首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
J. Manis  B. Kline 《Plasmid》1978,1(4):480-491
The mini-F plasmid specifying resistance to kanamycin (Km), pML31, contains an origin of replication at kilobase coordinate 42.6 in the F DNA sequences. In previous research we found that this origin could be deleted by recombinant DNA techniques without the loss of plasmid maintenance functions. In this report we show that the deleted plasmid, designated pMF21, has normal incompatibility properties and a recA+-dependent ability to form cointegrates with an Flac plasmid. By comparison, pML31 does not form cointegrates with the Flac plasmid at a detectable frequency. The frequency for spontaneous loss of the Lac+ phenotype in strains containing pMF21:Flac cointegrates resembles that of the Flac plasmid; however, in some Lac variants the Kmr phenotype is retained. Examination of the plasmid DNA in four of these LacKmr clones revealed two with normal pMF21 plasmids and two with plasmids intermediate in size between pMF21 and the Flac.  相似文献   

2.
Summary The dnaC28 mutant, CT28-3b, is an initiation defective dnaC strain. Extracts of the mutant failed to synthesize DNA in vitro when the strain was incubated at the restrictive temperature for two generation times prior to preparation of the extract. Addition of a complementing extract from a Col-E1::dnaC + hybrid plasmid containing strain or of partially purified dnaC protein resulted in substantial synthesis. Hybridization of the DNA made by these in vitro complementation extracts showed that a significant portion of this DNA was from the region near the chromosomal origin of replication.  相似文献   

3.
Summary A class of F plasmids, designated Fpoh +, was previously shown to be able to replicate extrachromosomally on Hfr strains by virtue of carrying the specific site or region poh + (permissive on Hfr) of the E. coli chromosome (Hiraga, 1975, 1976a). These plasmids were now found to replicate on E. coli mafA mutants (mafA1 and mafA23) that cannot support vegetative replication of F and some other F-like plasmids. The derivatives of Fpoh + that have lost the poh + site, on the other hand, failed to replicate on mafA mutants. These mutants harboring Fpoh + (but not Poh- derivatives thereof) exhibit abnormal cell division and form elongated cells, presumably due to competition between Fpoh + and the host chromosome for some factor(s) essential for the initiation of DNA replication of the both replicons. It is tentatively concluded that the poh + site is required for F plasmids to replicate on mafA mutants as well as on Hfr strains. In view of the fact that the mechanism of inhibition of autonomous F DNA replication in mafA mutants and in Hfr strains are clearly different, the present data seem to provide strong support to the notion that the poh + region contains the replication origin of the E. coli chromosome.  相似文献   

4.
The replication region fragments from Flac+ cloned in plasmids pSC138 and pML31 are identical with each other and with EcoRI fragment 5 of plasmid F.  相似文献   

5.
Summary The results of short interrupted matings between an Hfr donor and a recipient strain carrying a temperature-sensitive replication mutant (frp ) of Flac demonstrate that the Hfr strain transfers this frp gene of F early in conjugation. This frp gene was also shown to function in the maintenance of mutant F plasmids which appear to be generated from the DNA transferred early in conjugation by Hfr donors. In the course of these experiments, it was further demonstrated that certain Hfr strains which had been described as transferring the tra genes early in fact transfer that region of F late in conjugation.  相似文献   

6.
B C Kline 《Plasmid》1979,2(3):437-445
The specificity of F incompatibility genes (inc+) has been studied with the Flac and R386 plasmids, members of the IncFI incompatibility group. Recently, two inc+ regions, incA (46.4–49.3F) and incB (43.1–46.4F) were identified by cloning these F sequences onto pSC101 and subsequently demonstrating incompatibility of the recombinants with Flac. It is shown here that the FincA+ recombinant is incompatible with both Flac and R386 while the FincB+ recombinant is incompatible only with Flac. Also, a plasmid mutant is described that has reduced incompatibility against Flac and R386. The mutation is located on the BamHI restriction fragment that contains the FincA region. These genetic findings are consistent with the deduction of Palchaudhuri and Maas, based on heteroduplex analysis of IncFI plasmids, that placed the IncFI determinant in the 46.4–48.6F region. The findings also indicate that the FincB+ gene product, which has been implicated in negative control of F copy number, is specific for the F replicon.  相似文献   

7.
An ampicillin resistance plasmid carrying the cloned repressor gene cII of the L phage (Salmonella lyphimurium) was conducted by F’lac into an F- recipient. Two types of plaamids were isolated from Apr transconjugants. The majority of plasmids were dimers with one copy of Tn1000 inserted, the minority being monomers with one copy of Tn1000. This proportion remained unaltered when we used the F’lac strain transformed with a monomeric form of the recombinant plasmid as a donor. An extensive oligomerization of pBR322-originating plasmids was proved in the presence of F’lac; its presumable relationship to transposition-related processes is suggested.  相似文献   

8.
Summary Replication of the non-conjugative plasmids ColE1, ColE2 and ColE3 has been examined in a number of DNA polymerase I-deficient strains, two of which contain the amber mutationpolA1 along with either of two temperature-sensitivesupF amber suppressors. These latter two strains produce reduced amounts of DNA polymerase I polymerizing activity of similar, if not identical properties to that produced bypolA+ strains. Our results indicate that the ColE plasmids require different amounts of DNA polymerase I for stable plasmid maintenance. Moreover whereas all three plasmids are maintained in a strain defective in the 53 exonuclease activity of DNA polymerase I, ColE2 and ColE3 are not stably maintained between 30° and 43° in a number of DNA polymerase I-deficient strains that are temperature-sensitive for ColE1 replication.  相似文献   

9.
Summary Sixty-eight Hfr strains were examined for their ability to transfer early in conjugation the transfer genes carried by the integrated sex factor. This was measured by mating these strains with F- phenocopied recipient cultures of strains carrying transfer-deficient Flac + factors, and then measuring the ability of the recipient strains to transfer lac + to a further recipient strain. Most Hfr strains did not complement the missing transfer functions, though in some strains complementation was observed. It is concluded that on the sex factors of different Hfr strains either the site at which integration occurs or the origin of transfer must vary.  相似文献   

10.
Summary Strains carrying an I-like R factor, R64, or its derepressed derivative, R64-11, together with an Flac episome mutant in one of ten cistrons determining transfer-proficiency, transferred the Flac mutant at a frequency equivalent to about 1% of the level of R factor transfer. Similarly, R64, R64-11 and transfer-deficient mutants of R64-11, were transferred at increased frequencies in the presence of wild-type Flac. Experiments using RecA strains showed that mobilisation by recA +-promoted recombination was not involved, and others using strains carrying transfer-deficient mutants of both R64-11 and Flac suggested that even inefficient complementation between R64-11 and Flac transfer mutants did not occur. The transfer systems of the two plasmids seemed, therefore, to be unrelated, and plasmid-specific, although at a low frequency the entire transfer system of one, not just the pilus, could transfer a transfer-deficient mutant of the other.  相似文献   

11.
Summary Fertility-deficient and f2-r mutants of E. coli K-12 were studied. The above mutants were isolated following the nitrogen-mustard treatment of the E. coli K-12 Hfr and E. coli F 1 lac +-strains. Isolation of these mutants from F 1-strains showed that mutations occur in the F-factor no matter whether it was in autonomous state or integrated in a chromosome.The existence of mutants of two types, fertility-deficient and f2-r, was demonstrated. Type I mutants were characterized by the maintenance of a low level phage f2-adsorption activity and by a 10-fold decrease of their fertility as compared with the original strain when crossed in the liquid medium. In crosses in solid media the recombination frequency in the case of type I mutants used as donor was the same as with the original strain. Type II mutants were characterized by the entrie loss of their f2-phage adsorption ability, by a 1,000-fold decrease of fertility in liquid media, and by the inability to recombinate in solid media.  相似文献   

12.
The effect of plasmid content on growth of Lactococcus lactis ssp. diacetylactis harboring different plasmids and on plasmid stability was studied. Strain DRC-2C is a plasmid Lac+- and Prt+-free strain. Strain DRC-2 utilizes lactose as carbohydrate and has proteinase activity. The plasmid-free strain DRC-2C exhibited none of these features. Plasmid-encoded properties were clearly identified. Results showed that plasmid content decreased bacterial growth in terms of the specific growth rate determined. Slightly lower specific growth rate and lactic acid production were observed in the strain of higher plasmid content owing to the plasmid presence, causing metabolic burden to the host cell. The plasmid profile results showed that the number of bands in the two strains before and after fermentation were the same. This indicated that the plasmids were stably maintained and unchanged during the fermentation. Received: 27 July 2002 / Accepted: 27 August 2002  相似文献   

13.
The selection and timing of plasmid replication was studied in exponentially growing cultures of Escherichia coli K-12 carrying the plasmid R1drd-19 and E. coli strains B/r A and B/r F carrying the plasmid F′lac. In all cases plasmid replication was studied by analysis of covalently closed circular (CCC) DNA. The turnover time of replicating plasmid DNA into CCC-DNA was found to be less than 4 min. Density shift experiments (from 15NH4+, D2O to 14NH4+, H2O) showed that plasmids R1drd-19 and F′lac are selected randomly for replication. This means that one of the plasmid copies in a cell is selected and replicated. There is no further plasmid replication in the cell until all plasmid copies, including the newly formed ones, have the same probability of being selected for replication. The early kinetics of the appearance of light plasmid DNA after the density shift showed that the time interval between successive replications of plasmids R1drd-19 and F′lac is τn, where τ is the generation time and n is the average number of plasmid replications per cell and cell cycle. In a second type of experiment, exponentially growing cells were separated into a series of size classes by low-speed centrifugation in sucrose step gradients. Replication of plasmids R1drd-19 and F′lac was equally frequent in all size classes. This result is in accordance with the results of the density shift experiment. It can therefore be concluded that replication of plasmids R1drd-19 and F′lac is evenly spread over the whole cell cycle, which means that one plasmid replication occurs every time the cell volume has increased by one initiation mass.  相似文献   

14.
The transfer of theF episome fromEscherichia coli K 12 toE. coli B,Paracolobacter andKlebsiella was studied. The frequency of transfer of the episomal markers toE. coli B was very low. The large majority ofE. coli B cells which had received the episomal markerslac + orgal + were F, which indicates that the episomal markers were stably integrated on the chromosome. Recombinants from K 12 F+ × B F crosses were mostly F. These results suggest that the multiplication of theF-factor ofE. coli K 12 is restricted inE. coli B. The transfer of theF-lac + Ad + episome fromE. coli K 12 toParacolobacter andKlebsiella strains was in most cases only possible when donor and acceptor strain were plated together on selective media. Stable incorporation of episomal markers was also found withParacolobacter coliforme. Paracolobacter aerogenoides andKlebsiella aerogenes strains could be infected withF-lac + Ad +. The episomal markers were not incorporated and the episomes were easily lost, which indicates that these strains contained theF factor in the autonomous state.  相似文献   

15.
An indigenous plasmid, named pAH4, was detected in a cellulose-producing Acetobacter strain. This plasmid, consisting of 4002 bp, contained an AT-rich region and encoded several open reading frames, as deduced by the complete nucleotide sequence. One of the putative open reading frames showed homology with replication proteins of other plasmids. A shuttle vector of Escherichia coli and this strain was constructed by connecting pAH4 to pUC18. Electroporation of the shuttle vector into the strain yielded 1.7 × 105 ampicillin resistant transformants per μg DNA. The shuttle plasmid was very stably maintained in the strain.  相似文献   

16.
Summary When E. coli F+ cells carrying the dna-167 or dnaC2 mutation, which causes the temperature-sensitive initiation of DNA replication, are exposed to a non-permissive temperature to stop the replication of chromosome and F factor, and then transferred back to a permissive temperature with the addition of chloramphenicol, one round of the chromosomal replication occurs, but further replication is inhibited. Under these conditions, F DNA replicates coincidentally with the initiation of the chromosomal replication in both strains. When rifampicin is added to the cells upon lowering of the temperature, the chromosome can not replicate in the F+ dna-167 strain, but can do so in the F+ dnaC2 strain. F DNA can replicate in both of the mutant strains under these conditions.  相似文献   

17.
Molecular characterization of a stable Flac plasmid   总被引:2,自引:0,他引:2  
FlacS is a thermostable extrachromosomal element isolated in Salmonella typhimurium which is altered in its replication as compared to its precursor Fts114lac. Sedimentation of both these plasmids in alkaline sucrose gradients has indicated a difference in their sizes. Contour length measurements of open circular plasmid DNA molecules photographed in the electron microscope have revealed the estimated molecular weight of Fts114lac to be 81 × 106 daltons while that of FlacS is 109 × 106 daltons. FlacS may carry a segment of S. typhimurium chromosomal or cryptic plasmid DNA.  相似文献   

18.
The Escherichia coli conjugative plasmid Flac has a restricted host range, in that transfer to Pseudomonas aeruginosa is not detectable. The molecular basis for this host-range restriction was studied by a separate comparison of the replication and conjugation systems of Flac with those of the broad host-range plasmid RK2. The origin of transfer of Flac (oriTF) was cloned onto a small RK2 replicon. The hybrid plasmid, pDG2906, could be transferred efficiently by both the Flac and RK2 conjugation systems to an E. coli recipient. The Flac conjugation system was able to transfer pDG2906 to P. aeruginosa, but only at a frequency of 10?4 of that of the RK2 conjugation system. A second hybrid plasmid, containing the replication region of Flac with the transfer region of RK2, could not be established in P. aeruginosa. These results show that Flac is able to mediate low frequency transfer to P. aeruginosa, and that the lack of replication in Pseudomonas is ultimately responsible for the restricted host range.  相似文献   

19.
Summary Specialized transducing lambda phages, oriR1, harboring DNA from the resistance plasmid R1drd-19 and its copy mutant pKN103 were isolated. From measurements of CCC-DNA content it is concluded that upon infection the phages can establish themselves as self-replicating plasmids in recA hosts lysogenic for lambda. It is thought that this bypassing of lambda immunity is due to the presence of the R1 origin of replication. The plasmids are sensitive to the incompatibility expressed by plasmid R1. This has been shown mainly by transduction of oriR1 into recipients containing R1 plasmids or plasmid pBR322 carrying the basic replicon. We were able to demonstrate that a copy mutant of plasmid R1 was insensitive to copA +, but sensitive to the conserted action of Pst1 fragments F1 and F2. This mutant was previously assumed to be of the dominant type. Physical mapping of the oriR1 derivatives verified that they carry the basic replicon of plasmid R1. The plasmids are not stably maintained, but are lost in a frequency of 1%–2% per cell generation, which is consistent with their lack of the R1par region.  相似文献   

20.
Summary The molecular sizes of F1 me resistance plasmids from strains of Salmonella typhimurium, S. wien and S. typhi were within the range 87.9–102.6×106 daltons. DNA reassociation studies indicated that the plasmids from these hosts had at least 80% of their nucleotide sequences in common. A high proportion of F1 me plasmids cannot mediate their own transfer. The non-autotransferring property of such plasmids is the result of DNA deletion; a non-autotransferring F1 me plasmid was about 10×106 daltons shorter than autotransferring representatives of the group, and its DNA showed 100% homology with them. Plasmids of the F1 me group are incompatible with the F factor and with F1R factors. F1 me plasmids are incompatible with the fi + MP10 plasmid of S. typhimurium, whereas F and F1 factors are compatible with MP10 (Anderson et al., 1977). There was no significant DNA homology between members of the F1 me group and MP10, and these plasmids may share only a small region of DNA responsible for their incompatibility. The F1 me R factors examined had 29–37% DNA homology with the F factor, and 50–58% homology with the F1 resistance plasmid, R162. Molecular examination therefore supports the genetic differentiation of members of the F1 me group from other F-like plasmids. Both types of investigation can thus be used in epidemiological studies of bacterial strains carrying resistance or other plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号