首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, constructing ternary organic solar cells (OSCs) and developing nonfullerene small molecule acceptors (n‐SMAs) are two pivotal avenues to enhance the device performance. However, introducing n‐SMAs into the ternary OSCs to construct thick layer device is still a challenge due to their inferior charge transport property and unclear aggregation mechanism. In this work, a novel wide band gap copolymer 4,8‐bis(4,5‐dioctylthiophen‐2‐yl) benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐N‐(2‐hexyldecyl)‐5,5′‐bis(thiophen‐2‐yl)‐2,2′‐bithiophene‐3,3′‐dicarboximide (PDOT) is designed and blend of PDOT:PC71BM achieves a power conversion efficiency (PCE) of 9.5% with active layer thickness over 200 nm. The rationally selected n‐SMA based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene) malononitrile groups (ITIC) is introduced into the host binary PDOT:PC71BM system to extend the absorption range and reduce the photo energy loss. After fully investigating the morphology evolution of the ternary blends, the different aggregation behavior of n‐SMAs with respect to their fullerene counterpart is revealed and the adverse effect of introducing n‐SMAs on charge transport is successfully avoided. The ternary OSC delivers a PCE of 11.2% with a 230 nm thick active layer, which is among the highest efficiencies of thick layer OSCs. The results demonstrate the feasibility of using n‐SMAs to construct a thick layer ternary device for the first time, which will greatly promote the efficiency of thick layer ternary devices.  相似文献   

2.
Solution‐processed small molecule (SM) solar cells have the prospect to outperform their polymer‐fullerene counterparts. Considering that both SM donors/acceptors absorb in visible spectral range, higher expected photocurrents should in principle translate into higher power conversion efficiencies (PCEs). However, limited bulk‐heterojunction (BHJ) charge carrier mobility (<10‐4 cm2 V‐1 s‐1) and carrier lifetimes (<1 µs) often impose active layer thickness constraints on BHJ devices (≈100 nm), limiting external quantum efficiencies (EQEs) and photocurrent, and making large‐scale processing techniques particularly challenging. In this report, it is shown that ternary BHJs composed of the SM donor DR3TBDTT (DR3), the SM acceptor ICC6 and the fullerene acceptor PC71BM can be used to achieve SM‐based ternary BHJ solar cells with active layer thicknesses >200 nm and PCEs nearing 11%. The examinations show that these remarkable figures are the result of i) significantly improved electron mobility (8.2 × 10‐4 cm2 V‐1 s‐1), ii) longer carrier lifetimes (2.4 µs), and iii) reduced geminate recombination within BHJ active layers to which PC71BM has been added as ternary component. Optically thick (up to ≈500 nm) devices are shown to maintain PCEs >8%, and optimized DR3:ICC6:PC71BM solar cells demonstrate long‐term shelf stability (dark) for >1000 h, in 55% humidity air environment.  相似文献   

3.
4.
Development of high‐performance donor–acceptor (D–A) copolymers is vital in the research of polymer solar cells (PSCs). In this work, a low‐bandgap D–A copolymer based on dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one unit (DTP), PDTP4TFBT, is developed and used as the donor material for PSCs with PC71BM or ITIC as the acceptor. PDTP4TFBT:PC71BM and PDTP4TFBT:ITIC solar cells give power conversion efficiencies (PCEs) up to 8.75% and 7.58%, respectively. 1,8‐Diiodooctane affects film morphology and device performance for fullerene and nonfullerene solar cells. It inhibits the active materials from forming large domains and improves PCE for PDTP4TFBT:PC71BM cells, while it promotes the aggregation and deteriorates performance for PDTP4TFBT:ITIC cells. The ternary‐blend cells based on PDTP4TFBT:PC71BM:ITIC (1:1.2:0.3) give a decent PCE of 9.20%.  相似文献   

5.
In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications.  相似文献   

6.
The quest for new materials is one of the main factors propelling recent advances in organic photovoltaics. Star‐shaped small molecules (SSMs) have been proven promising candidates as perspective donor material due to the increase in numbers of excitation pathways caused by the degeneracy of the lowest unoccupied molecular orbital (LUMO) level. In order to unravel the pathways of the initial photon‐to‐charge conversion, the photovoltaic blends based on three different SSMs with a generic structure of N(phenylene‐nthiophene‐dicyanovinyl‐alkyl)3 (n = 1–3), and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) acceptor are investigated by ultrafast photoinduced absorption spectroscopy assisted by density functional theory calculations. It is shown that both electron transfer from SSMs to PC71BM and hole transfer from PC71BM to SSMs are equally significant for generation of long‐lived charges. In contrast, intramolecular (intra‐SSM) charge separation results in geminate recombination and therefore constitutes a loss channel. Overall, up to 60% of long‐lived separated charges are generated at the optimal PC71BM concentrations. The obtained results suggest that further improvement of the SSM‐based solar cells is feasible via optimization of blend morphology and by suppressing the intra‐SSM recombination channel.  相似文献   

7.
The photoresponse of P3HT:PC61BM based organic solar cells can be enhanced by blending the bulk heterojunction with the low band gap polymer Si‐ PCPDTBT. Organic solar cells containing the resulting ternary blend as the photoactive layer deliver short circuit currents of up to 15.5 mA cm?2. Morphological studies show modest phase separation without the perturbation of the crystallinity of the P3HT:PC61BM matrix, in accordance with the measured acceptable fill factors. Picosecond time‐resolved pump‐probe spectroscopy reveals that the sensitization of P3HT:PC61BM with Si‐PCPDTBT involves the transfer of photogenerated positive polarons from the low band gap polymer to P3HT within few hundreds of picoseconds. Intensity dependent experiments in combination with global fitting show that the charge transfer from Si‐PCPDTBT to P3HT competes with non‐geminate charge carrier recombination of the holes in the Si‐PCPDTBT phase with electrons in the PC61BM phase, both processes being of diffusive nature. At excitation densities corresponding to steady state conditions under one sun, modelling predicts hole transfer efficiencies exceeding 90%, in accordance with IQE measurements. At higher pump intensities, bimolecular recombination suppresses the hole transfer process effectively.  相似文献   

8.
The clustering and diffusion of C71‐butyric acid methyl ester (PC71BM) in poly(3‐hexylthiophene) (P3HT) has been studied using single layer blend and bilayer organic field‐effect transistors (OFETs) and by atomic force microscopy (AFM). P3HT:PC71BM blend based OFETs were found to undergo phase‐segregation upon annealing, which was detectable as a fall in electron mobility with increasing annealing temperature. By employing carefully designed bilayer P3HT:PC71BM OFETs, the diffusion‐properties of PC71BM in P3HT could additionally be inferred from electron mobility measurements. It was found that the prerequisite annealing temperatures for detectable PC71BM clustering and diffusion in P3HT was approximately 20 °C higher than for PC61BM. The diffusion coefficient of PC61BM in P3HT was found to be several times higher that that of PC71BM. The present work provides unique insights into the diffusion process of fullerenes in conjugated polymers and could prove highly valuable for future materials development and device optimization.  相似文献   

9.
This study demonstrates high‐performance, ternary‐blend polymer solar cells by modifying a binary blend bulk heterojunction (PPDT2FBT:PC71BM) with the addition of a ternary component, PPDT2CNBT. PPDT2CNBT is designed to have complementary absorption and deeper frontier energy levels compared to PPDT2FBT, while being based on the same polymeric backbone. A power conversion efficiency of 9.46% is achieved via improvements in both short‐circuit current density (JSC) and open‐circuit voltage (VOC). Interestingly, the VOC increases with increasing the PPDT2CNBT content in ternary blends. In‐depth studies using ultraviolet photoelectron spectroscopy and transient absorption spectroscopy indicate that the two polymers are not electronically homogeneous and function as discrete light harvesting species. The structural similarity between PPDT2CNBT and PPDT2FBT allows the merits of a ternary system to be fully utilized to enhance both JSC and VOC without detriment to fill‐factor via minimized disruption of semi‐crystalline morphology of binary PPDT2FBT:PC71BM blend. Further, by careful analysis, charge carrier transport in this ternary blend is clearly verified to follow parallel‐like behavior.  相似文献   

10.
Long device lifetime is still a missing key requirement in the commercialization of nonfullerene acceptor (NFA) organic solar cell technology. Understanding thermodynamic factors driving morphology degradation or stabilization is correspondingly lacking. In this report, thermodynamics is combined with morphology to elucidate the instability of highly efficient PTB7‐Th:IEICO‐4F binary solar cells and to rationally use PC71BM in ternary solar cells to reduce the loss in the power conversion efficiency from ≈35% to <10% after storage for 90 days and at the same time improve performance. The hypomiscibility observed for IEICO‐4F in PTB7‐Th (below the percolation threshold) leads to overpurification of the mixed domains. By contrast, the hypermiscibility of PC71BM in PTB7‐Th of 48 vol% is well above the percolation threshold. At the same time, PC71BM is partly miscible in IEICO‐4F suppressing crystallization of IEICO‐4F. This work systematically illustrates the origin of the intrinsic degradation of PTB7‐Th:IEICO‐4F binary solar cells, demonstrates the structure–function relations among thermodynamics, morphology, and photovoltaic performance, and finally carries out a rational strategy to suppress the degradation: the third component needs to have a miscibility in the donor polymer at or above the percolation threshold, yet also needs to be partly miscible with the crystallizable acceptor.  相似文献   

11.
The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation.  相似文献   

12.
Ternary blend is proved to be a potential contender for achieving high efficiency in organic photovoltaics, which can apparently strengthen the absorption of active layer so as to better harvest light irradiation. Much of the previous work in ternary polymer solar cells focuses on broadening the absorption spectrum; however, a new insight is brought to study the third component, which in tiny amounts influents the small‐molecule acceptor‐based device performance. Without contributing to complementing the absorption, a minute amount of fullerene derivative, Bis‐PC70BM, can effectively play an impressive role as sensitizer in enhancing the external quantum efficiency of the host binary blend, especially for polymeric donor. Detailed investigations reveal that the minute addition of Bis‐PC70BM can realize morphology modification as well as facilitate electron transfer from polymeric donor to small molecule acceptor via cascade energy level modulation, and therefore lead to an improvement in device efficiency.  相似文献   

13.
Ternary blends with broad spectral absorption have the potential to increase charge generation in organic solar cells but feature additional complexity due to limited intermixing and electronic mismatch. Here, a model system comprising the polymers poly[5,5‐bis(2‐butyloctyl)‐(2,2‐bithiophene)‐4,4‐dicarboxylate‐alt‐5,5‐2,2‐bithiophene] (PDCBT) and PTB7‐Th and PC70BM as an electron accepting unit is presented. The power conversion efficiency (PCE) of the ternary system clearly surpasses the performance of either of the binary systems. The photophysics is governed by a fast energy transfer process from PDCBT to PTB7‐Th, followed by electron transfer at the PTB7‐Th:fullerene interface. The morphological motif in the ternary blend is characterized by polymer fibers. Based on a combination of photophysical analysis, GIWAXS measurements and calculation of the intermolecular parameter, the latter indicating a very favorable molecular affinity between PDCBT and PTB7‐Th, it is proposed that an efficient charge generation mechanism is possible because PTB7‐Th predominantly orients around PDCBT filaments, allowing energy to be effectively relayed from PDCBT to PTB7‐Th. Fullerene can be replaced by a nonfullerene acceptor without sacrifices in charge generation, achieving a PCE above 11%. These results support the idea that thermodynamic mixing and energetics of the polymer–polymer interface are critical design parameter for realizing highly efficient ternary solar cells with variable electron acceptors.  相似文献   

14.
A pair of polymers, PBDTBT and PBDTDTBT , was synthesized for application in polymer solar cells (PSCs). Although these two polymers have similar absorption bands and molecular energy levels, PBDTDTBT exhibits much better photovoltaic performance in polymer solar cell (PSC) devices with power conversion efficiency (PCE) of 7.4%. To understand the differences between PBDTDTBT and PBDTBT , we have investigated the correlations of the molecular structure, morphology, dynamics and efficiency of these two polymers. A theoretical investigation using density functional theory (DFT) and time‐dependent DFT (TDDFT) has been employed to investigate the electron density and electron delocalization extent of the unimers. TEM data showed that PBDTDTBT phase separates from PC71BM, while PBDTBT suffers from having a proper morphology on different processing conditions. Grazing incidence wide angle X‐ray diffraction (GIWAXD) was used to probe the crystal structure of the polymers in thin film. A polymorph crystal structure was observed for PBDTBT . Grazing incidence small angle X‐ray scattering (GISAXS) was used to probe the size scale of phase separation, with an optimized 25 nm feature size observed for PBDTDTBT /PC71BM blends, which agrees well with TEM results. Femtosecond transient absorption (TA) spectroscopy was used to probe the dynamics of the fundamental processes in organic photovoltaic (OPV) materials, such as charge separation and recombination. The enhanced absorption coefficient, good charge separation, optimal phase separation and higher charge mobility all contribute to the high PCE of the PBDTDTBT /PC71BM devices.  相似文献   

15.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   

16.
Ternary organic solar cells (OSCs) have attracted much research attention, as they can maintain the simplicity of the single‐junction device architecture while broadening the absorption range of OSCs. However, one main challenge that limits the development of ternary OSCs is the difficulty in controlling the morphology of ternary OSCs. In this paper, an effective approach to control the morphology is presented that leads to multiple cases of efficient nonfullerene ternary OSCs with efficiencies of up to 11.2%. This approach is based on a donor polymer with strong temperature dependent aggregation properties processed from hot solutions without any solvent additives and a pair of small molecular acceptors (SMAs) that have similar surface tensions and thus low propensity to form discrete phases. Such a ternary blend exhibits a simplified bulk‐heterojunction morphology that is similar to the morphology of previously reported binary blends. As a result, an almost linear relationship between VOC and film composition is observed for all nonfullerene ternary devices. Meanwhile, by carefully designing a control system with a large interfacial tension, a different phase separation and VOC dependence is demonstrated. This morphology control approach can be applicable to more material systems and accelerates the development of the ternary OSC field.  相似文献   

17.
An aromatic lactam acceptor unit, thieno[3,2‐c]isoquinolin‐5(4H)‐one (TIQ), is developed. Compared with its analogues, dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one (DTP) and phenanthridin‐6(5H)‐one (PN), TIQ shows its advantage in constructing donor–acceptor (D–A) copolymers for efficient solar cells. TIQ‐based D–A copolymer PTIQ4TFBT delivers a power conversion efficiency (PCE) of 10.16% in polymer:fullerene solar cells, while those based on DTP and PN copolymers, PDTP4TFBT and PPN4TFBT, afford PCEs around 8.5%. The higher performance of PTIQ4TFBT:PC71BM solar cells originates from enhanced short‐circuit current density (Jsc) and fill factor (FF), because of favorable morphology, less bimolecular recombination, and balanced charge transport in the active layer. Moreover, the performance for PTIQ4TFBT:PC71BM solar cells is less sensitive to active layer thickness than PDTP4TFBT:PC71BM and PPN4TFBT:PC71BM solar cells. Over 8% PCEs can be obtained from PTIQ4TFBT:PC71BM solar cells when the active layer thickness is over 500 nm.  相似文献   

18.
Increasing the lifetime of polymer based organic solar cells is still a major challenge. Here, the photostability of bulk heterojunction solar cells based on the polymer poly[4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thiazole[5,4‐d]thiazole)‐1,8‐diyl] (PDTSTzTz) and the fullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC60BM) under inert atmosphere is investigated. Correlation of electrical measurements on complete devices and UV‐vis absorption measurements as well as high‐performance liquid chromatography (HPLC) analysis on the active materials reveals that photodimerization of PC60BM is responsible for the observed degradation. Simulation of the electrical device parameters shows that this dimerization results in a significant reduction of the charge carrier mobility. Both the dimerization and the associated device performance loss turn out to be reversible upon annealing. BisPC60BM, the bis‐substituted analog of PC60BM, is shown to be resistant towards light exposure, which in turn enables the manufacture of photostable PDTSTzTz:bisPC60BM solar cells.  相似文献   

19.
In this work, a new benzo[1,2‐b:4,5‐b′]dithiophene (BDT) building block containing alkylthio naphthyl as a side chain is designed and synthesized, and the resulting polymer, namely PBDTNS‐BDD, shows a lower HOMO energy level than that of its alkoxyl naphthyl counterpart PBDTNO‐BDD. An optimized photovoltaic device using PBDTNS‐BDD as a donor exhibits power conversion efficiencies (PCE) of 8.70% and 9.28% with the fullerene derivative PC71BM and the fullerene‐free small molecule ITIC as acceptors, respectively. Surprisingly, ternary blend devices based on PBDTNS‐BDD and two acceptors, namely PC71BM and ITIC, shows a PCE of 11.21%, which is much higher than that of PBDTNO‐BDD based ternary devices (7.85%) even under optimized conditions.  相似文献   

20.
The ratio of the donor and acceptor components in bulk heterojunction (BHJ) organic solar cells is a key parameter for achieving optimal power conversion efficiency (PCE). However, it has been recently found that a few BHJ blends have compositional tolerance and achieve high performance in a wide range of donor to acceptor ratios. For instance, the X2 :PC61BM system, where X2 is a molecular donor of intermediate dimensions, exhibits a PCE of 6.6%. Its PCE is relatively insensitive to the blend ratio over the range from 7:3 to 4:6. The effect of blend ratio of X2 /PC61BM on morphology and device performance is therefore systematically investigated by using the structural characterization techniques of energy‐filtered transmission energy microscopy (EF‐TEM), resonant soft X‐ray scattering (R‐SoXS) and grazing incidence wide angle X‐ray scattering (GIWAXS). Changes in blend ratio do not lead to obvious differences in morphology, as revealed by R‐SoXS and EF‐TEM. Rather, there is a smooth evolution of a connected structure with decreasing domain spacing from 8:2 to 6:4 blend ratios. Domain spacing remains constant from 6:4 to 4:6 blend ratios, which suggests the presence of continuous phases with proper domain size that may provide access for charge carriers to reach their corresponding electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号