首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
How viable is the argument that increased locomotor efficiency was an important agent in the origin of hominid bipedalism? This study reviews data from the literature on the cost of human bipedal walking and running and compares it to data on quadrupedal mammals including several non-human primate species. Literature data comparing the cost of bipedal and quadrupedal locomotion in trained capuchin monkeys and chimpanzees are also considered. It is concluded that increased energetic efficiency would not have accrued to early bipeds. Presumably, however, selection for improved efficiency in the bipedal stance would have occurred once the transition was made. Would such a process have included selection for increased limb length? Data on the cost of locomotion vs. limb length reveal no significant relationship between these variables in 21 species of mammals or in human walking or running. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The forelimb joints of terrestrial primate quadrupeds appear better able to resist mediolateral (ML) shear forces than those of arboreal quadrupedal monkeys. These differences in forelimb morphology have been used extensively to infer locomotor behavior in extinct primate quadrupeds. However, the nature of ML substrate reaction forces (SRF) during arboreal and terrestrial quadrupedalism in primates is not known. This study documents ML-SRF magnitude and orientation and forelimb joint angles in six quadrupedal anthropoid species walking across a force platform attached to terrestrial (wooden runway) and arboreal supports (raised horizontal poles). On the ground all subjects applied a lateral force in more than 50% of the steps collected. On horizontal poles, in contrast, all subjects applied a medially directed force to the substrate in more than 75% of the steps collected. In addition, all subjects on arboreal supports combined a lower magnitude peak ML-SRF with a change in the timing of the ML-SRF peak force. As a result, during quadrupedalism on the poles the overall SRF resultant was relatively lower than it was on the runway. Most subjects in this study adduct their humerus while on the poles. The kinetic and kinematic variables combine to minimize the tendency to collapse or translate forelimbs joints in an ML plane in primarily arboreal quadrupedal primates compared to primarily terrestrial quadrupedal ones. These data allow for a more complete understanding of the anatomy of the forelimb in terrestrial vs. arboreal quadrupedal primates. A better understanding of the mechanical basis of morphological differences allows greater confidence in inferences concerning the locomotion of extinct primate quadrupeds.  相似文献   

3.
4.
Several features that appear to differentiate the walking gaits of most primates from those of most other mammals (the prevalence of diagonal-sequence footfalls, high degrees of humeral protraction, and low forelimb vs. hindlimb peak vertical forces) are believed to have evolved in response to requirements of locomotion on thin arboreal supports by early primates that had developed clawless grasping hands and feet. This putative relationship between anatomy, behavior, and ecology is tested here by examining gait mechanics in the common marmoset (Callithrix jacchus), a primate that has sharp claws and reduced pedal grasping, and that spends much of its time clinging on large trunks. Kinematic and kinetic data were collected on three male Callithrix jacchus as they walked across a force platform attached to the ground or to raised horizontal poles. The vast majority of all walking gaits were lateral-sequence. For all steps, the humerus was retracted (<90 degrees relative to a horizontal axis) or held in a neutral (90 degrees ) position at forelimb touchdown. Peak vertical forces on the forelimb were always higher than those on the hindlimb. These three features of the walking gaits of C. jacchus separate it from any other primate studied (including other callitrichids). The walking gaits of C. jacchus are mechanically more similar to those of small, nonprimate mammals. The results of this study support previous models that suggest that the unusual suite of features that typify the walking gaits of most primates are adaptations to the requirements of locomotion on thin arboreal supports. These data, along with data from other primates and marsupials, suggest that primate postcranial and locomotor characteristics are part of a basal adaptation for walking on thin branches.  相似文献   

5.
Posture and locomotion are two of the most primitive and basic motor manifestations of an organism's behavior. Although the restrictions they impose on other motor functions are evident, few studies have considered the possibility of asymmetries in these behaviors in human and nonhuman primates, and how they might impact other asymmetries at higher functional levels. The aim of the current study was to explore in a group of 10 chimpanzees at the Madrid Zoo-Aquarium the degree of asymmetry in four behaviors related to locomotion (walking, ascending, descending, and brachiating) and four behaviors associated with posture (sitting, lying, hanging, and changing postures). Few subjects showed individual preferences, but significant trends in the group for some of the behaviors were found, including right-hand use when initiating quadruped walking, and left-hand use when descending and hanging. Some significant correlations also emerged: a negative one between walking and descending, and a positive one between walking and brachiating and between sitting and changing postures. No correlations were found between locomotor and postural modes. Although we cannot make generalizations on the population level at this time, these findings highlight the importance of considering postural and locomotion factors when studying motor asymmetries in primates.  相似文献   

6.
7.
Most primates typically use a diagonal-sequence footfall pattern during walking. This footfall pattern, which is unusual for mammals, is believed to have originated in ancestral primates in association with the use of grasping extremities for movement and foraging on thin, flexible branches. This theory was tested by comparing gait parameters between the grey short-tailed opossum Monodelphis domestica and the woolly opossum Caluromys philander , two didelphid marsupials that are strongly differentiated in grasping morphology of the extremities and in their reliance on foraging strategies involving thin branches. One hundred and thirty gait cycles were analysed quantitatively from videotapes of subjects moving quadrupedally on a runway and on poles of different diameters (7 and 28 mm). Duty factor (i.e. duration of the stance phase as a percentage of the stride period) for the forelimb and hindlimb, as well as diagonality (i.e. phase relationship between the forelimb and hindlimb cycles), were calculated for each of these symmetrical gait cycles. We found that the highly terrestrial Monodelphis , like most other non-primate mammals, relies primarily on lateral-sequence walking gaits on both runway and poles, and has relatively higher forelimb duty factors. Like primates, the highly arboreal Caluromys uses primarily diagonal-sequence walking gaits on the runway and pole, with relatively higher hindlimb duty factors and diagonality. The fact that the woolly opossum, a marsupial with primate-like feet that moves and forages mainly on thin branches, uses primarily diagonal-sequence gaits when walking supports the view that primate gaits evolved to meet the demands of locomotion on narrow supports. This also demonstrates the functional role of a grasping foot, in association with relatively higher hindlimb duty factors, protraction, and substrate reaction forces, in the production of such walking gaits.  相似文献   

8.
Registering substrate reaction forces from primates during climbing requires the design and construction of customized recording devices. The technical difficulties in constructing a reliable apparatus hinder research on the kinetics of primate locomotion. This is unfortunate since arboreal locomotion, especially vertical climbing, is an important component of the hominoid locomotor repertoire. In this technical paper, we describe a custom-built climbing pole that allows recordings of dynamic 3-dimensional forces during locomotion on horizontal and sloping substrates and during vertical climbing. The pole contains an instrumented section that can readily be modified and enables us to register forces of a single limb or multiple limbs in a broad range of primates. For verification, we constructed a similar set-up (which would not be usable for primates) using a conventional force plate. Data for a human subject walking on both set-ups were compared. The experimental set-up records accurate and reliable substrate reaction forces in three orthogonal directions. Because of its adjustability, this type of modular set-up can be used for a great variety of primate studies. When combining such kinetic measurements together with kinematic information, data of great biomechanical value can be generated. These data will hopefully allow biological anthropologists to answer current questions about primate behaviours on vertical substrates.  相似文献   

9.
We analyze patterns of subchondral bone apparent density in the distal femur of extant primates to reconstruct differences in knee posture, discriminate among extant species with different locomotor preferences, and investigate the knee postures used by subfossil lemur species Hadropithecus stenognathus and Pachylemur insignis. We obtained computed tomographic scans for 164 femora belonging to 39 primate species. We grouped species by locomotor preference into knuckle-walking, arboreal quadruped, terrestrial quadruped, quadrupedal leaper, suspensory and vertical clinging, and leaping categories. We reconstructed knee posture using an experimentally validated procedure of determining the anterior extent of the region of maximal subchondral bone apparent density on a median slice through the medial femoral condyle. We compared subchondral apparent density magnitudes between subfossil and extant specimens to ensure that fossils did not display substantial mineralization or degradation. Subfossil and extant specimens were found to have similar magnitudes of subchondral apparent density, thereby permitting comparisons of the density patterns. We observed significant differences in the position of maximum subchondral apparent density between leaping and nonleaping extant primates, with leaping primates appearing to use much more flexed knee postures than nonleaping species. The anterior placement of the regions of maximum subchondral bone apparent density in the subfossil specimens of Hadropithecus and Pachylemur suggests that both species differed from leaping primates and included in their broad range of knee postures rather extended postures. For Hadropithecus, this result is consistent with other evidence for terrestrial locomotion. Pachylemur, reconstructed on the basis of other evidence as a committed arboreal quadruped, likely employed extended knee postures in other activities such as hindlimb suspension, in addition to occasional terrestrial locomotion.  相似文献   

10.
The type of climbing exhibited by apes and atelines is argued to have been important in the evolution of specialized locomotion, such as suspensory locomotion and bipedalism. However, little is known about the mechanics of climbing in primates. Previous work shows that Asian apes and atelines use larger joint excursions and longer strides than African apes and the Japanese macaque, respectively. This study expands knowledge of climbing mechanics by providing the first quantitative kinematic data for vertical climbing in four prosimian species: three lorisid species (Loris tardigradus, Nycticebus coucang, and Nycticebus pygmaeus) that share with apes and atelines morphological traits arguably related to climbing, and a more generalized quadruped, Cheirogaleus medius. Subjects were videotaped as they climbed up a wooden pole. Kinematic values, such as step length and limb excursions, were calculated and compared between species. The results of this study show that lorises, like Asian apes and spider monkeys, use relatively larger joint excursions and longer steps than does C. medius during climbing. These data lend further support to the idea that some primate species (e.g., lorises, atelines, and apes) are more specialized kinematically and morphologically for climbing than others. Pilot data suggest that such kinematic differences in climbing style across broad phylogenetic groups may relate to the energetics of climbing. Such data may be important for understanding the morphological and kinematic adaptations to climbing exhibited by some primates.  相似文献   

11.
Compared to most quadrupedal mammals, humans are energetically inefficient when running at high speeds. This fact can be taken to mean that human bipedalism evolved for reasons other than to reduce relative energy cost during locomotion. Recalculation of the energy expended during human walking at normal speeds shows that (1) human bipedalism is at least as efficient as typical mammalian quadrupedalism and (2) human gait is much more efficient than bipedal or quadrupedal locomotion in the chimpanzee. We conclude that bipedalism bestowed an energetic advantage on the Miocene hominoid ancestors of the Hominidae.  相似文献   

12.
The research field of legged robots has always relied on the bionic robotic research,especially in locomotion regulating approaches,such as foot trajectory planning,body stability regulating and energy efficiency prompting.Minimizing energy consumption and keeping the stability of body are considered as two main characteristics of human walking.This work devotes to develop an energy-efficient gait control method for electrical quadruped robots with the inspiration of human walking pattern.Based on the mechanical power distribution trend,an efficient humanoid power redistribution approach is established for the electrical quadruped robot.Through studying the walking behavior acted by mankind,such as the foot trajectory and change of mechanical power,we believe that the proposed controller which includes the bionic foot movement trajectory and humanoid power redistribution method can be implemented on the electrical quadruped robot prototype.The stability and energy efficiency of the proposed controller are tested by the simulation and the single-leg prototype experi-ment.The results verify that the humanoid power planning approach can improve the energy efficiency of the electrical quadruped robots.  相似文献   

13.
The shape of the human female pelvis is thought to reflect an evolutionary trade-off between two competing demands: a pelvis wide enough to permit the birth of large-brained infants, and narrow enough for efficient bipedal locomotion. This trade-off, known as the obstetrical dilemma, is invoked to explain the relative difficulty of human childbirth and differences in locomotor performance between men and women. The basis for the obstetrical dilemma is a standard static biomechanical model that predicts wider pelves in females increase the metabolic cost of locomotion by decreasing the effective mechanical advantage of the hip abductor muscles for pelvic stabilization during the single-leg support phase of walking and running, requiring these muscles to produce more force. Here we experimentally test this model against a more accurate dynamic model of hip abductor mechanics in men and women. The results show that pelvic width does not predict hip abductor mechanics or locomotor cost in either women or men, and that women and men are equally efficient at both walking and running. Since a wider birth canal does not increase a woman’s locomotor cost, and because selection for successful birthing must be strong, other factors affecting maternal pelvic and fetal size should be investigated in order to help explain the prevalence of birth complications caused by a neonate too large to fit through the birth canal.  相似文献   

14.
Among the characteristics that are thought to set primate quadrupedal locomotion apart from that of nonprimate mammals are a more protracted limb posture and larger limb angular excursion. However, kinematic aspects of primate or nonprimate quadrupedal locomotion have been documented in only a handful of species, and more widely for the hind than the forelimb. This study presents data on arm (humerus) and forelimb posture during walking for 102 species of mammals, including 53 nonhuman primates and 49 nonprimate mammals. The results demonstrate that primates uniformly display a more protracted arm and forelimb at hand touchdown of a step than nearly all other mammals. Although primates tend to end a step with a less retracted humerus, their total humeral or forelimb angular excursion exceeds that of other mammals. It is suggested that these features are components of functional adaptations to locomotion in an arboreal habitat, using clawless, grasping extremities.  相似文献   

15.
Abstract: One of the manifestations of human HIV-1 and nonhuman primate SIV infection that lead to disease is reasoned to be secondary to generalized T-cell dysfunction. The molecular mechanisms associated with the T-cell dysfunction remain to be elucidated. To address this issue, we sought to utilize the nonhuman primate model to study intracellular signaling events in cells from disease-susceptible rhesus macaques and disease-resistant sooty mangabeys. Because relatively little is known about these events in nonhuman primates, our laboratory defined optimal conditions, reagents, and assays for the study of signal transduction events in cells from nonhuman primates. The protein phosphorylation patterns in the two monkeys exhibited quantitative, qualitative, and kinetic differences. Antibodies to Stat6 detected a unique band in macaque cell lysates. This band is markedly decreased human cell lysates and never seen in mangabey cell lysates. Detection of various other intracellular signaling proteins is also described.  相似文献   

16.
Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.  相似文献   

17.
Recent research has suggested that energy minimization in human walking involves both a fast preprogrammed process and a slow optimization process. Here, we studied human running to test whether these two processes represent control mechanisms specific to walking or a more general strategy for minimizing energetic cost in human locomotion. To accomplish this, we used free response experiments to enforce step frequency with a metronome at values above and below preferred step frequency and then determined the response times for the return to preferred steady-state step frequency when the auditory constraint was suddenly removed. In forced response experiments, we applied rapid changes in treadmill speed and examined response times for the processes involved in the consequent adjustments to step frequency. We then compared the dynamics of step frequency adjustments resulting from the two different perturbations to each other and to previous results found in walking. Despite the distinct perturbations applied in the two experiments, both responses were dominated by a fast process with a response time of 1.47 ± 0.05 s with fine-tuning provided by a slow process with a response time of 34.33 ± 0.50 s. The dynamics of the processes underlying step frequency adjustments in running match those found previously in walking, both in magnitude and relative importance. Our results suggest that the underlying mechanisms are fundamental strategies for minimizing energetic cost in human locomotion.  相似文献   

18.
Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.  相似文献   

19.
One of the most distinctive aspects of primate quadrupedal walking is the use of diagonal sequence footfalls in combination with diagonal-couplets interlimb timing. Numerous hypotheses have been offered to explain why primates might have evolved this type of gait, yet this important question remains unresolved. Because infant primates use a wider variety of quadrupedal gaits than do adults, they provide a natural experiment with which to test hypotheses about the evolution of unique aspects of primate quadrupedalism. In this study, we present kinematic data on two infant baboons (Papio cynocephalus) in order to test the recent hypothesis that diagonal sequence, diagonal couplets walking might have evolved in primates because their limb positioning provides stability in a small branch environment (Cartmill et al. [2002] Zool J Linn Soc 136:401-420). To assess hindlimb position at the moment of forelimb touchdown, we measured hindlimb angular excursion and ankle position for 84 walking strides, across three different types of gaits (diagonal sequence, diagonal couplets (DSDC); lateral sequence lateral couplets (LSLC); and lateral sequence diagonal couplets (LSDC)). Results indicate that if a forelimb were to contact an unstable substrate, LSLC walking provides as much, and perhaps more, stability when compared to DSDC walking. Therefore, it appears that this moment in a stride was unlikely to be a particularly important selective factor in the evolution of DSDC walking. Further insight into this issue will likely be gained by observations of primate quadrupedalism in natural environments, where the use of lateral sequence gaits might be more common than currently known.  相似文献   

20.
It is often claimed that the walking gaits of primates are unusual because, unlike most other mammals, primates appear to have higher vertical peak ground reaction forces on their hindlimbs than on their forelimbs. Many researchers have argued that this pattern of ground reaction force distribution is part of a general adaptation to arboreal locomotion. This argument is frequently used to support models of primate locomotor evolution. Unfortunately, little is known about the force distribution patterns of primates walking on arboreal supports, nor do we completely understand the mechanisms that regulate weight distribution in primates. We collected vertical peak force data for seven species of primates walking quadrupedally on instrumented terrestrial and arboreal supports. Our results show that, when walking on arboreal vs. terrestrial substrates, primates generally have lower vertical peak forces on both limbs but the difference is most extreme for the forelimb. We found that force reduction occurs primarily by decreasing forelimb and, to a lesser extent, hindlimb stiffness. As a result, on arboreal supports, primates experience significantly greater functional differentiation of the forelimb and hindlimb than on the ground. These data support long-standing theories that arboreal locomotion was a critical factor in the differentiation of the forelimbs and hindlimbs in primates. This change in functional role of the forelimb may have played a critical role in the origin of primates and facilitated the evolution of more specialized locomotor behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号