首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Climate change-induced rainfall reductions in Mediterranean forests negatively affect the decomposition of plant litter through decreased soil moisture. However, the indirect effects of reduced precipitation on litter decomposition through changes in litter quality and soil microbial communities are poorly studied. This is especially the case for fine root litter, which contributes importantly to forests plant biomass. Here we analyzed the effects of long-term (11 years) rainfall exclusion (29% reduction) on leaf and fine root litter quality, soil microbial biomass, and microbial community-level physiological profiles in a Mediterranean holm oak forest. Additionally, we reciprocally transplanted soils and litter among the control and reduced rainfall treatments in the laboratory, and analyzed litter decomposition and its responses to a simulated extreme drought event. The decreased soil microbial biomass and altered physiological profiles with reduced rainfall promoted lower fine root—but not leaf—litter decomposition. Both leaf and root litter, from the reduced rainfall treatment, decomposed faster than those from the control treatment. The impact of the extreme drought event on fine root litter decomposition was higher in soils from the control treatment compared to soils subjected to long-term rainfall exclusion. Our results suggest contrasting mechanisms driving drought indirect effects on above-(for example, changes in litter quality) and belowground (for example, shifts in soil microbial community) litter decomposition, even within a single tree species. Quantifying the contribution of these mechanisms relative to the direct soil moisture-effect is critical for an accurate integration of litter decomposition into ecosystem carbon dynamics in Mediterranean forests under climate change.  相似文献   

2.
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.  相似文献   

3.
Selective pressure for choosing an adequate habitat should be strong in semisedentary animals because they have limited mobility once established. I examined microhabitat preferences and the adaptive value of these preferences in the antlion larva Myrmeloen crudelis, a semisedentary insect that digs pit traps in soils to capture small arthropods. I tested the habitat preferences of M. crudelis between two soil types in a tropical dry forest of Costa Rica. Specifically, I compared the soil particle composition size within and outside antlion aggregations and manipulated the availability of fine- and coarse-grained soil to assess how differences in soil grain size affect the design and performance of larval traps. Adjacent to antlion pits the soil was composed of a greater proportion of fine-grained particles (2 mm) than soil 1 m away from the pits. A set of experiments demonstrated that (1) in the presence of equal availability of fine- and coarse-grained soils, all larvae built their pits in fine-grained soil; (2) the larvae required less time to start and finish traps in fine-grained soil; (3) the larvae constructed larger and deeper pits in fine-grained soil; and (4) prey capture increased greatly in fine-grained traps compared with coarse-grained traps. Antlion larvae respond to variations in the proportion of fine particles in the soil, suggesting that antlion aggregations result from an active microhabitat selection. The preference for fine-grained soils is adaptive since pits constructed in such substrate are functional for longer periods and much more successful in trapping prey than pits in coarse-grained soil. Sit-and-wait predators that use sessile traps are spatially constrained to track prey abundance. Therefore, the ability to detect and select microhabitats with better conditions that enhance capture success may be under strong selection for this type of organism.  相似文献   

4.
凋落物作为森林生态系统碳库的重要组成部分对森林土壤碳、氮循环具有重要作用.为探讨香樟凋落叶对土壤碳、氮循环的影响,室内模拟研究了10%、20%和30% 3种土壤含水量条件下香樟凋落叶覆盖森林土壤中碳、氮元素的变化.结果表明: 3种含水量条件下香樟凋落叶覆盖均显著增加了土壤CO2排放速率和土壤溶解性有机碳(WSOC)含量,但显著降低了土壤中硝态氮含量,表明香樟凋落叶覆盖能够增强土壤呼吸强度和碳矿化,抑制土壤硝化作用;香樟凋落叶覆盖能够显著增加10%含水量土壤中铵态氮含量,但降低了20%和30%含水量土壤铵态氮含量,表明香樟凋落叶覆盖对土壤铵态氮含量的影响与土壤含水量有关.香樟凋落叶中部分单萜烯浓度在不同土壤含水量条件下分别与土壤CO2排放速率和铵态氮含量呈显著正相关,而与土壤WSOC和硝态氮含量呈显著负相关,说明香樟凋落叶覆盖对土壤碳、氮循环的影响可能与凋落叶中的单萜烯有关.  相似文献   

5.

Background and Aims

Soil texture is an important determinant of ecosystem structure and productivity in drylands, and may influence animal foraging and, indirectly, plant community composition.

Methods

We measured the density and composition of surface disturbances (foraging pits) of small, soil-foraging desert vertebrates in shrubland and grasslands, both with coarse- and fine-textured soils. We predicted that the density and functional significance of disturbances would be related more to differences in texture than shrub encroachment.

Results

Soil texture had a stronger influence on animal foraging sites than shrub encroachment. There were more disturbances, greater richness and abundance of trapped seed, and greater richness of germinating plants on coarse- than fine-textured soils. Pits in coarse soils trapped 50 % more litter than those in finer soils. Apart from slightly more soil removal and greater litter capture in shrubland pits, there were no effects of encroachment.

Conclusions

Although the process of woody encroachment has been shown to have marked effects on some ecosystem properties, it is likely to have a more subordinate effect on surface disturbances and therefore their effects on desert plant communities than soil texture. Our results highlight the importance of animal activity in shaping desert plant communities, and potentially, in maintaining or reinforcing shrub dominant processes.  相似文献   

6.
The meiofaunal community of artificial water-filled tree holes was determined, and the bottom-up effects of different amounts of leaf litter on abundance and diversity were estimated. We assume a positive impact of leaf litter on meiofaunal abundances, species diversity, and trophic links. Plastic cups with different amounts of leaf litter were placed in a beech forest (Teutoburg Forest, Bielefeld, Germany) for 24 weeks. As early as 1 week later, the artificial tree holes were colonized by bdelloid rotifers, tardigrades, and nematodes. Rotifers were dominant throughout the experiment, followed by nematodes and tardigrades. The 29 nematode species that were identified included bacterial and hyphal feeders, with common species such as Plectus cirratus/accuminatus and Aphelenchoides parietinus predominating. Impacts of water volume (up to complete desiccation), pH, and O2 on the meiofaunal community were not detected, whereas the addition of leaf litter resulted in bottom-up effects. Nematode abundance, especially that of bacterial feeders, and species number increased with increasing leaf input. The predatory nematode Prionchulus muscorum was found only in treatments containing high leaf content. Rotifer abundances were partly negatively affected by the amount of added leaves and, like tardigrades, showed a reversal in their correlation at higher leaf inputs. Our study revealed the fast colonization of small water bodies by meiofaunal organisms and the importance of passively distribution. Furthermore, the results provide a comparison with the meiofaunal community in lakes and soil.  相似文献   

7.
Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with sparse cover and relatively equal abundance. Shrub cover is highly concentrated in discrete patches. Using overstory tree cover and microsite environmental conditions, four habitats were identified; tree cluster, partial canopy, gap, and rock/shallow soil. Herb and shrub species were strongly linked with habitats. Soil moisture, litter depth and diffuse light were the most significant environmental gradients influencing understory plant distribution. Herb cover was most strongly influenced by soil moisture. Shrub cover is associated with more diffuse light, less direct light, and sites with lower soil moisture. Herb richness is most affected by conditions which influence soil moisture. Richness is positively correlated with litter depth, and negatively correlated with direct light and shrub cover. Disturbance or management practices which change forest floor conditions, shallow soil moisture and direct light are likely to have the strongest effect on Sierran understory abundance and richness.  相似文献   

8.
1.  Relationships between tropical rain forest biomass and environmental factors have been determined at regional scales, e.g. the Amazon Basin, but the reasons for the high variability in forest biomass at local scales are poorly understood. Interactions between topography, soil properties, tree growth and mortality rates, and treefalls are a likely reason for this variability.
2.  We used repeated measurements of permanent plots in lowland rain forest in French Guiana to evaluate these relationships. The plots sampled topographic gradients from hilltops to slopes to bottomlands, with accompanying variation in soil waterlogging along these gradients. Biomass was calculated for >175 tree species in the plots, along with biomass productivity and recruitment rates. Mortality was determined as standing dead and treefalls.
3.  Treefall rates were twice as high in bottomlands as on hilltops, and tree recruitment rates, radial growth rates and the abundance of light-demanding tree species were also higher.
4.  In the bottomlands, the mean wood density was 10% lower than on hilltops, the basal area 29% lower and the height:diameter ratio of trees was lower, collectively resulting in a total woody biomass that was 43% lower in bottomlands than on hilltops.
5.  Biomass productivity was 9% lower in bottomlands than on hilltops, even though soil Olsen P concentrations were higher in bottomlands.
6.   Synthesis . Along a topographic gradient from hilltops to bottomlands there were higher rates of treefall, which decreased the stand basal area and favoured lower allocation to height growth and recruitment of light-demanding species with low wood density. The resultant large variation in tree biomass along the gradient shows the importance of determining site characteristics and including these characteristics when scaling up biomass estimates from stand to local or regional scales.  相似文献   

9.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Forest biogeochemical cycles are shaped by effects of dominant tree species on soils, but the underlying mechanisms are not well understood. We investigated effects of temperate tree species on interactions among carbon (C), nitrogen (N), and acidity in mineral soils from an experiment with replicated monocultures of 14 tree species. To identify how trees affected these soil properties, we evaluated correlations among species-level characteristics (e.g. nutrient concentrations in leaf litter, wood, and roots), stand-level properties (e.g. nutrient fluxes through leaf litterfall, nutrient pools in stemwood), and components of soil C, N, and cation cycles. Total extractable acidity (aciditytot) was correlated positively with mineral soil C stocks (R 2  = 0.72, P < 0.001), such that a nearly two-fold increase in aciditytot was associated with a more than two-fold increase of organic C. We attribute this correlation to effects of tree species on soil acidification and subsequent mineral weathering reactions, which make hydrolyzing cations available for stabilization of soil organic matter. The effects of tree species on soil acidity were better understood by measuring multiple components of soil acidity, including pH, the abundance of hydrolyzing cations in soil solutions and on cation exchange sites, and aciditytot. Soil pH and aciditytot were correlated with proton-producing components of the soil N cycle (e.g. nitrification), which were positively correlated with species-level variability in fine root N concentrations. Soluble components of soil acidity, such as aluminum in saturated paste extracts, were more strongly related to plant traits associated with calcium cycling, including leaf and root calcium concentrations. Our results suggest conceptual models of plant impacts on soil biogeochemistry should be revised to account for underappreciated plant traits and biogeochemical processes.  相似文献   

11.
Abstract.  1. Oviposition preference and the survival and mortality of larvae of Cameraria hamadryadella (Lepidoptera) on the foliage of Quercus alba L. (Fagaceae) in sun and shade were examined. To separate the effects of the environment of foliation from that of rearing, C. hamadryadella were allowed to oviposit on oak saplings that foliated either in the sun or shade. Subsequently, trees were placed into the sun or shade and larval survival was monitored.
2. Trees that foliated in the shade had leaves that were 30% longer than those that foliated in the sun. However, the density of leaf mines did not differ between trees that foliated in the sun or shade.
3. Larval survival was higher in the shade than in the sun, but no difference in survival due to the site of foliation was detected. Differences in larval survival between the sun and shade environments could not be attributed to differences in natural enemy mortality. However, 'death by other causes' was higher for larvae reared in the sun than in the shade. In sunny environments photochemical processes may reduce foliage quality, which results in lower survival of C. hamadryadella larvae.
4. Ovipositing C. hamadryadella do not appear to discriminate between foliage produced in the sun or shade. This lack of discrimination, coupled with the fact that ovipositing C. hamadryadella are active after dark, accounts for the absence of a difference in abundance between sun and shade.
5. The results presented here, combined with other published studies, argue that different patterns of insect herbivory and abundance in relation to the light level experienced by host-plant foliage might be expected for species that oviposit either in the night or in the day.  相似文献   

12.
Abstract.  1. Spatial habitat structure can influence the likelihood of patch colonisation by dispersing individuals, and this likelihood may differ according to trophic position, potentially leading to a refuge from parasitism for hosts.
2. Whether habitat patch size, isolation, and host-plant heterogeneity differentially affected host and parasitoid abundance, and parasitism rates was tested using a tri-trophic thistle–herbivore–parasitoid system.
3.  Cirsium palustre thistles ( n = 240) were transplanted in 24 blocks replicated in two sites, creating a range of habitat patch sizes at increasing distance from a pre-existing source population. Plant architecture and phenological stage were measured for each plant and the numbers of the herbivore Tephritis conura and parasitoid Pteromalus elevatus recorded.
4. Mean herbivore numbers per plant increased with host-plant density per patch, but parasitoid numbers and parasitism rates were unaffected. Patch distance from the source population did not influence insect abundance or parasitism rates. Parasitoid abundance was positively correlated with host insect number, and parasitism rates were negatively density dependent. Host-plant phenological stage was positively correlated with herbivore and parasitoid abundance, and parasitism rates at both patch and host-plant scales.
5. The differential response between herbivore and parasitoid to host-plant density did not lead to a spatial refuge but may have contributed to the observed parasitism rates being negatively density dependent. Heterogeneity in patch quality, mediated by variation in host-plant phenology, was more important than spatial habitat structure for both the herbivore and parasitoid populations, and for parasitism rates.  相似文献   

13.
Nitrogen and phosphorus are the main elements limiting net primary production in terrestrial ecosystems. When growing in nutrient‐poor soils, plants develop physiological mechanisms to conserve nutrients, such as reabsorbing elements from senescing foliage (i.e. nutrient retranslocation). We investigated the changes in soil N and P in post‐fire succession in temperate rainforests of southern Chile. In this area, forest recovery often leads to spatially scattered, discrete regeneration with patches varying in age, area, species richness and tree cover, representing different degrees of recovery from disturbance. We hypothesized that soil nutrient concentrations should differ among tree regenerating patches depending on the progress of forest regeneration and that nutrient resorption should increase over time as colonizing trees respond to limited soil nutrients. To evaluate these hypotheses, we sampled 40 regeneration patches in an area of 5 ha, spanning a broad range of vegetation complexity, and collected soil, tree foliage and litter samples to determine N and P concentrations. Nutrient concentrations in leaf litter were interpreted as nutrient resorption proficiency. We found that soil P was negatively correlated with all the indicators of successional progress, whereas total soil N was independent of the successional progress. Foliar N and P were unrelated to soil nutrient concentrations; however, litter N was negatively related to soil N, and litter P was positively related with soil P. Finally, foliar N:P ratios ranged from 16 to 25, which suggests that P limitation can hamper post‐fire regeneration. We provide evidence that after human‐induced fires, succession in temperate forests of Chile can become nutrient limited and that high nutrient retranslocation is a key nutrient conservation strategy for regenerating tree communities.  相似文献   

14.
SUMMARY. 1. Exposure to simulated acid rain resulted in changes in the chemical content of riparian vegetation and terrestrial leaf litter and had significant effects on leaf litter decay rates in a well-buffered lotic ecosystem.
2. Foliar nitrogen and phosphorus decreased with decreasing pH of the simulated acid rain and microbial activity was greater on leaf litter exposed to rain of pi I 5.4 than on leaf litter exposed to pH 3.0 or pH 4.0.
3. Detritivore numbers and biomass were significantly higher on leaf litter exposed to pH 5.4, probably due to the greater palatability of the leaf substrate.
4. Decay rates of leaf litter processed in the summer months were significantly lower than decay rates of leaf litter processed during the autumn/winter due to reduction in nitrogen content and microbial respiration.  相似文献   

15.
We evaluated ants as bioindicators of environmental impacts caused by arsenic residuals in the soil. We tested the hypotheses that the presence of arsenic in the soil affects: (1) estimates of resources and habitat condition for arboreal and epigaeic ants; (2) species richness of arboreal and epigaeic ants and (3) arboreal and epigaeic ant species composition. Ants were sampled at an inactivated raticide factory in Nova Lima, Minas Gerais, Brasil, which used arsenic as one of its main byproducts. The following environmental variables were measured: bioavailable arsenic concentration in the soil, the number and density of tree species, plant cover and leaf litter depth. The species richness of arboreal ants decreased with increased bioavailable arsenic concentration whilst epigaeic ants increased with arsenic. Arboreal ants were positively related to the number of tree species, which in turn were negatively affected by arsenic. We verified which ants are good bioindicators of arsenic. Independent verification of the influence of arsenic on background environmental variables was fundamental in defining responses of ant communities, as well as in identifying the most effective pathways for the recovery of biological communities in degraded areas.  相似文献   

16.
Four-fold variation in leaf-litter Ca concentration among 14 tree species growing in a common garden in central Poland was linked to variation in soil pH, exchangeable Ca, soil base saturation, forest floor turnover rates, and earthworm abundance. Given the potential importance of tissue Ca to biogeochemical processes, in this study we investigated potential controls on leaf Ca concentrations using studies of both laboratory seedlings and 30-year-old trees in the field. We first assessed whether species differences in Ca concentration of green leaves and leaf litter were due to differences in Ca uptake, plant growth, or Ca translocation to different organs, by measuring seedlings of 6 of the 14 species grown under controlled conditions of varying Ca supply. We also investigated whether trees species with high Ca concentrations in green leaves and leaf litter access soil Ca to a greater extent than low-Ca species by growing more fine roots in high-Ca soil horizons. Root distribution in the field was determined in all 14 tree species by profile wall mapping and soil sampling of excavated pits. There was no correlation between horizon root count density (number of roots m−2) and exchangeable soil Ca, nor was there a correlation of stand-level leaf litter Ca with density of roots 45–100 cm deep in the soil, suggesting that a deeper root distribution does not result in greater Ca acquisition among these species. Variation among species in leaf Ca concentration of greenhouse seedlings was positively correlated with leaf Ca concentrations of mature trees, indicating that the same ranking in leaf Ca among species existed under controlled Ca supply. Species also differed in seedling growth response to Ca supply. Tilia, the species with the highest leaf Ca in the field, generated only 10% as much biomass and height at low relative to high Ca supply, whereas the other species exhibited no significant differences. Species exhibited differences in (i) partitioning of whole plant Ca and biomass to leaf, stem and root organs and (ii) the pattern of such partitioning between high and low Ca treatments. Our data support the hypothesis that although soil Ca supply can contribute to variation among trees in leaf and litter Ca concentration, innate physiological differences among species also can be a major cause for species variation.  相似文献   

17.
We assessed direct and indirect effects of snow cover on litter decomposition and litter nitrogen release in alpine tundra. Direct effects are driven by the direct influence of snow cover on edaphoclimatic conditions, whereas indirect effects result from the filtering effect of snow cover on species’ abundance and traits. We compared the in situ decomposition of leaf litter from four dominant plant species (two graminoids, two shrubs) at early and late snowmelt locations using a two-year litter-bag experiment. A seasonal experiment was also performed to estimate the relative importance of winter and summer decomposition. We found that growth form (graminoids vs. shrubs) are the main determinants of decomposition rate. Direct effect of snow cover exerted only a secondary influence. Whatever the species, early snowmelt locations showed consistently reduced decomposition rates and delayed final stages of N mineralization. This lower decomposition rate was associated with freezing soil temperatures during winter. The results suggest that a reduced snow cover may have a weak and immediate direct effect on litter decomposition rates and N availability in alpine tundra. A much larger impact on nutrient cycling is likely to be mediated by longer term changes in the relative abundance of lignin-rich dwarf shrubs.  相似文献   

18.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

19.
Although changes in land-use, climate, and the spread of introduced tree species have increased the global importance of tree invasions into grasslands, our ability to predict any particular invasion is limited. To elucidate mechanisms driving tree invasions of grasslands, we studied in detail how seed dispersal and fine-scale environment control the expansion of an introduced Picea abies Karst. (Norway spruce) population into Western Carpathian grassland. We mapped invading trees and measured tree size, fecundity, seed rain, seedling density, plant community composition, and light and soil environment within a 200 × 60 m belt across the invasion front. Maximum likelihood estimates of dispersal kernels suggested peak seed deposition directly underneath tree crowns where germination was poor, but mean dispersal distances were sufficiently large to generate overlapping seed shadows from multiple trees that saturated the invasion front with seeds further away from seed-dispersing trees. Partial Mantel tests indicated that germinant density was affected considerably less by seed rain than by moss cover (r = 0.54), overstory tree influence (r = −0.32), soil moisture (r = 0.21), grass cover (r = −0.15), and diffuse radiation (r = 0.13). However, these variables were not independent but formed complex multivariate gradients within the invasion front. Moss cover and soil moisture were negatively correlated with overstory tree influence and the resulting gradient clearly affected germinant density (partial Mantel r = 0.45). In contrast, positively correlated light and grass cover defined a gradient related weakly to germinant density (partial Mantel r = 0.05) as it integrated opposing effects of these variables on germinants. Seedlings had similar environmental associations, but except for the lasting positive effects of moss these tended to weaken with seedling size. Although a few seedlings may establish and survive in the more adverse environment of the outer edges of the invasion front, a significant population expansion may require a gradual build-up of the critical density of invading trees to reduce grass cover and facilitate germination on moist mossy seedbeds within uncolonized areas. Thus, Picea abies appears more likely to spread within temperate grasslands by gradual expansion of its population frontier rather than by advanced groups.  相似文献   

20.
Summary   Soil-disturbing animals have wide-ranging effects on both biotic and abiotic processes across a number of Australian ecosystems. They alter soil quality by mixing surface soils and trapping litter and water, leading to areas of increased decomposition of organic matter. The foraging pits of indigenous soil-disturbing animals tend to have different soil chemical characteristics, greater levels of infiltration and lower levels of soil density than adjacent areas. Enhanced capture of seeds and water turns disturbance pits into areas of enhanced plant germination. The burrows, pits and mounds of both native and exotic animals provide habitat for a range of vertebrates and invertebrates and contribute to patchiness in the landscape. Given their wide-ranging effects on surface soil and ecological processes, we argue in this review that soil disturbance by native animals has the potential to contribute to restoration of degraded landscapes, particularly in arid and semi-arid areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号