首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zhu M  Yu X  Choo B  Qu Q  Jia L  Zhao W  Qiao T  Lu J 《PloS one》2012,7(4):e35103

Background

The pectoral and pelvic girdles support paired fins and limbs, and have transformed significantly in the diversification of gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, acanthodians and placoderms). For instance, changes in the pectoral and pelvic girdles accompanied the transition of fins to limbs as some osteichthyans (a clade that contains the vast majority of vertebrates – bony fishes and tetrapods) ventured from aquatic to terrestrial environments. The fossil record shows that the pectoral girdles of early osteichthyans (e.g., Lophosteus, Andreolepis, Psarolepis and Guiyu) retained part of the primitive gnathostome pectoral girdle condition with spines and/or other dermal components. However, very little is known about the condition of the pelvic girdle in the earliest osteichthyans. Living osteichthyans, like chondrichthyans (cartilaginous fishes), have exclusively endoskeletal pelvic girdles, while dermal pelvic girdle components (plates and/or spines) have so far been found only in some extinct placoderms and acanthodians. Consequently, whether the pectoral and pelvic girdles are primitively similar in osteichthyans cannot be adequately evaluated, and phylogeny-based inferences regarding the primitive pelvic girdle condition in osteichthyans cannot be tested against available fossil evidence.

Methodology/Principal Findings

Here we report the first discovery of spine-bearing dermal pelvic girdles in early osteichthyans, based on a new articulated specimen of Guiyu oneiros from the Late Ludlow (Silurian) Kuanti Formation, Yunnan, as well as a re-examination of the previously described holotype. We also describe disarticulated pelvic girdles of Psarolepis romeri from the Lochkovian (Early Devonian) Xitun Formation, Yunnan, which resemble the previously reported pectoral girdles in having integrated dermal and endoskeletal components with polybasal fin articulation.

Conclusions/Significance

The new findings reveal hitherto unknown similarity in pectoral and pelvic girdles among early osteichthyans, and provide critical information for studying the evolution of pelvic girdles in osteichthyans and other gnathostomes.  相似文献   

2.
3.
In terrestrial vertebrates, the pelvic girdle can reliably predict locomotor mode. Because of the diminished gravitational effects on positively buoyant bony fish, the same relationship does not appear to exist. However, within the negatively buoyant elasmobranch fishes, benthic batoids employ pelvic fin bottom‐walking and punting as primary or supplementary forms of locomotion. Therefore, in this study, we employed geometric and linear morphometrics to investigate if their pelvic girdles exhibit shape characteristics similar to those of sprawling terrestrial vertebrates. We tested for correlates of pelvic girdle shape with 1) Order, 2) Family, 3) Swim Mode, and/or 4) Punt Mode. Landmarks and semilandmarks were placed along outlines of dorsal views of 61 batoid pelvic girdles (3/3 orders, 10/13 families, 35/72 genera). The first three relative warps explained 88.45% of the variation among individuals (P < 0.01%). Only Order and Punt Mode contained groups that were all significantly different from each other (P < 0.01%). Discriminant function analyses indicated that the majority of variation within each category was due to differences in extension of lateral and prepelvic processes and puboischiac bar angle. Over 60% of the original specimens and 55% of the cross‐validated specimens were correctly classified. The neutral angle of the propterygium, which articulates with the pelvic girdle, was significantly different among punt modes, whereas only pectoral fin oscillators had differently shaped pelvic girdles when compared with batoids that perform other swimming modes (P < 0.01). Pelvic girdles of batoids vary greatly, and therefore, likely function in ways not previously described in teleost fishes. This study illustrates that pelvic girdle shape is a good predictor of punt mode, some forms of swimming mode, and a species' Order. Such correlation between locomotor style and pelvic girdle shape provides evidence for the convergent evolution of morphological features that support both sprawled‐gait terrestrial walking and aquatic bottom‐walking. J. Morphol. 275:100–110, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Summary The Archipterygium is Gegenbaur’s most lasting contribution to the study of vertebrate limb evolution. This transformational hypothesis of gill arches to limb girdles, rays to fins, and proposal of a vertebrate fin-limb groundplan, is generally treated as a flawed alternative to the more widely accepted lateral fin-fold hypothesis of vertebrate limb evolution. When compared to the phylogenetic distribution and diversity of fins and limbs, both hypotheses fail. Dermal skeletal lateral folds, spines and keels originate repeatedly in vertebrate evolution, but paired fins with girdles originate at pectoral level and are anteroposteriorly restricted. Pelvic fins emerge later in phylogeny; pectoral and pelvic appendages primitively differ. Endoskeletal girdles never exhibit characteristics of gill arches. The emergent sequence of paired fin evolution depends upon phylogenetic hypotheses within which extant agnathan interrelationships are uncertain; positions of jawless fossil fish along the gnathostome stem are insecure; the fossil data set is patchy. However, certain features of the data set are robust. This has prompted a reconsideration of Gegenbaur’s hypothesized arch-girdle relationship, and an iterative homology between scapulocoracoid and extrabranchial cartilages is suggested. No transformation of arch to girdle is necessarily implied, but some signal of developmental relatedness is predicted.  相似文献   

5.
Adipose fins are appendages found on the dorsal midline between the dorsal and caudal fins in more than 6000 living species of teleost fishes. It has been consistently argued that adipose fins evolved once and have been lost repeatedly across teleosts owing to limited function. Here, we demonstrate that adipose fins originated repeatedly by using phylogenetic and anatomical evidence. This suggests that adipose fins are adaptive, although their function remains undetermined. To test for generalities in the evolution of form in de novo vertebrate fins, we studied the skeletal anatomy of adipose fins across 620 species belonging to 186 genera and 55 families. Adipose fins have repeatedly evolved endoskeletal plates, anterior dermal spines and fin rays. The repeated evolution of fin rays in adipose fins suggests that these fins can evolve new tissue types and increased structural complexity by expressing fin-associated developmental modules in these new territories. Patterns of skeletal elaboration differ between the various occurrences of adipose fins and challenge prevailing hypotheses for vertebrate fin origin. Adipose fins represent a powerful and, thus far, barely studied model for exploring the evolution of vertebrate limbs and the roles of adaptation and generative biases in morphological evolution.  相似文献   

6.
7.
Cutaneous taste buds in gadoid fishes   总被引:6,自引:0,他引:6  
Cutaneous taste buds occurred on the head and fins in five species of juvenile gadoid fishes from the west of Scotland, but there were significant differences in their density between regions on the fish and between species for individual regions. The highest taste bud densities were recorded on the edge of the anterior naris flap, the barbel, pelvic fin rays, snout tip and upper lip. Cod Gadus morhua and poor cod Trisopterus minutus had significantly higher taste bud densities on the first two pelvic fin rays than the other species. This appears to correspond with their more benthic lifestyle, in which the pelvic fins are frequently trailed over the sea bed when searching for prey.  相似文献   

8.
The development of the tetrapod pectoral and pelvic girdles is intimately linked to the proximal segments of the fore‐ and hindlimbs. Most studies on girdles are osteological and provide little information about soft elements such as muscles and tendons. Moreover, there are few comparative developmental studies. Comparative data gleaned from cleared‐and‐stained whole mounts and serial histological sections of 10 species of hylid frogs are presented here. Adult skeletal morphology, along with bones, muscles, and connective tissue of both girdles and their association with the proximal portions of the anuran fore‐ and hindlimbs are described. The data suggest that any similarity could be attributable to the constraints of their ball‐and‐socket joints, including incorporation of the girdle and stylopodium into a single developmental module. An ancestral state reconstruction of key structures and developmental episodes reveals that several development events occur at similar stages in different species, thereby preventing heterochronic changes. The medial contact of the halves of the pectoral girdle coincides with the emergence of the forelimbs from the branchial chamber and with the total differentiation of the linkage between the axial skeleton and the girdles. The data suggest that morphogenic activity in the anterior dorsal body region is greater than in the posterior one, reflecting the evolutionary sequence of the development of the two girdles in ancient tetrapods. The data also document the profound differences in the anatomy and development of the pectoral and pelvic girdles, supporting the proposal that the pectoral and pelvic girdles are not serially homologous, as was long presumed.  相似文献   

9.
Although the ray‐finned fishes are named for their bony, segmented lepidotrichia (fin rays), we are only beginning to understand the morphological and functional diversity of this key vertebrate structure. Fin rays support the fin web, and their material properties help define the function of the entire fin. Many earlier studies of fin ray morphology and function have focused on isolated rays, or on rays from only one or two fins. At the same time, relatively little is known about how different preservation techniques affect the material properties of many vertebrate structures, including fin rays. Here, we use three‐point bending tests to examine intra‐ and inter‐fin variation in the flexural stiffness of fin rays from yellow perch, Perca flavescens. We sampled fin rays from individuals that were assigned to one of three preservation treatments: fresh, frozen, and preserved with formalin. The flexural stiffness of the fin rays varied within and among fins. Pelvic‐fin rays were the stiffest, and pectoral fin rays the least stiff. The fin rays of the dorsal, anal, and caudal fins all had similar stiffness values, which were intermediate relative to those from the paired fins. The flexural stiffness of the fin rays was higher in rays that were at the leading edge of the fin. This variation in flexural stiffness was associated with variation in joint density and the relative length of the unsegmented proximal base of the fin rays. There was no significant difference in flexural stiffness between fresh and frozen specimens. In specimens preserved with formalin, there is a small but significant effect on stiffness in smaller fin rays.  相似文献   

10.
Specimens of a new genus and species of the stichaeid fish,Leptostichaeus pumilus, were collected from the Okhotsk Sea off Hokkaido in Japan. The present new genus and species clearly differs from all the other genera and species of the stichaeid fishes in the following characters: 3 or 4 pectoral fin rays; 10 or fewer caudal principal rays; 79–82 dorsal spines; no pelvic fin; last interneural spine supporting a single dorsal spine; infraorbital, occipital and lateral line canals absent; moderate size of dorsal spine shorter than eye diameter; membranes of dorsal and anal fins widely connected with caudal fin; a large black spot divided by a yellow band present just above gill cover.  相似文献   

11.
In teleost fishes, the position of the pelvic fins shift during evolution; this positional shift seems to have diversified their locomotion and feeding behavior, thereby expanding the habitats of these fishes. Thus, such a positional shift of the pelvic fins is one of the significant features of teleost fishes from evolutionary, embryological, and taxonomic viewpoints, but no studies to date have investigated the mechanism for the rostral shift of the pelvic fins from the anal region in teleosts. Examining the fate of the prospective pelvic fin cells of the zebrafish Danio rerio and the Nile tilapia Oreochromis niloticus embryos demonstrates that the prospective pelvic fin cells are originally located near the anus, as seen in tetrapods, but their position shifts with respect to the body trunk after its protrusion from the yolk surface. In this article, we highlight such recent findings and discuss the mechanisms of pelvic fin evolution among teleost fishes.  相似文献   

12.
Pumpkinseed Lepomis gibbosus and rock bass Ambloplites rupestris stream populations of both sexes were significantly different in external morphology from lake populations in a central Ontario, Canada, watershed. The predictions that stream fishes would be more slender-bodied, and have a more anterior placement of lateral fins than lake fishes were generally supported. The prediction that stream fishes would have a more robust caudal peduncle was partially supported. The prediction that fin size would be larger in stream fishes was not supported, as lake rock bass generally had longer and wider fins than those from stream sites. The results suggest that in some species, smaller fins may be favoured in stream-dwelling individuals because the reduction of drag during swimming more than compensates for their reduced power and propulsion efficiency in a current. Smaller fin size in stream-dwelling centrarchids may be related to their body shape, or to their low usage of fast-moving water within the streams they inhabit.  相似文献   

13.
The endoskeletal girdles, anocleithrum and paired fin supports of the porolepiform fish Glyptolepis (Osteichthyes: Sarcopterygii: Porolepiformes) are figured and described. The pectoral fin skeleton is known from the proximal part only and the pelvic fin skeleton is fragmentary, but the scapulocoracoid, anocleithrum and pelvic girdle can be reconstructed in their entirety. The anocleithrum is entirely subdermal. The pectoral fin skeleton in shown to be biserial, with a large number of axial mesomeres, whereas the pelvic fin contains fewer mesomeres and is strongly asymmetrical with very few postaxial radials. The scapulocoracoid is essentially similar to a reconstruction figured by Jarvik (1980), but has a more elongate glenoid; this has functional implications. The pelvic girdle consists of two separate halves as in Eusthenopteron, but differs from that genus in lacking dorsolateral rami. A brief survey of the evidence of paired fin structure in other porolepiform genera is carried out to establish whether the structures seen in Glyptolepis are likely to be representative for the Porolepiformes. A study of the morphology and muscle attachments of the paired fin skeletons indicates that the pattern of fin movement was significantly different from that in Neoceratodus. The fin supports and girdles of Glyptolepis are compared with those of other sarcopterygian groups as well as with actinopterygians, placoderms and sharks, in order to establish evolutionary polarities. Glyptolepis is shown to display a number of derived characters. The information gained from the comparison is used to construct a maximum parsimony cladogram, which places coelacanths as the sister group of porolepiforms + lungfishes, with the rhizodonts + tetrapods and osteolepiforms as successive sister groups of this clade. Characters of uncertain polarity are considered in the light of this cladogram. A comparison with recently published cladograms shows that none are completely compatible with the results from this study.  相似文献   

14.
Two new species and a new record of Sinogastromyzon are described from Lixianjiang River of Yunnan province, China. Sinogastromyzon lixianjiangensis, new species, can be distinguished from its congeners by the following characters: pectoral fin with XIII–XIV, 15–17 rays; pelvic fin with X–XI, 10–12 rays; 60–65 lateral-line scales; no scales on the dorsum of paired fins or the region between axilla of pectoral fin and pelvic-fin origin; tip of pelvic fin close to anus; tip of anal fin close to caudal-fin base; anal-fin origin nearer to the caudal-fin base than to the posterior pelvic-fin base; anus nearer to anal-fin origin than to the posterior pelvic-fin base; dorsal side of the body with 9–11 black blotches. Sinogastromyzon macrostoma, new species can be distinguished from its congeners by the following characters: pectoral fin with XII–XIV, 12–15 rays; pelvic fin with VII–IX, 11–13 rays; 48–56 lateral-line scales; mouth extremely big, slightly arched; no scales on the dorsum of paired fins or the region between axilla of pectoral fin and pelvic-fin origin; tip of pelvic fin far beyond anus; tip of anal fin far from caudal-fin base; anal-fin origin about midway between the posterior pelvic-fin base and caudal-fin base; anus nearer to posterior pelvic-fin base than to anal-fin origin; dorsal side of the body uniformly gray, without regular blotches in formalin preserved specimen. Sinogastromyzon cf. multiocellum is firstly recorded in China.  相似文献   

15.
Juveniles from three species of Hawaiian gobiid fishes climb waterfalls as part of an amphidromous life cycle, allowing them to re-penetrate adult upstream habitats after being swept out to the ocean upon hatching. The importance of climbing for juvenile stream gobies is well established, but adult fish in upstream island habitats also face potential downstream displacement by periodic disturbances. Thus, retention of climbing ability could be advantageous for adult stream gobies. Climbing performance might be expected to decline among adults, however, due to the tendency for mass-specific muscular power production to decrease with body size, and a lack of positively allometric growth among structures like the pelvic sucker that support body weight against gravity. To evaluate changes in waterfall-climbing ability with body size in Hawaiian stream gobies, we compared climbing performance and kinematics between adults and juveniles from three species: Awaous guamensis , Sicyopterus stimpsoni and Lentipes concolor . For species in which juveniles climbed using 'powerbursts' of axial undulation, adult performance and kinematics showed marked changes: adult A. guamensis failed to climb, and adult L. concolor used multiple pectoral fin adductions to crutch up surfaces at slow speeds, rather than rapid powerbursts. Adult S. stimpsoni , like juveniles, still used oral and pelvic suckers to 'inch' up surfaces and climbed at speeds comparable to those of juveniles. However, unlike juveniles, adult S. stimpsoni also add pectoral fin crutching to every climbing cycle. Thus, although powerburst species appear to be particularly susceptible to size-related declines in waterfall-climbing performance, the addition of compensatory mechanisms prevents the loss of this novel function in some species.  相似文献   

16.
Benthochromis horii , a new cichlid species is described based on 19 type specimens from the deep waters of Lake Tanganyika. It differs from its congeners by having smaller eyes and longer snout (eye length usually shorter than snout length v. equal to or longer than snout length in Benthochromis tricoti and Benthochromis melanoides ), and more dorsal fin rays (total number of spines and soft rays in dorsal fin usually 30 or 31 v. usually 28 or 29 in B. tricoti and B. melanoides ). Large males of the new species differ from those of congeneric species in terms of their body colour pattern and long pelvic fins. This species has been confused with B. tricoti and has been traded as an aquarium fish.  相似文献   

17.
The structure of the dermal pectoral girdle of teleostean fishes is analyzed in relation to its functions. In bony fishes the vertebral column, with a horizontal axis, and the pectoral girdle, with a basically vertical axis, form the only skeletal links between the head and the body. The individual bones of the dermal girdle are considered as supporting units joined by a series of articulations that permit differential movement between adjacent bones. The movements mediated by this linkage system are: lateral swinging of the head relative to the body, expansion of the distance between the central areas of the two pectoral girdles to permit passage of large food items, and fore-and-aft movements of the anteroventral ends of the cleithra relative to the skull. Among other factors affecting the structure of the dermal pectoral girdle are the provision for the support of the pectoral fin base and the requirement for the effective operation of a sleeve valve between the girdle and the opercular cover.
Modifications of the dermal pectoral girdle in ostariophysine fishes are discussed. A brief history of the bony fish girdle in terms of its functional components is postulated.  相似文献   

18.
The pelvic fin position among teleost fishes has shifted rostrally during evolution, resulting in diversification of both behavior and habitat. We explored the developmental basis for the rostral shift in pelvic fin position in teleost fishes using zebrafish (abdominal pelvic fins) and Nile tilapia (thoracic pelvic fins). Cell fate mapping experiments revealed that changes in the distribution of lateral plate mesodermal cells accompany the trunk-tail protrusion. Presumptive pelvic fin cells are originally located at the body wall adjacent to the anterior limit of hoxc10a expression in the spinal cord, and their position shifts rostrally as the trunk grows. We then showed that the differences in pelvic fin position between zebrafish and Nile tilapia were not due to changes in expression or function of gdf11. We also found that hox-independent motoneurons located above the pelvic fins innervate into the pelvic musculature. Our results suggest that there is a common mechanism among teleosts and tetrapods that controls paired appendage positioning via gdf11, but in teleost fishes the position of prospective pelvic fin cells on the yolk surface shifts as the trunk grows. In addition, teleost motoneurons, which lack lateral motor columns, innervate the pelvic fins in a manner independent of the rostral-caudal patterns of hox expression in the spinal cord.  相似文献   

19.
《Journal of morphology》2017,278(12):1716-1725
The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny‐finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin.  相似文献   

20.
The pectoral fins of Acipenseriformes possess endoskeletons with elements homologous to both the fin radials of teleosts and the limb bones of tetrapods. Here we present a study of pectoral fin development in the North American paddlefish, Polyodon spathula, and the white sturgeon, Acipenser transmontanus, which reveals that aspects of both teleost and tetrapod endoskeletal patterning mechanisms are present in Acipenseriformes. Those elements considered homologous to teleost radials, the propterygium and the mesopterygial radials, form via subdivision of an initially chondrogenic plate of mesenchymal cells called the endoskeletal disc. In Acipenseriformes, elements homologous to the sarcopterygian metapterygium develop separately from the endoskeletal disc as an outgrowth of the endoskeletal shoulder girdle that extends into the posterior margin of the finbud. As in tetrapods, the elongating metapterygium and the metapterygial radials form in a proximal to distal order as discrete condensations from initially nonchondrogenic mesenchyme. Patterns of variation seen in the Acipenseriform fin also correlate with putative homology: all variants from the "normal" fin bauplan involved the metapterygium and the metapterygial radials alone. The primary factor distinguishing Polyodon and Acipenser fin development from each other is the composition of the endoskeletal extracellular matrix. Proteoglycans (visualized with Alcian Blue) and Type II collagen (visualized by immunohistochemistry) are secreted in different places within the mesenchymal anlage of the fin elements and girdle and at different developmental times. Acipenseriform pectoral fins differ from the fins of teleosts in the relative contribution of the endoskeleton and dermal rays. The fins of Polyodon and Acipenser possess elaborate endoskeletons overlapped along their distal margins by dermal lepidotrichia. In contrast, teleost fins generally possess relatively small endoskeletal radials that articulate with the dermal fin skeleton terminally, with little or no proximodistal overlap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号