首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A growing number of recent studies have demonstrated the substantial impact of the alkyl side chains on the device performance of organic semiconductors. However, detailed investigation of the effect of side‐chain engineering on the blend morphology and performance of ternary organic solar cells (OSCs) has not yet been undertaken. In this study, the performance of ternary OSCs is investigated in a given poly(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PTB7‐Th:PC71BM) host set by introducing various small molecule donors (SMDs) with different terminal side‐chain lengths. As expected, the performance of binary OSCs with SMDs depends greatly on the side‐chain length. In contrast, it is observed that all SMD‐based ternary OSCs exhibit almost identical and high power‐conversion efficiencies of 12.0–12.2%. This minor performance variation is attributed to good molecular compatibility between the two donor components, as evidenced by in‐depth electrical and morphological investigations. These results highlight that the alloy‐like structure formed due to the high compatibility of the donor molecules has a more significant effect on the overall performance than the side‐chain length, offering a new guideline for pairing donor components for achieving high‐performance ternary OSCs.  相似文献   

2.
A universal strategy for efficient light trapping through the incorporation of gold nanorods on the electron transport layer (rear) of organic photovoltaic devices is demonstrated. Utilizing the photons that are transmitted through the active layer of a bulk heterojunction photovoltaic device and would otherwise be lost, a significant enhancement in power conversion efficiency (PCE) of poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)]:phenyl‐C71‐butyric acid methyl ester (PCDTBT:PC71BM) and poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b] thiophenediyl]] (PTB7):PC71BM by ≈13% and ≈8%, respectively. PCEs over 8% are reported for devices based on the PTB7:PC71BM blend. A comprehensive optical and electrical characterization of our devices to clarify the influence of gold nanorods on exciton generation, dissociation, charge recombination, and transport inside the thin film devices is performed. By correlating the experimental data with detailed numerical simulations, the near‐field and far‐field scattering effects are separated of gold nanorods (Au NRs), and confidently attribute part of the performance enhancement to the enhanced absorption caused by backscattering. While, a secondary contribution from the Au NRs that partially protrude inside the active layer and exhibit strong near‐fields due to localized surface plasmon resonance effects is also observed but is minor in magnitude. Furthermore, another important contribution to the enhanced performance is electrical in nature and comes from the increased charge collection probability.  相似文献   

3.
Remarkable progress has been made in the development of high‐efficiency solution‐processable nonfullerene organic solar cells (OSCs). However, the effect of the vertical stratification of bulk heterojunction (BHJ) on the efficiency and stability of nonfullerene OSCs is not fully understood yet. In this work, we report our effort to understand the stability of nonfullerene OSCs, made with the binary blend poly[(2,6‐(4, 8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′] dithiophene‐4,8‐dione)] (PBDB‐T):3,9‐ bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐ dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′] dithiophene (ITIC) system. It shows that a continuous vertical phase separation process occurs, forming a PBDB‐T‐rich top surface and an ITIC‐rich bottom surface in PBDB‐T:ITIC BHJ during the aging period. A gradual decrease in the built‐in potential (V0) in the regular configuration PBDB‐T:ITIC OSCs, due to the interfacial reaction between the poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer and ITIC acceptor, is one of the reasons responsible for the performance deterioration. The reduction in V0, caused by an inevitable reaction at the ITIC/PEDOT:PSS interface in the OSCs, can be suppressed by introducing a MoO3 interfacial passivation layer. Retaining a stable and high V0 across the BHJ through interfacial modification and device engineering, e.g., as seen in the inverted PBDB‐T:ITIC OSCs, is a prerequisite for efficient and stable operation of nonfullerene OSCs.  相似文献   

4.
Enhanced power conversion efficiency (PCE) is reported in inverted polymer solar cells when an electron‐rich polymer nanolayer (poly(ethyleneimine) (PEI)) is placed on the surface of an electron‐collecting buffer layer (ZnO). The active layer is made with bulk heterojunction films of poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The thickness of the PEI nanolayer is controlled to be 2 nm to minimize its insulating effect, which is confirmed by X‐ray photoelectron spectroscopy and optical absorption measurements. The Kelvin probe and ultraviolet photoelectron spectroscopy measurements demonstrate that the enhanced PCE by introducing the PEI nanolayer is attributed to the lowered conduction band energy of the ZnO layer via the formation of an interfacial dipole layer at the interfaces between the ZnO layer and the PEI nanolayer. The PEI nanolayer also improves the surface roughness of the ZnO layer so that the device series resistance can be noticeably decreased. As a result, all solar cell parameters including short circuit current density, open circuit voltage, fill factor, and shunt resistance are improved, leading to the PCE increase up to ≈8.9%, which is close to the best PCE reported using conjugated polymer electrolyte films.  相似文献   

5.
Increasing the lifetime of polymer based organic solar cells is still a major challenge. Here, the photostability of bulk heterojunction solar cells based on the polymer poly[4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thiazole[5,4‐d]thiazole)‐1,8‐diyl] (PDTSTzTz) and the fullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC60BM) under inert atmosphere is investigated. Correlation of electrical measurements on complete devices and UV‐vis absorption measurements as well as high‐performance liquid chromatography (HPLC) analysis on the active materials reveals that photodimerization of PC60BM is responsible for the observed degradation. Simulation of the electrical device parameters shows that this dimerization results in a significant reduction of the charge carrier mobility. Both the dimerization and the associated device performance loss turn out to be reversible upon annealing. BisPC60BM, the bis‐substituted analog of PC60BM, is shown to be resistant towards light exposure, which in turn enables the manufacture of photostable PDTSTzTz:bisPC60BM solar cells.  相似文献   

6.
In this work, a new benzo[1,2‐b:4,5‐b′]dithiophene (BDT) building block containing alkylthio naphthyl as a side chain is designed and synthesized, and the resulting polymer, namely PBDTNS‐BDD, shows a lower HOMO energy level than that of its alkoxyl naphthyl counterpart PBDTNO‐BDD. An optimized photovoltaic device using PBDTNS‐BDD as a donor exhibits power conversion efficiencies (PCE) of 8.70% and 9.28% with the fullerene derivative PC71BM and the fullerene‐free small molecule ITIC as acceptors, respectively. Surprisingly, ternary blend devices based on PBDTNS‐BDD and two acceptors, namely PC71BM and ITIC, shows a PCE of 11.21%, which is much higher than that of PBDTNO‐BDD based ternary devices (7.85%) even under optimized conditions.  相似文献   

7.
Development of high‐performance donor–acceptor (D–A) copolymers is vital in the research of polymer solar cells (PSCs). In this work, a low‐bandgap D–A copolymer based on dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one unit (DTP), PDTP4TFBT, is developed and used as the donor material for PSCs with PC71BM or ITIC as the acceptor. PDTP4TFBT:PC71BM and PDTP4TFBT:ITIC solar cells give power conversion efficiencies (PCEs) up to 8.75% and 7.58%, respectively. 1,8‐Diiodooctane affects film morphology and device performance for fullerene and nonfullerene solar cells. It inhibits the active materials from forming large domains and improves PCE for PDTP4TFBT:PC71BM cells, while it promotes the aggregation and deteriorates performance for PDTP4TFBT:ITIC cells. The ternary‐blend cells based on PDTP4TFBT:PC71BM:ITIC (1:1.2:0.3) give a decent PCE of 9.20%.  相似文献   

8.
Molecular engineering of nonfullerene electron acceptors is of great importance for the development of organic photovoltaics. In this study, a series of methoxyl‐modified dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐based small‐molecule acceptor (SMA) isomers are synthesized and characterized to determine the effect of substitution position of the terminal group in these acceptor–donor–acceptor‐type SMAs. Minor changes in the substitution position are demonstrated to greatly influence the optoelectronic properties and molecular packing of the isomers. Note that SMAs with planar molecular backbones show more ordered molecular packing and smaller π–π stacking distances, thus dramatically higher electron mobilities relative to their counterparts with distorted end‐groups. By utilizing polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophen)‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione)] (PBDB‐T) as an electron donor, an optimum power conversion efficiency (PCE) of 11.9% is achieved in the device based on PBDB‐T:IT‐OM‐2, which is among the top efficiencies reported as of yet. Moreover, the PCE stays above 10% as the film thickness increases to 250 nm, which is very advantageous for large‐area printing. Overall, the intrinsic molecular properties as well as the morphologies of blends can be effectively modulated by manipulating the substituent position on the terminal groups, and the structure–property relationships gleaned from this study will aid in designing more efficient SMAs for versatile applications.  相似文献   

9.
Despite the potential of ternary polymer solar cells (PSCs) to improve photocurrents, ternary architecture is not widely utilized for PSCs because its application has been shown to reduce fill factor (FF). In this paper, a novel technique is reported for achieving highly efficient ternary PSCs without this characteristic sharp decrease in FF by matching the highest occupied molecular orbital (HOMO) energy levels of two donor polymers. Our ternary device—made from a blend of wide‐bandgap poly[4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,5‐dioctyl‐4,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione) (PBDT‐DPPD) polymer, narrow‐bandgap poly[4,8‐bis[5‐(2‐ethylhexyl)‐2‐thienyl]benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐ 6‐diyl)] (PTB7‐Th) polymer, and [6,6]‐phenyl C70‐butyric acid methyl ester (PC70BM)—exhibits a maximum power conversion efficiency of 10.42% with an open‐circuit voltage of 0.80 V, a short‐circuit current of 17.61 mA cm?2, and an FF of 0.74. In addition, this concept is extended to quaternary PSCs made by using three different donor polymers with similar HOMO levels. Interestingly, the quaternary PSCs also yield a good FF (≈0.70)—similar to those of corresponding binary PSCs. This study confirms that the HOMO levels of the polymers used on the photoactive layer of PSCs are a crucial determinant of a high FF.  相似文献   

10.
A novel wide‐bandgap electron‐donating copolymer containing an electron‐deficient, difluorobenzotriazole building block with a siloxane‐terminated side chain is developed. The resulting polymer, poly{(4,8‐bis(4,5‐dihexylthiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐4,7‐di(thiophen‐2‐yl)‐5,6‐difluoro‐2‐(6‐(1,1,1,3,5,5,5‐heptamethyltri‐siloxan‐3‐yl)hexyl)‐2H‐benzo[d][1,2,3]triazole} (PBTA‐Si), is used to successfully fabricate high‐performance, ternary, all‐polymer solar cells (all‐PSCs) insensitive to the active layer thickness. An impressively high fill factor of ≈76% is achieved with various ternary‐blending ratios. The optimized all‐PSCs attain a power conversion efficiency (PCE) of 9.17% with an active layer thickness of 350 nm and maintain a PCE over 8% for thicknesses over 400 nm, which is the highest reported efficiency for thick all‐PSCs. These results can be attributed to efficient charge transfer, additional energy transfer, high and balanced charge transport, and weak recombination behavior in the photoactive layer. Moreover, the photoactive layers of the ternary all‐PSCs are processed in a nonhalogenated solvent, 2‐methyltetrahydrofuran, which greatly improves their compatibility with large‐scale manufacturing.  相似文献   

11.
A water‐soluble cationic polythiophene derivative, poly[3‐(6‐{4‐tert‐butylpyridiniumyl}‐hexyl)thiophene‐2,5‐diyl] [P3(TBP)HT], is combined with anionic poly(3,4‐ethylenedioxythiophene):poly(p‐styrenesulfonate) (PEDOT:PSS) on indium tin oxide (ITO) substrates via electrostatic layer‐by‐layer (eLbL) assembly. By varying the number of eLbL layers, the electrode's work function is precisely controlled from 4.6 to 3.8 eV. These polymeric coatings are used as cathodic interfacial modifiers for inverted‐mode organic photovoltaics that incorporate a photoactive layer composed of either poly[(3‐hexylthiophene)‐2,5‐diyl] (P3HT) and the fullerene acceptor [6,6‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or the low bandgap polymer [poly({4,8‐di(2‐ethylhexyloxyl)benzo[1,2‐b:4,5‐b′]dithiophene}‐2,6‐diyl)‐alt‐({5‐octylthieno[3,4‐c]pyrrole‐4,6‐dione}‐1,3‐diyl) (PBDTTPD)] and the electron acceptor [6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM)]. The power conversion efficiency (PCE) of the resulting photovoltaic device is dependent on the composition of the eLbL‐assembled interface and permits the fabrication of devices with efficiencies of 3.8% and 5.6% for P3HT and PBDTTPD donor polymers, respectively. Notably, these devices demonstrate significant stability with a P3HT:PC61BM system maintaining 83% of its original PCE after 1 year of storage and a PBDTTPD:PC71BM system maintaining 97% of its original PCE after over 1000 h of storage in air, according to the ISOS‐D‐1 shelf protocol.  相似文献   

12.
Based on the most recently significant progress within the last one year in organic photovoltaic research from either alkylthiolation or fluorination on benzo[1,2‐b:4,5‐b′]dithiophene moiety for high efficiency polymer solar cells (PSCs), two novel simultaneously fluorinated and alkylthiolated benzo[1,2‐b:4,5‐b′] dithiophene (BDT)‐based donor–acceptor (D–A) polymers, poly(4,8‐bis(5′‐((2″‐ethylhexyl)thio)‐4′‐fluorothiophen‐2′‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐2′‐ethylhexyl‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (PBDTT‐SF‐TT) and poly(4,8‐bis(5′‐((2″‐ethylhexyl)thio)‐4′‐fluorothiophen‐2′‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (PBDTT‐SF‐BDD), namely, via an advantageous and synthetically economic route for the key monomer are reported herein. Synergistic effects of fluorination and alkylthiolation on BDT moieties are discussed in detail, which is based on the superior balance between high Voc and large Jsc when PBDTT‐SF‐TT/PC71BM and PBDTT‐SF‐BDD/PC71BM solar cells present their high Voc as 1.00 and 0.97 V (associated with their deep highest occupied molecular orbital level of ?5.54 and ?5.61 eV), a moderately high Jsc of 14.79 and 14.70 mA cm?2, and thus result a high power conversion efficiency of 9.07% and 9.72%, respectively. Meanwhile, for PBDTT‐SF‐TT, a very low energy loss of 0.59 eV is pronounced, leading to the promisingly high voltage, and furthermore performance study and morphological results declare an additive‐free PSC from PBDTT‐SF‐TT, which is beneficial to practical applications.  相似文献   

13.
With state‐of‐the‐art organic solar cells (OSCs) surpassing 16% efficiency, stability becomes critical for commercialization. In this work, the power of using photoluminescence (PL) measurements on plain films is demonstrated, as well as high‐performance liquid chromatography analysis to reveal the origin of UV instabilities in OSCs based on the most commonly used acceptors PC70BM ([6,6]‐phenyl‐C71‐butyric acid methyl ester), ITIC (3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene), and o‐IDTBR (indacenodithiophene‐based non‐fullerene acceptor). The UV dependent stability tests reveal instabilities in solar cells based on PC70BM and ITIC while devices based on o‐IDTBR are highly stable even under UV illumination. The analysis of solar cell devices based on charge extraction and sub‐bandgap external quantum efficiency only shows the UV‐dependent emergence of traps, while PL spectra of plain films on glass allows the disentanglement and identification of individual instabilities in multi‐component bulk‐heterojunction devices. In particular, the PL analysis demonstrates UV instabilities of PC70BM and ITIC toward the processing additive 1,8 diiodooctane (DIO). The chemical analysis reveals the in‐depth mechanism, by providing direct proof of photochemical reactions of PC70BM and ITIC with UV‐induced radicals of DIO. Based on this scientific understanding, it is shown how to stabilize PBQ‐QF:PC70BM devices.  相似文献   

14.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   

15.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   

16.
Highly efficient tandem and semitransparent (ST) polymer solar cells utilizing the same donor polymer blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as active layers are demonstrated. A high power conversion efficiency (PCE) of 8.5% and a record high open‐circuit voltage of 1.71 V are achieved for a tandem cell based on a medium bandgap polymer poly(indacenodithiophene‐co‐phananthrene‐quinoxaline) (PIDT‐phanQ). In addition, this approach can also be applied to a low bandgap polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT), and PCEs up to 7.9% are achieved. Due to the very thin total active layer thickness, a highly efficient ST tandem cell based on PIDT‐phanQ exhibits a high PCE of 7.4%, which is the highest value reported to date for a ST solar cell. The ST device also possesses a desirable average visible transmittance (≈40%) and an excellent color rendering index (≈100), permitting its use in power‐generating window applications.  相似文献   

17.
An aromatic lactam acceptor unit, thieno[3,2‐c]isoquinolin‐5(4H)‐one (TIQ), is developed. Compared with its analogues, dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one (DTP) and phenanthridin‐6(5H)‐one (PN), TIQ shows its advantage in constructing donor–acceptor (D–A) copolymers for efficient solar cells. TIQ‐based D–A copolymer PTIQ4TFBT delivers a power conversion efficiency (PCE) of 10.16% in polymer:fullerene solar cells, while those based on DTP and PN copolymers, PDTP4TFBT and PPN4TFBT, afford PCEs around 8.5%. The higher performance of PTIQ4TFBT:PC71BM solar cells originates from enhanced short‐circuit current density (Jsc) and fill factor (FF), because of favorable morphology, less bimolecular recombination, and balanced charge transport in the active layer. Moreover, the performance for PTIQ4TFBT:PC71BM solar cells is less sensitive to active layer thickness than PDTP4TFBT:PC71BM and PPN4TFBT:PC71BM solar cells. Over 8% PCEs can be obtained from PTIQ4TFBT:PC71BM solar cells when the active layer thickness is over 500 nm.  相似文献   

18.
Ternary organic solar cells (OSCs) are among the best‐performing organic photovoltaic devices to date, largely due to the recent development of nonfullerene acceptors. However, fullerene molecules still play an important role in ternary OSC systems, since, for reasons not well understood, they often improve the device performance, despite their lack of absorption. Here, the photophysics of a prototypical ternary small‐molecule OSC blend composed of the donor DR3, the nonfullerene acceptor ICC6, and the fullerene derivative PC71BM is studied by ultrafast spectroscopy. Surprisingly, it is found that after excitation of PC71BM, ultrafast singlet energy transfer to ICC6 competes efficiently with charge transfer. Subsequently, singlets on ICC6 undergo hole transfer to DR3, resulting in free charge generation. Interestingly, PC71BM improves indirectly the electron mobility of the ternary blend, while electrons reside predominantly in ICC6 domains as indicated by fast spectroscopy. The improved mobility facilitates charge carrier extraction, in turn leading to higher device efficiencies of the ternary compared to binary solar cells. Using the (photo)physical parameters obtained from (transient) spectroscopy and charge transport measurements, the device's current–voltage characteristics are simulated and it is demonstrated that the parameters accurately reproduce the experimentally measured device performance.  相似文献   

19.
The solubilities of 3,6‐bis(5‐(benzofuran‐2‐yl)thiophen‐2‐yl)‐2,5‐bis(2‐ethylhexyl)pyrrolo[3,4‐c]pyrrole‐1,4‐dione ( DPP(TBFu)2 ) and [6,6]‐phenyl‐C71‐butyric acid methyl ester ( PC71BM ) in a series of solvents are measured, and this data is used to calculate the Hansen solubility parameters of the two materials. The dispersion, polar, and H‐bonding parameters of DPP(TBFu)2 and PC71BM were found to be (19.3, 4.8, 6.3) and (20.2, 5.4, 4.5) MPa1/2, respectively, with an error of ± 0.8 MPa1/2. Based on the solubility properties of the two materials, three new solvents (thiophene, trichloroethylene and carbon disulfide) were utilized for the DPP(TBFu)2 : PC71BM system which, after device optimization, led to power conversion efficiencies up to 4.3%.  相似文献   

20.
Triplet exciton formation in neat 7,7‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′] dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c][1,2,5]thiadiazole) (p‐DTS(FBTTh2)2) and blends with [6,6]‐Phenyl C70 butyric acid methyl ester (PC70BM), with and without the selective solvent additive 1,8‐diiodooctane, is investigated by means of spin sensitive photoluminescence measurements. For all three material systems, a significant amount of long living triplet excitons is detected, situated on the p‐DTS(FBTTh2)2 molecules. The characteristic zero‐field splitting parameters for this state are identified to be D = 42 mT (1177 MHz) and E = 5 mT (140 MHz). However, no triplet excitons located on PC70BM are detectable. Using electrically detected spin resonance, the presence of these triplet excitons is confirmed even at room temperature, highlighting that triplet excitons form during solar cell operation and influence the photocurrent and photovoltage. Surprisingly, the superior performing blend is found to have the largest triplet population. It is concluded, that the formation of triplet excitons from charge transfer states via electron back transfer has no crucial impact on device performance in p‐DTS(FBTTh2)2:PC70BM based solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号