首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We test the hypothesis that secondary succession in Tropical Montane Cloud Forest (TMCF) in Mexico is accompanied by an increase in the spatial structuring of litter resources, soil nutrient concentrations and the soil macroinvertebrate community at a within-plot scale (5–25 m). This increased spatial structuring is expected because secondary succession in these forests is associated with an increase in the diversity of trees that dominate the canopy. If each tree species generates a particular soil environment under its canopy, then under a diverse tree community, soil properties will be spatially very heterogeneous. Tree censuses and grid sampling were performed in four successional stages of a secondary chronosequence of TMCF. Variography was used to analyse spatial patterns in continuous variables such as nutrient concentrations, while Spatial Analysis by Distance Indices (SADIE) was applied to determine patchiness in the distribution of soil macroinvertebrate taxa. Secondary succession was found to be accompanied by the predicted increase in the spatial structuring of litter resources and the macroinvertebrate community at the within-plot scale. Spatial patterns in the macroinvertebrate community only became evident for all taxa in the oldest forest (100 years old). Patches with low Ca and Mg concentrations in early successional soils were associated with patches where pine litter was most abundant while those with low P concentrations in late successional stages were associated with patches where oak litter was most abundant. Results suggest that anthropogenic disturbance aboveground promotes a more homogeneous resource environment in the surface soil, which compared to older forests, sustains a less diverse and less spatially structured macroinvertebrate community.  相似文献   

2.
温带森林演替加剧了氮限制:来自叶片化学计量和养分重吸收的证据 森林生产力和碳汇功能在很大程度上取决于土壤氮和磷的有效性。然而,迄今为止,养分限制随森林演替的时间变化仍存在争议。叶片化学计量和养分重吸收是预测植物生长养分限制的重要指标。基于此,本研究测定了温带森林4个演替阶段所有木本植物叶片和凋落叶中氮和磷的含量,并分析了演替过程中非生物因子和生物因子如何影响叶片化学计量和养分重吸收。研究结果表明,在个体尺度上,叶片氮磷含量在演替末期显著增加,而叶片氮磷比无显著变化;氮的重吸收效率随演替显著增加,然而磷的重吸收效率先增加后减少;氮重吸收效率与磷重吸收效率的比值仅在演替末期显著增加。此外,植物氮素循环对土壤养分的响应比磷素循环更弱。在群落尺度上,叶片氮磷含量随森林演替呈现先降低后升高的趋势,主要受香农-维纳多样性指数和物种丰富度的影响;叶片氮磷比随演替而显著变化,主要由胸径的群落加权平均值决定;氮的重吸收效率增加,主要受物种丰富度和胸径的影响,而磷的重吸收效率相对稳定。因此,氮重吸收效率与磷重吸收效率的比值显著增加,表明随着温带森林演替,氮限制加剧。这些结果可能反映了较高生物多样性群落中物种间对有限资源的激烈竞争,强调了生物因子在驱动森林生态系统养分循环中的重要性,为中国温带和北方森林可持续经营的施肥管理提供了参考。  相似文献   

3.
Glacier foreland moraines provide an ideal model to examine the patterns of ecosystem development and the evolution of nitrogen and phosphorous limitation over successional time. In this paper, we focus on a 400‐year soil chronosequence in the glacier forelands of Santa Inés Island in the Magellan Strait, southern Chile by examining forest development on phosphorus (P)‐poor substrates in a uniquely unpolluted region of the world. Results show a steady increase in tree basal area and a humped trend in tree species richness over four centuries of stand development. The increase in basal area suggests that the late successional tree species were more efficient nutrient users than earlier successional ones. Total contents of carbon (C) and nitrogen (N) in soils increased during the chronosequence, reaching an asymptote in late succession. The net increases in soil C : N, C : P and N : P ratios observed over successional time suggest that nutrient limitation is maximal in 400‐year‐old substrates. Foliar C : N and C : P ratios also increased over time to reach an asymptote in old‐growth stages, following soil stoichiometric relationships; however the foliar N‐to‐P ratio remained constant throughout the chronosequence. Biological N fixation was greater in early postglacial succession, associated with the presence of the symbiotic N‐fixer Gunnera magellanica. Declining trends of δ15N in surface soils through the 400‐year chronosequence are evidence of decreasing N losses in old‐growth forests. In synthesis, glacier foreland chronosequences at this high South American latitude provide evidence for increasing efficiency of N and P use in the ecosystem, with the replacement of shade‐intolerant pioneers by more efficient, shade‐tolerant tree species. This pattern of ecosystem development produces a constant foliar N : P ratio, regardless of variation in soil N‐to‐P ratio over four centuries.  相似文献   

4.
This study investigated seasonal patterns in stoichiometric ratios, nutrient resorption characteristics, and nutrient use strategies of dominant tree species at three successional stages in subtropical China, which have not been fully understood. Fresh leaf and leaf litterfall samples were collected in growing and nongrowing seasons for determining the concentrations of carbon (C), nitrogen (N), and phosphorus (P). Then, stoichiometric ratios (i.e., C:N, C:P, N:P, and C:N:P) and resorption parameters were calculated. Our results found that there was no consistent variation in leaf C:N and C:P ratios among different species. However, leaf N:P ratios in late‐successional species became significantly higher, indicating that P limitation increases during successional development. Due to the P limitation in this study area, P resorption efficiency and proficiency were higher than corresponding N resorption parameters. Dominant tree species at early‐successional stage adopted “conservative consumption” nutrient use strategy, whereas the species at late‐successional stage inclined to adopt “resource spending” strategy.  相似文献   

5.
Important phenological activities in seasonally dry tropical forest species occur within the hot‐dry period when soil water is limiting, while the subsequent wet period is utilized for carbon accumulation. Leaf emergence and leaf area expansion in most of these tree species precedes the rainy season when the weather is very dry and hot and the soil cannot support nutrient uptake by the plants. The nutrient requirement for leaf expansion during the dry summer period, however, is substantial in these species. We tested the hypothesis that the nutrients withdrawn from the senescing leaves support the emergence and expansion of leaves in dry tropical woody species to a significant extent. We examined the leaf traits (with parameters such as leaf life span, leaf nutrient content and retranslocation of nutrients during senescence) in eight selected tree species in northern India. The concentrations of N, P and K declined in the senescing foliage while those of Na and Ca increased. Time series observations on foliar nutrients indicated a substantial amount of nutrient resorption before senescence and a ‘tight nutrient budgeting’. The resorbed N‐mass could potentially support 50 to 100% and 46 to 80% of the leaf growth in terms of area and weight, respectively, across the eight species studied. Corresponding values for P were 29 to 100% and 20 to 91%, for K 29 to 100% and 20 to 57%, for Na 3 to 100% and 1 to 54%, and for Ca 0 to 32% and 0 to 30%. The species differed significantly with respect to their efficiency in nutrient resorption. Such interspecific differences in leaf nutrient economy enhance the conservative utilization of soil nutrients by the dry forest community. This reflects an adaptational strategy of the species growing on seasonally dry, nutrient‐poor soils as they tend to depend more or less on efficient internal cycling and, thus, utilize the retranslocated nutrients for the production of new foliage biomass in summer when the availability of soil moisture and nutrients is severely limited.  相似文献   

6.
研究了一个生长季节内,缺苞箭竹(Fargesia denudata)-紫果云杉(Picea purpurea)原始林下不同密度缺苞箭竹凋落物及其生物元素含量的动态,比较了凋落物与新鲜叶中生物元素含量的差异,探讨了生物元素在缺苞箭竹体内的潜在内转移能力。研究结果表明:在生长季节内,缺苞箭竹凋落物量随着缺苞箭竹密度增加而增大。凋落物中C、N、P、K含量随着缺苞箭竹密度增加而减小,但Ca、Mg含量随着缺苞箭竹密度增加而增大。凋落物和新鲜叶中的C含量无显著差异,且二者均无明显的季节变化规律;凋落物的N、P、K含量表现为在5、6、7月依次升高,7月以后逐渐下降的格局,且凋落物中的含量明显低于新鲜叶;凋落叶的Ca含量明显高于新鲜叶,但无明显的季节变化规律;凋落叶的Mg含量在缺苞箭竹指数生长期最低,而新鲜叶中Mg含量在缺苞箭竹指数生长期最高。缺苞箭竹密度对生物元素的动态变化规律无显著影响。内转移率表现为K>N>P,且P的内转移率随着缺苞箭竹密度的增加而升高,但缺苞箭竹密度对K、N的内转移能力影响较小;C在缺苞箭竹植株体内的内转移现象不明显;Ca在凋落物中的积累率随缺苞箭竹密度增加而增大;Mg元素的积累率随着缺苞箭竹密度增加越来越高,而内转移率越来越低。  相似文献   

7.
Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations of four tree species occurring in both planting mixtures were compared between a legume-dominated, species-poor direct seeding mixture of early-successional species (“legume mixture”), and a species-diverse, legume-poor mixture of all successional groups (“diverse mixture”). After 7 years, the legume mixture had 6-fold higher abundance of N2-fixing trees, 177% higher total tree basal area, 22% lower litter C/N, six-fold higher in situ soil resin-nitrate, and 40% lower in situ soil resin-P, compared to the diverse mixture. In the legume mixture, non-N2-fixing legume Schizolobium parahyba (Fabaceae-Caesalpinioideae) had significantly lower proportional N resorption, and both naturally regenerating non-legume trees had significantly higher leaf N concentrations, and higher proportional P resorption, than in the diverse mixture. This demonstrate forms of plastic adjustment in all three non-N2-fixing species to diverged nutrient relations between mixtures. By contrast, leaf nutrient relations in N2-fixing Enterolobium contortisiliquum (Fabaceae-Mimosoideae) did not respond to planting mixtures. Rapid N accumulation in the legume mixture caused excess soil nitrification over nitrate immobilization and tighter P recycling compared with the diverse mixture. The legume mixture succeeded in accelerating tree growth and canopy closure, but may imply periods of N losses and possibly P limitation. Incorporation of species with efficient nitrate uptake and P mobilization from resistant soil pools offers potential to optimize these tradeoffs.  相似文献   

8.
Question: How do increases in soil nutrient and water availability alter the nutrient fluxes through the resorption and litter decomposition pathways and how do they affect litter nutrient pools in a low‐productive alpine tundra ecosystem? Location: An alpine lichen‐rich tundra on Mt. Malaya Khati‐para in the NW Caucasus, Russia (43°27’ N, 41°42’ E; altitude 2800 m a.s.l.). Methods: We conducted a 4‐year fertilisation (N, P, N+P, lime) and irrigation experiment, and analysed the responses of nutrient resorption from senescing leaves, leaf litter quality and decomposability of six pre‐dominant vascular plant species, total plant community litter production and litter (nutrient) accumulation. Results: Vascular plant litter [N] and [P] increased 1.5 and 10 fold in response to N and P additions, due to increased concentrations of the nutrients in fresh leaves and unchanged or reduced resorption efficiency. Litter decomposability was not affected by nutrient amendments. Fertilisation enhanced litter production (180%; N+P treatment) and litter accumulation (80%; N+P), owing to tremendously increased production and low decomposability of graminoids. Together with increased litter [N] and [P] this led to great increases in total litter nutrient pools. Conclusions: Due to increased production of graminoids, nutrients added to the alpine tundra soil were mostly immobilised in recalcitrant, nutrient‐rich litter. This suggests that changing species composition in low productive ecosystems may act as an internal buffer mechanism, which under increased soil nutrient availability prevents the community from rapidly acquiring features typical of a high productive ecosystem such as high decomposability and high nutrient availability.  相似文献   

9.
Summary Leaves were sampled in a successional, southern Appalachian forest to estimate autumn foliar nutrient dynamics. Resorption of N and P in a successional forest equaled, or exceeded, resorption estimates for a more mature control forest. Foliar nutrient leaching was not sufficient to account for changes in autumn leaf N, P, Ca and Mg concentrations. The resorption process conserves nutrients by reducing nutrient losses from leaching and litter-fall, thereby closing the nutrient cycle in successional forests. We hypothesize that rapid recovery of primary productivity early in forest regeneration is the result of maximum nutrient resorption of limiting nutrients. Implications of these results for successional nutrient cycling theory are discussed.  相似文献   

10.
地表凋落物在森林物质循环中起着重要作用, 但是目前缺乏对其不同分解层次中碳(C)、氮(N)、磷(P)演替动态的研究。该文以浙江天童常绿阔叶林为研究对象, 用空间代替时间序列的方法, 通过测定5个演替阶段地表凋落物不同分解层次的凋落物量、有机碳库和氮磷养分库的储量及C:N:P化学计量特征, 探讨地表凋落物特征的演替动态。结果表明: 1)随着演替的进行, 地表凋落物量和有机碳储量呈现下降的趋势。2)在各演替阶段, 有机碳含量在各分解层表现出未分解层(L) > 半分解层(F) > 已分解层(Y)的趋势; 有机碳储量均表现为Y < F。3)演替前期群落氮含量和储量显著低于演替中后期群落; 不同分解层的氮含量在各演替阶段皆表现为: Y > F > L, 且各层氮含量随着演替的进行均趋于升高。4)磷含量在演替中期群落最低, 各演替阶段不同分解层的磷含量皆表现为Y > F > L。磷储量的演替趋势不明显。L层磷储量随着演替进行趋于降低。5)随着演替进行, 凋落物C:N、C:P和N:P皆趋于下降(p < 0.05)。在各分解层之间, C:N和C:P皆表现为Y < F < L, N:P差异不显著。总之, 随着演替进行, 天童常绿阔叶林地表凋落物量降低, 有机碳库及氮磷养分库的含量趋于升高, 储量趋向降低, C:N:P趋于下降, 体现了生态系统碳和养分循环随着演替进行在不断优化。  相似文献   

11.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   

12.
Nucleation is a successional process in which extant vegetation facilitates seed dispersal and recruitment of other individuals and species around focal points in the landscape, leading to ecosystem recovery. This is an important process in disturbed sites where regeneration is limited by abiotic conditions or restrictive seed dispersal. We investigated forest recovery in a large burned area of evergreen temperate rainforest in southern Chile subjected to seasonal soil waterlogging, and assessed the relevance of nucleation processes in overcoming biotic and physical barriers for tree species regeneration. We measured richness and abundance of woody species in relation to patch size, as well as abiotic factors such as light and soil moisture within and outside patches. We found higher tree regeneration in existing patches than in open areas. We recorded an increase of patch size over time, associated with the increase in number of individuals and tree species. Soils in open areas were waterlogged, especially in winter, while patches were not. Trees in patches also acted as perches, enhancing bird-mediated seed rain. Seeds of fleshy-fruited tree species arrived first at patches and seedlings were more frequent in smaller, younger patches, while the number of seedlings of trees with wind-dispersed seeds increased in larger, older patches. Our study shows that woody species seem incapable of recruiting in open and waterlogged soils and depend strongly on extant vegetation patches to establish. In this fire-disturbed evergreen temperate forest regeneration occurs via nucleation, where new individuals contribute to a centrifugal kind of patch growth.  相似文献   

13.
黄土高原子午岭林区典型树种叶片N、P再吸收特征   总被引:1,自引:0,他引:1  
为揭示黄土高原子午岭林区不同演替阶段和植被类型主要树种养分再吸收特征,研究选取4种次生植被树种(白桦、山杨、辽东栎和油松)和2种人工植被树种(刺槐和侧柏),测定其成熟叶、凋落叶和林下土壤碳(C)、氮(N)、磷(P)含量,研究了叶片N、P再吸收率及其与养分指标的关系。结果表明:(1)不同树种叶片养分和林下土壤养分含量存在显著差异,土壤C、N含量和C∶N∶P计量比均表现为演替后期林地(辽东栎和油松)演替前期林地(山杨和白桦)人工林(侧柏和刺槐);(2)不同树种叶片N、P再吸收率分别为17.18%—43.34%和27.13%—58.12%,均表现为演替后期林地人工林演替前期林地,且P的再吸收率总体高于N的再吸收率;(3)不同树种叶片N、P再吸收率与叶片养分指标的关系强于土壤,与养分计量比的相关性大于养分含量的相关性。说明子午岭典型植被会通过叶片N、P再吸收来适应养分限制环境,尤其是演替后期植被再吸收能力更强,研究可为黄土高原植被恢复提供理论依据。  相似文献   

14.
Distinct ecosystem level carbon : nitrogen : phosphorus (C : N : P) stoichiometries in forest foliage have been suggested to reflect ecosystem-scale selection for physiological strategies in plant nutrient use. Here, this hypothesis was explored in a nutrient-poor lowland rainforest in French Guiana. Variation in C, N and P concentrations was evaluated in leaf litter and foliage from neighbour trees of 45 different species, and the litter concentrations of major C fractions were also measured. Litter C ranged from 45.3 to 52.4%, litter N varied threefold (0.68-2.01%), and litter P varied seven-fold (0.009-0.062%) among species. Compared with foliage, mean litter N and P concentrations decreased by 30% and 65%, respectively. Accordingly, the range in mass-based N : P shifted from 14 to 55 in foliage to 26 to 105 in litter. Resorption proficiencies indicated maximum P withdrawal in most species, but with a substantial increase in variation in litter P compared with foliage. These data suggest that constrained ecosystem-level C : N : P ratios do not preclude the evolution of highly diversified strategies of nutrient use and conservation among tropical rainforest tree species. The resulting large variation in litter quality will influence stoichiometric constraints within the decomposer food web, with potentially far-ranging consequences on nutrient dynamics and plant-soil feedbacks.  相似文献   

15.
《植物生态学报》2014,38(8):833
地表凋落物在森林物质循环中起着重要作用, 但是目前缺乏对其不同分解层次中碳(C)、氮(N)、磷(P)演替动态的研究。该文以浙江天童常绿阔叶林为研究对象, 用空间代替时间序列的方法, 通过测定5个演替阶段地表凋落物不同分解层次的凋落物量、有机碳库和氮磷养分库的储量及C:N:P化学计量特征, 探讨地表凋落物特征的演替动态。结果表明: 1)随着演替的进行, 地表凋落物量和有机碳储量呈现下降的趋势。2)在各演替阶段, 有机碳含量在各分解层表现出未分解层(L) > 半分解层(F) > 已分解层(Y)的趋势; 有机碳储量均表现为Y < F。3)演替前期群落氮含量和储量显著低于演替中后期群落; 不同分解层的氮含量在各演替阶段皆表现为: Y > F > L, 且各层氮含量随着演替的进行均趋于升高。4)磷含量在演替中期群落最低, 各演替阶段不同分解层的磷含量皆表现为Y > F > L。磷储量的演替趋势不明显。L层磷储量随着演替进行趋于降低。5)随着演替进行, 凋落物C:N、C:P和N:P皆趋于下降(p < 0.05)。在各分解层之间, C:N和C:P皆表现为Y < F < L, N:P差异不显著。总之, 随着演替进行, 天童常绿阔叶林地表凋落物量降低, 有机碳库及氮磷养分库的含量趋于升高, 储量趋向降低, C:N:P趋于下降, 体现了生态系统碳和养分循环随着演替进行在不断优化。  相似文献   

16.
Plant growth in semi‐arid ecosystems is usually severely limited by soil nutrient availability. Alleviation of these resource stresses by fertiliser application and aboveground litter input may affect plant internal nutrient cycling in such regions. We conducted a 4‐year field experiment to investigate the effects of nitrogen (N) addition (10 g N·m?2·year?1) and plant litter manipulation on nutrient resorption of Leymus chinensis, the dominant native grass in a semi‐arid grassland in northern China. Although N addition had no clear effects on N and phosphorus (P) resorption efficiencies in leaves and culms, N fertilisation generally decreased leaf N resorption proficiency by 54%, culm N resorption proficiency by 65%. Moreover, N fertilisation increased leaf P resorption proficiency by 13%, culm P resorption proficiency by 20%. Under ambient or enriched N conditions, litter addition reduced N and P resorption proficiencies in both leaves and culms. The response of P resorption proficiency to litter manipulation was more sensitive than N resorption proficiency: P resorption proficiency in leaves and culms decreased strongly with increasing litter amount under both ambient and enriched N conditions. In contrast, N resorption proficiency was not significantly affected by litter addition, except for leaf N resorption proficiency under ambient N conditions. Furthermore, although litter addition caused a general decrease of leaf and culm nutrient resorption efficiencies under both ambient and enriched N conditions, litter addition effects on nutrient resorption efficiency were much weaker than the effects of litter addition on nutrient resorption proficiency. Taken together, our results show that leaf and non‐leaf organs of L. chinensis respond consistently to altered soil N availability. Our study confirms the strong effects of N addition on plant nutrient resorption processes and the potential role of aboveground litter, the most important natural fertiliser in terrestrial ecosystems, in influencing plant internal nutrient cycling.  相似文献   

17.
Obligate seeder trees requiring high‐severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long‐lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High‐severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high‐severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest.  相似文献   

18.
Abstract Trees growing along windy coasts often have canopies that are greatly reduced in size by the sculpting effects of wind and salt spray. Trees with environmentally reduced stature are called elfinwood (windswept shrub‐form or krummholz) and are ecologically important because they represent outposts growing at the limit of tree success. The purpose of this study was to assess if Banksia grandis elfinwood growing at Cape Leeuwin had a different nutrient status than normal low‐form (LF) trees growing nearby, and if nutrient deficiencies, toxicities and/or imbalances were among the limiting factors imposed on elfinwood. The concentrations of N, P, K, Ca, Mg, Na, Cl, Fe, Mn, Zn, Cu, Mo and B were analysed for mature green foliage, immature foliage, foliage litter, flowers and soil. When the elfinwood and LF trees were compared, the foliar nutrient status was generally similar, except that elfinwood foliage had significantly higher mean concentrations of N, Zn and Cu, while LF trees had higher Fe and Mn contents. Many nutrients were conserved before leaves were shed in both elfinwood and LF trees, including N, P, K, Na, Cl, Mn and Cu (LF trees also conserved Ca and Mg). However, elfinwood and LF tree‐litter contained significantly higher Fe concentrations than green foliage (elfinwood litter also had higher levels of Mg and B). It is tempting to suggest that the translocation of Fe into leaves before they were shed is a regulation mechanism to prevent Fe toxicity, or imbalance in the Fe : Mn ratio. Proteoid roots strongly acidify the soil to mobilize P, which also chemically reduces Fe+3 to plant‐available Fe+2. The increased supply of Fe+2 in the rhizosphere, caused by the action of proteoid roots, might tend to defeat self‐regulation of Fe uptake. It is possible that excess Fe accumulation in the plant might be regulated, in part, by exporting Fe into the leaves before they are shed. The nutrient status of B. grandis elfinwood is compared with mountain elfinwood of North America. The extreme habitat of coastal elfinwood provides many theoretical pathways for nutrient limitation, but B. grandis elfinwood at Cape Leeuwin does not appear to be nutrient deficient.  相似文献   

19.
Land-use change in the tropics is creating secondary forest at an unprecedented rate. In the tropical Americas, mature dry tropical forest is rapidly being converted to secondary forest during the fallow period of shifting cultivation. We investigated litter phosphorus (P) and nitrogen (N) dynamics in forests recovering from shifting cultivation of maize (corn) in three regions of the Southern Yucatan Peninsula, Mexico. Our goal was to understand how nutrient and water availability affect forest recovery following conversion of mature forest to agricultural land. To investigate such changes at a regional scale, newly fallen litter was collected monthly along a seasonal, a successional, and a precipitation gradient. Reflecting possible P limitation, litter P concentration declined with forest age, while litter N concentration did not differ between age classes. Average litter P concentration from the southern, wettest region was 0.87 mg/g, almost twice the litter P concentration in the drier central and northern regions (0.44 and 0.45 mg/g, respectively). Average N concentrations of litter from the three regions ranged from 1.1% to 1.2%, with no regional differences. However, minima in both P and N concentration from all regions were pronouncedly timed with peak litterfall, suggesting nutrient retranslocation during periods of water stress. Additionally, successional differences in litter P were clearest during wetter months. P nutrient-use efficiency was lowest in the southern region and highest in the central and northern study regions. N nutrient-use efficiency was up to 40 times lower than P nutrient-use efficiency and showed no regional differences. Overall, our results suggest that litter nutrient dynamics in secondary dry tropical forests of the Southern Yucatan are strongly influenced by water and nutrient availability, especially P, as well as land-use history.  相似文献   

20.
Vast areas of southern Chile are now covered by second-growth forests because of fire and logging. To study successional patterns after moderate-intensity, anthropogenic fire disturbance, we assessed differences in soil properties and N fluxes across a chronosequence of seven successional stands (2–130 years old). We examined current predictions of successional theory concerning changes in the N cycle in forest ecosystems. Seasonal fluctuations of net N mineralization (Nmin) in surface soil and N availability (Na; Na=NH 4 + –N+NO 3 –N) in upper and deep soil horizons were positively correlated with monthly precipitation. In accordance with theoretical predictions, stand age was positively, but weakly related to both Na (r 2=0.282, P<0.001) and total N (Ntot; r 2=0.192, P<0.01), and negatively related to soil C/N ratios (r 2=0.187, P<0.01) in surface soils. A weak linear increase in soil Nmin (upper plus deep soil horizons) was found across the chronosequence (r 2=0.124, P<0.022). Nmin occurred at modest rates in early successional stands, suggesting that soil disturbance did not impair microbial processes. The relationship between N fixation (Nfix) in the litter layer and stand age best fitted a quadratic model (r 2=0.228, P<0.01). In contrast to documented successional trends for most temperate, tropical and Mediterranean forests, non-symbiotic Nfix in the litter layer is a steady N input to unpolluted southern temperate forests during mid and late succession, which may compensate for hydrological losses of organic N from old-growth ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号