首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In forests, negative density/distance-dependent seedling mortality (NDD) caused by natural enemies plays a key role in maintaining species diversity [Janzen–Connell (J–C) model]. However, the relative importance of natural enemies in mediating NDD under heterogeneous light conditions has remained unclear. We examined the relative importance of pathogens (i.e., soil pathogens, leaf diseases) on seedling performance in forest understories (FUs) and gaps (gaps) during a 3-year period (results of first year of our study have been previously reported). For the hardwood, Prunus grayana, we investigated seedling mortality, morbidity agents, growth, and root infection by arbuscular mycorrhizal fungi (AMF) beneath conspecific and heterospecific adults in FUs and gaps. Seedling mortality was higher beneath conspecific than heterospecific adults throughout 3 years at both sites, mainly due to continuous leaf disease (i.e., angular leaf spot), whereas damping-off diseases caused mortality only in the first year. Beneath each adult, seedling mortality was higher in FUs than in gaps until second year, but it did not differ between two habitat types in the third year, because leaf diseases caused severe damage even in gaps. Seedling mass was significantly lower beneath conspecific adults. AMF infection of seedlings was also lower beneath conspecific adults, while it was higher in gaps than in FUs beneath both adults. This study demonstrates that the J–C model in a hardwood tree, P. grayana is mainly driven by high NDD seedling mortality caused by airborne leaf diseases, which continuously attack seedlings in a NDD manner regardless of environmental light conditions.  相似文献   

2.
Negative density‐dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant‐soil feedbacks. In field censuses of six 1‐ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant‐soil feedbacks that contribute to community‐level and population‐level compensatory trends in seedling survival.  相似文献   

3.
Forest community structure may be influenced by seedling density dependence, however, the effect is loosely coupled with population dynamics and diversity in the short term. In the long term the strength of conspecific density dependence may fluctuate over time because of seedling abundance, yet few long‐term studies exist. Based on 11 years of seedling census data and tree census data from a 25‐ha temperate forest plot in Northeast China, we used generalized linear mixed models to test the relative effects of local neighborhood density and abiotic factors on seedling density and seedling survival. Spatial point pattern analysis was used to determine if spatial patterns of saplings and juveniles, in relation to conspecific adults, were in accordance with patterns uncovered by conspecific negative density dependence at the seedling stage. Our long‐term results showed that seedling density was mainly positively affected by conspecific density, suggesting dispersal limitation of seedling development. The probability of seedling survival significantly decreased over 1 year with increasing conspecific density, indicating conspecific negative density dependence in seedling establishment. Although there was variation in conspecific negative density dependence at the seedling stage among species and across years, a dispersed pattern of conspecific saplings relative to conspecific adults at the local scale (<10 m) was observed in four of the 11 species examined. Overall, sapling spatial patterns were consistent with the impacts of conspecific density on seedling dynamics, which suggests that conspecific negative density dependence is persistent over the long term. From the long‐term perspective, conspecific density dependence is an important driver of species coexistence in temperate forests.  相似文献   

4.
There is growing evidence that distance- and density-dependent recruitment are important factors in structuring tree communities in temperate forests. Although pathogens have generally been assumed to be driving these patterns, few studies have attempted to experimentally identify the agent responsible. Here we investigate patterns of recruitment in sycamore Acer pseudoplatanus , a temperate tree species, in its exotic range in Britain. Seedling mortality, the limiting stage in sycamore regeneration, was monitored with respect to the proximity and density of adult sycamores and seedlings in a grid of sampling units. We found that mortality was significantly greater beneath adult sycamores compared with heterospecifics, and was further elevated in areas of high conspecific basal area, a proxy for biomass. An experimental approach that manipulated the access of predators to seedlings demonstrated that herbivorous invertebrates were responsible for driving these distance- and biomass-dependent trends in mortality. Evidence of stem damage on dead seedlings suggests that slugs are the principal cause of mortality, although there was only partial evidence of higher slug activity beneath sycamores. The implications of these findings for sycamore invasion, species co-existence and management are discussed.  相似文献   

5.
Extensive tree mortality in forests can change the community composition of soil fungi altering seedling establishment, a process critical to forest restoration. Disturbances that result in the loss of ectomycorrhizal fungi, in particular, may impede the establishment of tree species reliant on these symbionts for their survival. Inoculation of seedlings with soil from intact forests may improve the establishment of seedlings in such disturbances but the method has rarely been tested in the field. Here, we assess whether soil inoculation improves lodgepole pine (Pinus contorta var. latifolia) seedling performance in conspecific stands with high levels of tree mortality caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak and whether underlying soil type modifies inoculation effects. We first inoculated seedlings in a growth chamber with small amounts of soils (5% volume) originating from either intact (<10%) or “beetle-killed” (>70% pine basal area killed) conspecific stands or added no soil inoculum and, after 4 months, transplanted them into 15 beetle-killed stands. After two growing seasons, root-associated fungal communities of seedlings receiving inoculum from intact stands differed in composition from those receiving inoculum from beetle-killed stands or no inoculum. However, inoculation had no effect on seedling survival, height, or biomass. Site properties, including soil texture and the resident fungal community composition, overwhelmed the effect of soil inoculation on seedling performance. Seedling survival and shoot mass was higher in sandy than loamy soils. Restoration to improve seedling performance in beetle-killed stands should consider stand-level treatments as soil inoculation at the level evaluated was ineffective.  相似文献   

6.
Negative density dependence contributes to seedling dynamics in forested ecosystems, but the relative importance of this factor for different woody plant life‐forms is not well‐understood. We used 1 yr of seedling survivorship data for woody seedlings in 17 different plots of lower to mid‐montane rain forests on the island of Dominica to examine how seedling height, abiotic factors, and biotic factors such as negative density dependence are related to seedling survival of five different life‐forms (canopy, midstory, and understory trees; shrubs; and lianas). Across 64 species, taller seedlings in seedling plots with higher canopy openness, greater seedling density, lower relative abundance of conspecific seedlings, and lower relative abundance of conspecific adults generally had a greater probability of surviving. Height was the strongest predictor of seedling survival for all life‐forms except lianas. Greater seedling density was positively related to survival for canopy and midstory trees but negatively related to survival for the other life‐forms. For trees, the relative abundance of conspecific seedling and adult neighbors had weak and strong negative effects on survival respectively. Neither shrub nor liana seedling survival was affected by the relative abundance of conspecific neighbors. Thus, negative density dependence is confirmed as an important structuring mechanism for tree seedling communities but does not seem to be important for lianas and shrubs in Dominican rain forests. These results represent the first direct assessment of controls on seedling survival of all woody life‐forms – an important step in understanding the dynamics and structure of the entire woody plant community.  相似文献   

7.
We studied the spatial patterns of seedlings and seeds in isolated Picconia excelsa (Oleaceae) trees in the laurel forest of Anaga, Tenerife (Canary Islands). By finding isolated trees we assessed the correlation of seed and seedling bank traits and parent trees by removing the confounding effects of proximity (<100 m radius) of conspecific fruiting trees. We counted all the seedlings per age (height) class within its parental range, and sampled the seed number along transects departing from beneath the parent canopy at regular intervals. We mapped all seedlings per age class and plotted seed and seedling profiles in relation to distance to parent trees. Older Picconia seedlings tended to clump significantly further from parent trees than younger seedlings, which clumped just beneath the parents. We found significant differences among distances to parent tree in numbers of seedlings per age class. The seedling bank area was significantly correlated with maximum distance of seedlings to parent trees. The majority of seeds were deposited within the first 4 m below the parent crown. Seedlings amount at further distances from the trees is larger than seeds/fruits as counted on the ground. Our results suggest that disseminated, older seedlings have occupied germination sites far from the parent tree because there is probably lower seedling–seedling and parent–seedling competition for resources, and perhaps no intraspecific allelopathy and predation/disease.  相似文献   

8.
Seedling survival plays an important role in the maintenance of species diversity and forest dynamics. Although substantial gains have been made in understanding the factors driving patterns of seedling survival in forests, few studies have considered the simultaneous contribution of understory light availability and the local biotic neighborhood to seedling survival in temperate forests at different successional stages. Here, we used generalized linear mixed models to assess the relative importance of understory light availability and biotic neighborhood variables on seedling survival in secondary and old-growth temperate forest in north eastern China at two levels (community and guild). At the community level, biotic neighborhood effects on seedling survival were more important than understory light availability in both forests. In both the old-growth and secondary forests, conspecific basal area had a negative effect on seedling survival, consistent with negative conspecific density dependence. At guild levels, the relative importance of light and biotic neighborhood on seedling survival showed considerable variation among guilds in both forests. Available understory light tended to have positive effects on seedling survival for shrub and light-demanding species in the old-growth forest, but negative effects on survival of shade-tolerant seedlings in the secondary forest. For tree species and shade-tolerant species, the best fit models included neighborhood variables, but that was not the case for shrubs, light-demanding, or mid shade-tolerant species. Overall, our results demonstrate that the relative importance of understory light availability and biotic factors on seedling survival vary with species life-history strategy and forest successional stage.  相似文献   

9.
Abstract Microdisturbance to seedlings is important because it can differentially affect the mortality and recruitment of seedlings of forest tree species and thereby ultimately affect community composition. Microdisturbance due to litterfall has been shown to vary greatly in its influence on seedling survival among and within forests, and yet there have been no previous studies that investigate the cause of these differences. In this study the influence of macro‐litterfall on seedling damage is investigated in five complex temperate forests in New Zealand. Litterfall damage to artificial seedlings in these forests was strongly correlated with macro‐leaf‐fall (leaves > 30 cm × 1.5 cm) dry weight and total macro‐litterfall (leaves and deadwood > 30 cm × 1.5 cm) surface area (R2 = 0.99, P < 0.005 for each). Protective vegetation within 2 m of the ground (mostly lianes and woody shrubs) reduced the risk of litterfall damage by up to 84%. Hitherto unexplained differences in litterfall damage to seedlings found among, and within, forests (tropical and temperate) may therefore be due to differences in rates of macro‐leaf‐fall and forest structure. These results are important because they suggest that subtle differences in forest structure, and species composition, may influence regeneration patterns through the litterfall microdisturbance regime.  相似文献   

10.
Herbivores and pathogens with acute host specificity may promote high tree diversity in tropical forests by causing distance- and density-dependent mortality of seedlings, but evidence is scarce. Although Lepidoptera larvae are the most abundant and host-specific guild of herbivores in these forests, their impact upon seedling distributions remains largely unknown. A firm test of the mechanism underpinning the Janzen–Connell hypothesis is difficult, even for a single tree species, because it requires more than just manipulating seeds and seedlings and recording their fates. Experimental tests require: (1) an insect herbivore that is identified and highly specialised, (2) linkage to an in situ measure (or prevention) of herbivory, and (3) evaluation and confirmation among many conspecific adult trees across years. Here we present experimental evidence for a spatially explicit interaction between newly germinating seedlings of a Neotropical emergent tree, big-leaf mahogany (Swietenia macrophylla, Meliaceae), and caterpillars of a noctuid moth (Steniscadia poliophaea). In the understory of a southeastern Amazon forest, the proportion of attacks, leaf area lost, and seedling mortality due to this specialised herbivore peaked near Swietenia trees, but declined significantly with increasing distance from mature fruiting trees, as predicted by the Janzen–Connell hypothesis. We conclude that long-distance dispersal events (>50 m) provided an early survival advantage for Swietenia seedlings, and propose that the role of larval Lepidoptera as Janzen–Connell vectors may be underappreciated in tropical forests.  相似文献   

11.
Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density‐dependent mortality of conspecific seedlings (C‐NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper‐diversity in many tropical forests. A key question is whether fungal pathogen‐mediated C‐NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C‐NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species‐rich forests of South East Asia. We demonstrate species‐specific responses of seedlings to fungicide and density treatments, generating weak negative density‐dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen‐Connell mechanisms structure the plant communities of this globally important forest type.  相似文献   

12.
Woody plant encroachment of savanna ecosystems has been related to altered disturbance regimes, mainly fire suppression and herbivore exclusion. In contrast, neighbourhood interactions among resident and colonising woody species have received little attention, despite their likely influence on the pattern and rate of tree establishment. We examined how resident palm trees (Butia yatay) and established adults of two riparian forest tree species (Allophylus edulis and Sebastiania commersoniana) influenced seed arrival and seedling performance of the latter two species in a humid savanna of east-central Argentina. Seed traps and seedlings of both riparian species were placed in herbaceous openings, and beneath palm, conspecific and heterospecific adult trees in two unburned savanna patches, and were monitored for 2 years. Only seeds of the bird-dispersed Allophylus arrived in palm microsites, yet survival of Allophylus seedlings near adult palms was limited by animal damage through trampling and burrowing, a non-trophic mechanism of apparent competition. Seeds of both riparian species dispersed into conspecific microsites, although adult trees selectively reduced growth of conspecific seedlings, a pattern consistent with the “escape hypothesis”. Further, survival of Sebastiania increased in the moister Allophylus microsites, suggesting a one-way facilitative interaction between woody colonisers. Our results indicate that dispersal facilitation by resident savanna trees may be critical to riparian species invasion after fire suppression. Distance-dependent effects of conspecific and heterospecific adult trees could contribute to shape the subsequent dynamics of woody seedling establishment. Overall, we show that indirect interactions can play a prominent role in savanna encroachment by non-resident woody species.  相似文献   

13.
A fundamental aspect of the Janzen–Connell Hypothesis (JCH) is that distance- and density-dependent mortality reduce the local dominance of species and cause regular rather than random or aggregated spatial patterns. Despite this explicit linkage between process and pattern, very few studies have explored how JCH processes translate into the spatial distributions of adult populations. In field experiments, we assessed germination, mortality and growth of conspecific and heterospecific seedlings beneath and away from Esenbeckia leiocarpa, a highly aggregated tropical tree species. We also investigated the effects of vertebrates using exclosures in the field, and the effects of pathogens in a soil sterilization shadehouse experiment. Germination of conspecifics underneath Esenbeckia was reduced by 64 % and mortality increased 28–123 % when compared to seedlings growing under other tree species; 99–100 % of Esenbeckia seedlings died under conspecifics. Heterospecifics were much less affected by Esenbeckia canopies. However, we found no evidence that either vertebrate herbivores or soil pathogens affected seed germination and seedling performance. Although many tropical tree species are aggregated, our results are the first to demonstrate strong negative distance-dependence for an aggregated species and one of the few to explore germination in the context of the JCH and show differences between conspecifics and heterospecifics, thus suggesting a broader role for Janzen–Connell processes as determinants of the distribution and abundance of tree species in tropical forests.  相似文献   

14.
Negative distance dependence (NDisD), or reduced recruitment near adult conspecifics, is thought to explain the astounding diversity of tropical forests. While many studies show greater mortality at near vs. far distances from adults, these studies do not seek to track changes in the peak seedling curve over time, thus limiting our ability to link NDisD to coexistence. Using census data collected over 12 years from central Panama in conjunction with spatial mark‐connection functions, we show evidence for NDisD for many species, and find that the peak seedling curve shifts away from conspecific adults over time. We find wide variation in the strength of NDisD, which was correlated with seed size and canopy position, but other life‐history traits showed no relationship with variation in NDisD mortality. Our results document shifts in peak seedling densities over time, thus providing evidence for the hypothesized spacing mechanism necessary for diversity maintenance in tropical forests.  相似文献   

15.
Question: The Janzen‐Connell hypothesis predicts that herbivores and pathogens prevent seedlings from establishing in dense patches near adult conspecifics. Although many studies have investigated the Janzen‐Connell hypothesis, the environmental context – local or regional – in which juveniles establish is often overlooked. The objectives of this study were: (1) to evaluate Janzen‐Connell effects in contrasting environments, and (2) to incorporate microsite variation into the study of this hypothesis. Location: Pacaya‐Samiria Reserve, Peru. Methods: I assessed seedling performance of two tree species, Garcinia macrophylla and Xylopia micans, during one growing season. In an observational study, mortality and growth rates were regressed against distance to the nearest adult conspecific, conspecific seedling density, heterospecific plant density, and several abiotic variables in upland and floodplain forests. Field and shadehouse experiments were used to isolate distance‐ and density‐dependent effects. Results: Contrary to predictions, seedling survivorship increased in the presence of conspecific seedlings (Garcinia) and heterospecific understory plants (Garcinia and Xylopia) in the observational study. Survivorship in the field experiment, however, was unaffected by conspecific seedling density or adult proximity. In the shadehouse, Garcinia growth rates were highest in floodplain soils collected near adult conspecifics, but mortality was unrelated to the soil's habitat or proximity to an adult. Conclusions: The positive density dependence found in this study could have been produced by: (1) environmental factors that increase both density and survivorship, or (2) interspecific facilitation, if heterospecifics reduce herbivore or pathogen pressure on the focal species. Such interactions could help explain species coexistence in tropical forests.  相似文献   

16.
In the present study, we analysed the habitat association of tree species in an old‐growth temperate forest across all life stages to test theories on the coexistence of tree species in forest communities. An inventory for trees was implemented at a 6‐ha plot in Ogawa Forest Reserve for adults, juveniles, saplings and seedlings. Volumetric soil water content (SMC) and light levels were measured in 10‐m grids. Relationships between the actual number of stems and environmental variables were determined for 35 major tree species, and the spatial correlations within and among species were analysed. The light level had no statistically significant effect on distribution of saplings and seedlings of any species. In contrast, most species had specific optimal values along the SMC gradient. The optimal values were almost identical in earlier life stages, but were more variable in later life stages among species. However, no effective niche partitioning among the species was apparent even at the adult stage. Furthermore, results of spatial analyses suggest that dispersal limitation was not sufficient to mitigate competition between species. This might result from well‐scattered seed distribution via wind and bird dispersal, as well as conspecific density‐dependent mortality of seeds and seedlings. Thus, both niche partitioning and dispersal limitation appeared less important for facilitating coexistence of species within this forest than expected in tropical forests. The tree species assembly in this temperate forest might be controlled through a neutral process at the spatial scale tested in this study.  相似文献   

17.
为了解辽东山区次生林乔木幼苗组成及其年际动态, 本文以4 ha动态监测样地为平台, 对样地内1,600个 5 m × 5 m样方进行监测。依据2014-2016年连续3年的调查, 对样地内乔木幼苗的组成、高度分布、新增和死亡年际动态、空间分布格局等进行分析。结果表明: (1)调查期间共记录到22种乔木幼苗, 3年间幼苗组成没有发生变化, 但各个样方间出现极大差异, 并且幼苗优势树种组成与样地内优势树种成分保持着一定的相似性。(2)幼苗数量在不同树种和年际间表现出较大的差异: 花曲柳(Fraxinus rhynchophylla)、色木槭(Acer mono)、胡桃楸(Juglans mandshurica)在3年间幼苗数量最多, 占幼苗总数的75.6%; 花曲柳和胡桃楸幼苗数量表现出较明显的年际波动, 其他树种波动较小, 不同树种的幼苗密度差异很大。(3)幼苗新增和死亡存在明显的种间和年际差异: 2014-2015年间幼苗的新增数量(3,888)明显高于2015-2016年间(1,710), 同时2014-2015年间幼苗死亡率(23.7%)也明显高于2015-2016年间(12.7%)。对2015-2016年间新增幼苗和已有幼苗的死亡情况进行比较可以发现, 新增幼苗总体死亡率(18.8%)明显高于已有幼苗(8.1%)。(4)对比幼苗和大树的空间分布可以发现, 样地内优势幼苗都表现出集群分布的特征。在空间分布上, 幼苗与母树保持一定的相似性。  相似文献   

18.
We evaluated temporal patterns of seedling survival of eight Neotropical tree species generated under multiple abiotic and biotic hazards (vertebrates, disease, litterfall) in the forest understory on Barro Colorado Island, Panama. Seedlings were transplanted at first leaf expansion in low densities along a 6-km transect and damage and mortality were recorded for 1 yr. We also planted and monitored small and large artificial seedlings to estimate physical disturbance regimes. During 0–2 mo after transplant, vertebrate consumers of reserve cotyledons caused high mortality of real seedlings, but little damage to artificial seedlings. On real seedlings after 2 mo, disease became an important agent of mortality, despite a decrease in overall mortality rates. Damage by litterfall remained relatively low during the 1-yr study period. Survival ranks among species showed ontogenetic shifts over time, as species changed susceptibility to the mortality agents. Survival after 2 mo was positively correlated with stem toughness, not because species with tough stems were less likely to receive mechanical damage, but because they survived better after receiving mechanical damage. Within each transplant station, artificial seedlings were not good predictors of litterfall damage experienced by real seedlings. Forest-wide litterfall damage level, however, was similar for both real and artificial seedlings ( ca 10%/yr), a moderate level compared to other tropical forests. In conclusion, species traits including biomechanical traits interact to create complex temporal patterns of first year seedling survival, resulting in ontogenetic shifts that largely reflect changes in the relative importance of vertebrate consumers relative to other hazards.  相似文献   

19.
KO Reinhart  D Johnson  K Clay 《PloS one》2012,7(7):e40680
Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable.  相似文献   

20.
Herbivory rates are generally thought to be higher in tropical than in temperate forests. Nevertheless, tests of this biogeographic prediction by comparing a single plant species across a tropical-temperate range are scarce. Here, we compare herbivore damage between subtropical and temperate populations of the evergreen tree Aextoxicon punctatum (Olivillo), distributed between 30° and 43° S along the Pacific margin of Chile. To assess the impact of herbivory on Olivillo seedlings, we set up 29 experimental plots, 1.5 × 3 m: 16 in forests of Fray Jorge National Park (subtropical latitude), and 13 in Guabún, Chiloé Island (temperate latitude). Half of each plot was fenced around with chicken wire, to exclude small mammals, and the other half was left unfenced. In each half of the plots we planted 16 seedlings of Olivillo in December 2003, with a total of 928 plants. Seedling survival, leaf production and herbivory by invertebrates were monitored over the next 16 mo. Small mammal herbivores killed ca 30 percent of seedlings in both sites. Nevertheless, invertebrate herbivory was greater in the temperate forest, thus contradicting the expected trend of increasing herbivore impact toward the tropics. Seedling growth was greater in subtropical forest suggesting better conditions for tree growth or that higher invertebrate herbivory depressed seedling growth in the temperate forest. Invertebrate herbivory increased toward temperate latitudes while small mammal herbivory was similar in both sites. We suggest that comparison of single species can be useful to test generalizations about latitudinal patterns and allow disentangling factors controlling herbivory patterns across communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号