fields due to the limited efficacy of current disease management strategies, as the pathogen acquires resistance to antibiotics and fixed copper bactericides and host resistance has not proven durable. Therefore, it is essential to develop alternative disease management strategies, like biological control. In this study, the efficacy of the commercially available biocontrol agent Bacillus subtilis QST 713 along with copper hydroxide was tested against Pst under greenhouse conditions. QST 713 reduced significantly disease severity and incidence compared to control and the copper hydroxide treatment; subsequently, the Pst population was lower in the QST 713‐treated plants compared to control. In parallel, QST 713 and copper hydroxide increased plant height compared to control and mock plants. Furthermore, the quantitative PCR analysis of PR1a, PR1b and Pin2 expression suggests a positive role for Pin2 in the plant protective activity of QST 713, as Pin2 expression was significantly higher in the QST 713‐treated plants challenged with Pst compared to the control Pst‐inoculated plants.  相似文献   

17.
Plants interact with a myriad of microorganisms that modulate their interactions within the community. A well-described example is the symbiosis between grasses and Epichloë fungal endophytes that protects host plants from herbivores. It is suggested that these symbionts could play a protective role for plants against pathogens through the regulation of their growth and development and/or the induction of host defences. However, other endophyte-mediated ecological mechanisms involved in disease avoidance have been scarcely explored. Here we studied the endophyte impact on plant disease caused by the biotrophic fungus, Claviceps purpurea, under field conditions through (1) changes in the survival of the pathogen´s resistance structure (sclerotia) during overwintering on the soil surface, and (2) effects on insects responsible for the transportation of pathogen spores. This latter mechanism is tested through a visitor exclusion treatment and the measurement of plant volatile cues. We found no significant effects of the endophyte on the survival of sclerotia and thus on disease inocula. However, both pathogen incidence and severity were twofold lower in endophyte-symbiotic plants than in non-symbiotic ones, though when insect visits were prevented this difference disappeared. Endophyte-symbiotic and non-symbiotic plots presented different emission patterns of volatiles suggesting that they can play a role in this protection. We show a novel indirect ecological mechanism by which endophytes can defend host grasses against diseases through negatively interacting with intermediary vectors of the epidemic process.  相似文献   

18.
Parasites and pathogens are hypothesized to change host growth, reproduction and/or behaviour to increase their own transmission. However, studies which clearly demonstrate that parasites or pathogens are directly responsible for changes in hosts are lacking. We previously found that infection by the systemic fungus Epichloë glyceriae was associated with greater clonal growth by its host, Glyceria striata. Whether greater clonal growth resulted directly from pathogen infection or indirectly from increased likelihood of infection for host genotypes with greater clonal growth could not be determined because only naturally infected and uninfected plants were used. In this study, we decoupled infection and host genotype to evaluate the role of pathogen infection on host development and clonal growth. We found that total biomass production did not differ for clones of the same genotype, but infected clones allocated more biomass to clonal growth. Disinfected clones had more tillers and a greater proportion of their biomass in the mother ramet. Infected clones produced fewer tillers but significantly more and longer stolons than disinfected clones. These results support the hypothesis that pathogen infection directly alters host development. Parasite alteration of clonal growth patterns might be advantageous to the persistence and spread of host plants in some ecological conditions.  相似文献   

19.
The chlorophyll (Chl) fluorescence imaging technique was applied to cashew seedlings inoculated with the fungus Lasiodiplodia theobromae to assess any disturbances in the photosynthetic apparatus of the plants before the onset of visual symptoms. Two-month-old cashew plants were inoculated with mycelium of L. theobromae isolate Lt19 or Lt32. Dark-adapted and light-acclimated whole plants or previously labelled, single, mature leaf from each plant were evaluated weekly for Chl fluorescence parameters. From 21 to 28 days, inoculation with both isolates resulted in the significantly lower maximal photochemical quantum yield of PSII (Fv/Fm) than those for control samples, decreasing from values of 0.78 to 0.62. In contrast, the time response of the measured fluorescence transient curve from dark-acclimated plants increased in both whole plants and single mature leaves in inoculated plants compared with controls. The Fv/Fm images clearly exhibited photosynthetic perturbations 14 days after inoculation before any visual symptoms appeared. Additionally, decays in the effective quantum yield of PSII photochemistry and photochemical quenching coefficient were also observed over time. However, nonphotochemical quenching increased during the evaluation period. We conclude that Fv/Fm images are the effective way of detecting early metabolic perturbations in the photosynthetic apparatus of cashew seedlings caused by gummosis in both whole plants and single leaves and could be potentially employed in larger-scale screening systems.  相似文献   

20.
Pathogens can alter host phenotypes in ways that influence interactions between hosts and other organisms, including insect disease vectors. Such effects have implications for pathogen transmission, as well as host exposure to secondary pathogens, but are not well studied in natural systems, particularly for plant pathogens. Here, we report that the beetle‐transmitted bacterial pathogen Erwinia tracheiphila – which causes a fatal wilt disease – alters the foliar and floral volatile emissions of its host (wild gourd, Cucurbita pepo ssp. texana) in ways that enhance both vector recruitment to infected plants and subsequent dispersal to healthy plants. Moreover, infection by Zucchini yellow mosaic virus (ZYMV), which also occurs at our study sites, reduces floral volatile emissions in a manner that discourages beetle recruitment and therefore likely reduces the exposure of virus‐infected plants to the lethal bacterial pathogen – a finding consistent with our previous observation of dramatically reduced wilt disease incidence in ZYMV‐infected plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号