首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Vertebrate ocular morphogenesis requires proper dorso‐ventral polarity within the optic vesicle, and loss of dorso‐ventral polarity results in failure of optic cup formation and domain specification, as shown by a reverse transplantation of the optic vesicle. We have shown previously that the ocular development depends not only on the signal within the antero‐ventral optic vesicle but also on the extraocular signals. In the present study, using embryonic transplantation of a discrete portion of the embryonic chick brain, we demonstrate formation of a second eye from the antero‐ventral hemicephalon when it was transplanted in the antero‐dorsal hemicephalon of the host embryo. The transplant consists of an antero‐ventral quadrant of the optic vesicle and the surrounding part of the anterior cephalon. The original dorso‐ventral polarity of the transplant was once cancelled and re‐established in accordance with that of the host embryo. Neither dorsal nor ventral cephalic halves in isolation did not develop into entire eye structures under the culture condition; the dorsal halves developed merely into the retinal pigmented epithelium and the ventral halves into the neural retina alone. The present study clearly suggests that extraocular dorsal and ventral signals counterbalance each other to specify the polarity of the optic vesicle.  相似文献   

2.
Proper dorsal--ventral pattern formation of the optic cup is essential for vertebrate eye morphogenesis and retinotectal topographic mapping. Previous studies have suggested that midline tissue-derived Sonic hedgehog (Shh) molecules play critical roles in establishing the bilateral eye fields and in determining the proximal--distal axis of the eye primordium. Here, we have examined the temporal requirements for Shh during the optic vesicle to optic cup transition and after early optic cup formation in chick embryos. Both misexpressing Shh by virus and blocking Shh activity by antibodies resulted in disruption of ventral ocular tissues. Decreasing endogenous Shh signals unexpectedly revealed a sharp morphological boundary subdividing dorsal and ventral portions of the optic cup. In addition, Shh signals differentially influenced expression patterns of genes involved in ocular tissue specification (Pax6, Pax2, and Otx2) and dorsal--ventral patterning (cVax) within the ventral but not dorsal optic cup. Ectopic Shh suppressed expression of Bone Morphogenetic Protein 4 (BMP4) in the dorsal retina, whereas reducing endogenous Sonic hedgehog activity resulted in a ventral expansion of BMP4 territory. These results demonstrate that temporal requirements for Shh signals persist after the formation of the optic cup and suggest that the early vertebrate optic primordium may be subdivided into dorsal and ventral compartments. We propose a model in which ventrally derived Shh signals and dorsally restricted BMP4 signals act antagonistically to regulate the growth and specification of the optic primordium.  相似文献   

3.
Accumulating evidence suggests that Sonic hedgehog (Shh) signaling plays a crucial role in eye vesicle patterning in vertebrates. Shh promotes expression of Pax2 in the optic stalk and represses expression of Pax6 in the optic cup. Shh signaling contributes to establishment of both proximal–distal and dorsal–ventral axes by activating Vax1, Vax2, and Pax2. In the dorsal part of the developing retina, Bmp4 is expressed and antagonizes the ventralizing effects of Shh signaling through the activation of Tbx5 expression in chick and Xenopus. To examine the roles of Shh signaling in optic cup formation and optic stalk development, we utilized the Smoothened (Smo) conditional knockout (CKO) mouse line. Smo is a membrane protein which mediates Shh signaling into inside of cells. Cre expression was driven by Fgf15 enhancer. The ventral evagination of the optic cup deteriorated from E10 in the Smo-CKO, whereas the dorsal optic cup and optic stalk develop normally until E11. We analyzed expression of various genes such as Pax family (Pax2/Pax6), Vax family (Vax1/Vax2) and Bmp4. Bmp4 expression was greatly upregulated in the optic vesicle by the 21-somite stage. Then Vax1/2 expression was decreased at the 20- to 24-somite stages. Pax2/6 expression was affected at the 27- to 32-somite stages. Our data suggest that the effects of the absence of Shh signaling on Vax1/Vax2 are mediated through increased Bmp4 expression throughout the optic cup. Also unchanged patterns of Raldh2 and Raldh3 suggest that retinoic acid is not the downstream to Shh signaling to control the ventral optic cup morphology.  相似文献   

4.
Dorso-ventral and proximo-distal axis formation of the optic cup is apparent from early stages of development. Pax6 is initially detectable in the optic vesicle and later shows a distal-high and proximal-low gradient of expression in the retina. To determine the early role of Pax6 in pattern formation of the optic cup, we expressed Pax6 ectopically in the optic vesicle of stages 9-10 chick embryos by in ovo electroporation, which resulted in a small eye-like phenotype. The signaling molecule fibroblast growth factor (FGF)8, which appears to be restricted to the central retina, was increased, whereas bone morphogenetic protein (BMP)4 and Tbx5, two dorsal markers, were down-regulated in Pax6-electroporated eye. Pax6 overexpression also decreased the expression of the ventral marker Vax. Electroporation with a dominant-negative form of Pax6 resulted in a decrease in FGF8 expression, but BMP4 expression was unaffected initially while it was diminished later. Our data suggest a new role for Pax6 in regulating FGF8 and BMP4 expression during pattern formation of the optic cup, and that a Pax6-regulated balance between FGF8 and BMP4 is critical for retinogenesis.  相似文献   

5.
We have investigated the role of retinoic acid (RA) in eye development using the vitamin A deficient quail model system, which overcomes problems of retinoic acid synthesising enzyme redundancy in the embryo. In the absence of retinoic acid, the ventral optic stalk and ventral retina are missing, whereas the dorsal optic stalk and dorsal retina develop appropriately. Other ocular abnormalities observed were a thinner retina and the lack of differentiation of the lens. In an attempt to explain this, we studied the expression of various dorsally and ventrally expressed genes such as Pax2, Pax6, Tbx6, Vax2, Raldh1 and Raldh3 and noted that they were unchanged in their expression patterns. In contrast, the RA catabolising enzymes Cyp26A1 and Cyp26B1 which are known to be RA-responsive were not expressed at all in the developing eye. At much earlier stages, the expression domain of Shh in the prechordal plate was reduced, as was Nkx2.1 and we suggest a model whereby the eye field is specified according to the concentration of SHH protein that is present. We also describe another organ, Rathke's pouch which fails to develop in the absence of retinoic acid. We attribute this to the down-regulation of Bmp2, Shh and Fgf8 which are known to be involved in the induction of this structure.  相似文献   

6.
7.
Dorsal and ventral specification in the early optic vesicle appears to play a crucial role in the proper development of the eye. In the present study, we performed embryonic transplantation and organ culturing of the chick optic vesicle in order to investigate how the dorsal-ventral (D-V) polarity is established in the optic vesicle and what role this polarity plays in proper eye development. The left optic vesicle was cut and transplanted inversely in the right eye cavity of host chick embryos. This method ensured that the D-V polarity was reversed while the anteroposterior axis remained normal. The results showed that the location of the choroid fissure was altered from the normal (ventral) to ectopic positions as the embryonic stage of transplantation progressed from 6 to 18 somites. At the same time, the shape of the optic vesicle and the expression patterns of Pax2 and Tbx5, marker genes for ventral and dorsal regions of the optic vesicle, respectively, changed concomitantly in a similar way. The crucial period was between the 8- and 14-somite stages, and during this period the polarity seemed to be gradually determined. In ovo explant culturing of the optic vesicle showed that the D-V polarity and choroid fissure formation were already specified by the 10-somite stage. These results indicate that the D-V polarity of the optic vesicle is established gradually between 8- and 14-somite stages under the influence of signals derived from the midline portion of the forebrain. The presumptive signal(s) appeared to be transmitted from proximal to distal regions within the optic vesicle. A severe anomaly was observed in the development of optic vesicles reversely transplanted around the 10-somite stage: the optic cup formation was disturbed and subsequently the neural retina and pigment epithelium did not develop normally. We concluded that establishment of the D-V polarity in the optic vesicle plays an essential role in the patterning and differentiation of the neural retina and pigment epithelium.  相似文献   

8.

Background  

Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4) is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4) acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse.  相似文献   

9.
The optic disc develops at the interface between optic stalk and retina, and enables both the exit of visual fibres and the entrance of mesenchymal cells that will form the hyaloid artery. In spite of the importance of the optic disc for eye function, little is known about the mechanisms that control its development. Here, we show that in mouse embryos, retinal fissure precursors can be recognised by the expression of netrin 1 and the overlapping distribution of both optic stalk (Pax2, Vax1) and ventral neural retina markers (Vax2, Raldh3). We also show that in the absence of Bmp7, fissure formation is not initiated. This absence is associated with a reduced cell proliferation and apoptosis in the proximoventral quadrant of the optic cup, lack of the hyaloid artery, optic nerve aplasia, and intra-retinal misrouting of RGC axons. BMP7 addition to organotypic cultures of optic vesicles from Bmp7-/- embryos rescues Pax2 expression in the ventral region, while follistatin, a BMP7 antagonist, prevents it in early, but not in late, optic vesicle cultures from wild-type embryos. The presence of Pax2-positive cells in late optic cup is instead abolished by interfering with Shh signalling. Furthermore, SHH addition re-establishes Pax2 expression in late optic cups derived from ocular retardation (or) embryos, where optic disc development is impaired owing to the near absence of SHH-producing RGC. Collectively, these data indicate that BMP7 is required for retinal fissure formation and that its activity is needed, before SHH signalling, for the generation of PAX2-positive cells at the optic disc.  相似文献   

10.
11.
We have examined the roles of BMP4, Shh, and retinoic acid in establishing the proximal-distal and dorsal-ventral axes in the developing Xenopus eye. Misexpression of BMP4 caused the absence of an optic stalk and the expansion of dorsal and distal markers, tbx2/3/5, and pax6, at the expense of ventral and proximal markers vax2 and pax2. When Shh or Noggin, an antagonist of BMPs, was misexpressed, the reverse expression patterns of these marker genes were observed. These results suggest that BMP4 is involved in the specification of not only dorsal in the optic cup but also distal in the optic vesicle. Because Shh did not suppress bmp4 expression, unlike Noggin, Shh and BMP4 may antagonistically regulate common downstream genes in developing eye. We also found the difference between the effects of Shh and retinoic acid, another possible ventralizing factor, suggesting that Shh could promote ventralization independently of retinoic acid. These findings provide important clues to the coordinate and antagonistic actions of BMP4, Shh, and retinoic acid in axes specifications of Xenopus eyes.  相似文献   

12.
We have previously shown that retinoic acid (RA) synthesized by the retinaldehyde dehydrogenase 2 (RALDH2) is required in forebrain development. Deficiency in RA due to inactivation of the mouse Raldh2 gene or to complete absence of retinoids in vitamin-A-deficient (VAD) quails, leads to abnormal morphogenesis of various forebrain derivatives. In this study we show that double Raldh2/Raldh3 mouse mutants have a more severe phenotype in the craniofacial region than single null mutants. In particular, the nasal processes are truncated and the eye abnormalities are exacerbated. It has been previously shown that retinoids act mainly on cell proliferation and survival in the ventral forebrain by regulating SHH and FGF8 signaling. Using the VAD quail model, which survives longer than the Raldh-deficient mouse embryos, we found that retinoids act in maintaining the correct position of anterior and dorsal boundaries in the forebrain by modulating FGF8 anteriorly and WNT signaling dorsally. Furthermore, BMP4 and FGF8 signaling are affected in the nasal region and BMP4 is ventrally expanded in the optic vesicle. At the optic cup stage, Pax6, Tbx5 and Bmp4 are ectopically expressed in the presumptive retinal pigmented epithelium (RPE), while Otx2 and Mitf are not induced, leading to a dorsal transdifferentiation of RPE to neural retina. Therefore, besides being required for survival of ventral structures, retinoids are involved in restricting anterior identity in the telencephalon and dorsal identity in the diencephalon and the retina.  相似文献   

13.
During mammalian ocular development, several signaling pathways control the spatiotemporal highly defined realization of the three-dimensional eye architecture. Given the complexity of these inductive signals, the developing eye is a sensitive organ for several diseases.In this study, we investigated a Dkk1+/− haploinsufficiency during eye development, resulting in coloboma and anterior eye defects, two common developmental eye disorders. Dkk1 impacts eye development from a defined developmental time point on, and is critical for lens separation from the surface ectoderm via β-catenin mediated Pdgfrα and E-cadherin expression. Dkk1 does not impact the dorso ventral retina patterning in general but is critical for Shh dependent Pax2 extension into the midline region.The described results also indicate that the retinal Dkk1 dose is critical for important steps during eye development, such as optic fissure closure and cornea formation. Further analysis of the relationship between Dkk1 and Shh signaling revealed that Dkk1 and Shh coordinatively control anterior head formation and eye induction. During eye development itself, retinal Dkk1 activation is depending on cilia mediated Gli3 regulation. Therefore, our data essentially improve the knowledge of coloboma and anterior eye defects, which are common human eye developmental defects.  相似文献   

14.
Dorsal-ventral (DV) specification in the early optic vesicle plays a crucial role in the proper development of the eye. To address the questions of how DV specification is determined and how it affects fate determination of the optic vesicle, isolated optic vesicles were cultured either in vitro or in ovo. The dorsal and ventral halves of the optic vesicle were fated to develop into retinal pigment epithelium (RPE) and neural retina, respectively, when they were separated from each other and cultured. In optic vesicles treated with collagenase to remove the surrounding tissues, the neuroepithelium gave rise to cRax expression but not Mitf, suggesting that surrounding tissues are necessary for RPE specification. This was also confirmed in in ovo explant cultures. Combination cultures of collagenase-treated optic vesicles with either the dorsal or ventral part of the head indicated that head-derived factors have an important role in the fate determination of the optic vesicle: in the optic vesicles co-cultured with the dorsal part of the head Mitf expression was induced in the neuroepithelium, while the ventral head portion did not have this effect. The dorsal head also suppressed Pax2 expression in the optic vesicle. These observations indicate that factors from the dorsal head portion have important roles in the establishment of DV polarity within the optic vesicle, which in turn induces the patterning and differentiation of the neural retina and pigment epithelium.  相似文献   

15.
In the embryonic neural tube, multiple signaling pathways work in concert to create functional neuronal circuits in the adult spinal cord. In the ventral neural tube, Sonic hedgehog (Shh) acts as a graded morphogen to specify neurons necessary for movement. In the dorsal neural tube, bone morphogenetic protein (BMP) and Wnt signals cooperate to specify neurons involved in sensation. Several signaling pathways, including Shh, rely on primary cilia in vertebrates. In this study, we used a mouse mutant with abnormal cilia, Arl13bhnn, to study the relationship between cilia, cell signaling, and neural tube patterning. Arl13bhnn mutants have abnormal ventral neural tube patterning due to disrupted Shh signaling; in addition, dorsal patterning defects occur, but the cause of these is unknown. Here we show that the Arl13bhnn dorsal patterning defects result from abnormal BMP signaling. In addition, we find that Wnt ligands are abnormally expressed in Arl13bhnn mutants; surprisingly, however, downstream Wnt signaling is normal. We demonstrate that Arl13b is required non-autonomously for BMP signaling and Wnt ligand expression, indicating that the abnormal Shh signaling environment in Arl13bhnn embryos indirectly causes dorsal defects.  相似文献   

16.
17.
18.
Pax2 is essential for the development of the urogenital system, neural tube, otic vesicle, optic cup and optic tract [Dressler, G.R., Deutsch, U., et al., 1990. PAX2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109 (4), 787-795; Nornes, H.O., Dressler, G.R., et al., 1990. Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109 (4), 797-809; Eccles, M.R., Wallis, L.J., et al., 1992. Expression of the PAX2 gene in human fetal kidney and Wilms’ tumor. Cell Growth Differ 3 (5), 279-289]. Within the visual system, a loss-of-function leads to lack of choroid fissure closure (known as a coloboma), a loss of optic nerve astrocytes, and anomalous axonal pathfinding at the optic chiasm [Favor, J., Sandulache, R., et al., 1996. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. U. S. A. 93 (24), 13870-13875; Torres, M., Gomez-Pardo, E., et al., 1996. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122 (11), 3381-3391]. This study is directed at determining the effects of ectopic Pax2 expression in the chick ventral optic cup past the normal developmental period when Pax2 is found. In ovo electroporation of Pax2 into the chick ventral optic cup results in the formation of colobomas, a condition typically associated with a loss of Pax2 expression. While the overexpression of Pax2 appears to phenocopy a loss of Pax2, the mechanism of the failure of choroid fissure closure is associated with a cell fate switch from ventral retina and retinal pigmented epithelium (RPE) to an astrocyte fate. Further, ectopic expression of Pax2 in RPE appears to have non-cell autonomous effects on adjacent RPE, creating an ectopic neural retina in place of the RPE.  相似文献   

19.
The processes that specify early regional identity in dorsal and lateral regions of the mammalian neural tube are not well understood. The mouse open brain (opb) gene plays an essential role in dorsal neural patterning: in the caudal spinal cord of opb mutants, dorsal cell types are absent and markers of ventral fates, including Shh, expand into dorsal regions. Analysis of the opb mutant phenotype and of opb/opb <--> wild-type chimeric embryos reveals that early in neural development, the wild-type opb gene (opb(+)) is required cell autonomously for the expression of Pax7 in dorsal cells and Pax6 in lateral cells. Thus the opb(+) gene product acts intracellularly in the reception or interpretation of signals that determine cell types in the dorsal 80% of the neural tube. At later stages, the lack of opb(+) causes a non-cell-autonomous expansion of ventral cell types into dorsal regions of the neural tube, revealing that opb(+) controls the production of a diffusible molecule that defines the domain of Shh expression. The data indicate that opb(+) could act as either a novel component of a dorsalizing pathway or a novel intracellular negative regulator of the Shh signal transduction pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号