首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Humans spontaneously select a step frequency that minimizes the energy expenditure of walking. This selection might be embedded within the neural circuits that generate gait so that the optimum is pre-programmed for a given walking speed. Or perhaps step frequency is directly optimized, based on sensed feedback of energy expenditure. Direct optimization is expected to be slow due to the compounded effect of delays and iteration, whereas a pre-programmed mechanism presumably allows for faster step frequency selection, albeit dependent on prior experience. To test for both pre-programmed selection and direct optimization, we applied perturbations to treadmill walking to elicit transient changes in step frequency. We found that human step frequency adjustments (n = 7) occurred with two components, the first dominating the response (66 ± 10% of total amplitude change; mean ± SD) and occurring quite quickly (1.44 ± 1.14 s to complete 95% of total change). The other component was of smaller amplitude (35 ± 10% of total change) and took tens of seconds (27.56 ± 16.18 s for 95% completion). The fast process appeared to be too fast for direct optimization and more indicative of a pre-programmed response. It also persisted even with unusual closed-loop perturbations that conflicted with prior experience and rendered the response energetically suboptimal. The slow process was more consistent with the timing expected for direct optimization. Our interpretation of these results is that humans may rely heavily on pre-programmed gaits to rapidly select their preferred step frequency and then gradually fine-tune that selection with direct optimization.  相似文献   

2.
A new method for measuring and characterizing free-living human locomotion is presented. A portable device was developed to objectively record and measure foot-ground contact information in every step for up to 24h. An artificial neural network (ANN) was developed to identify the type and intensity of locomotion. Forty subjects participated in the study. The subjects performed level walking, running, ascending and descending stairs at slow, normal and fast speeds determined by each subject, respectively. The device correctly identified walking, running, ascending and descending stairs (accuracy 98.78%, 98.33%, 97.33%, and 97.29% respectively) among different types of activities. It was also able to determine the speed of walking and running. The correlation between actual speed and estimated speed is 0.98, p< 0.0001. The average error of walking and running speed estimation is -0.050+/-0.747 km/h (mean +/- standard deviation). The study has shown the measurement of duration, frequency, type, and intensity of locomotion highly accurate using the new device and an ANN. It provides an alternative tool to the use of a gait lab to quantitatively study locomotion with high accuracy via a small, light and portable device, and to do so under free-living conditions for the clinical applications.  相似文献   

3.
Laboratory studies have suggested that the preferred cadence of walking is approximately 120 steps/min, and the vertical acceleration of the head exhibits a dominant peak at this step frequency (2 Hz). These studies have been limited to short periods of walking along a predetermined path or on a treadmill, and whether such a highly tuned frequency of movement can be generalized to all forms of locomotion in a natural setting is unknown. The aim of this study was to determine whether humans exhibit a preferred cadence during extended periods of uninhibited locomotor activity and whether this step frequency is consistent with that observed in laboratory studies. Head linear acceleration was measured over a 10-h period in 20 subjects during the course of a day, which encompassed a broad range of locomotor (walking, running, cycling) and nonlocomotor (working at a desk, driving a car, riding a bus or subway) activities. Here we show a highly tuned resonant frequency of human locomotion at 2 Hz (SD 0.13) with no evidence of correlation with gender, age, height, weight, or body mass index. This frequency did not differ significantly from the preferred step frequency observed in the seminal laboratory study of Murray et al. (Murray MP, Drought AB, and Kory RC. J Bone Joint Surg 46A: 335-360, 1964). [1.95 Hz (SD 0.19)]. On the basis of the frequency characteristics of otolith-spinal reflexes, which drive lower body movement via the lateral vestibulospinal tract, and otolith-mediated collic and ocular reflexes that maintain gaze when walking, we speculate that this spontaneous tempo of locomotion represents some form of central "resonant frequency" of human movement.  相似文献   

4.
Abstract The running speed of Agama stellio stellio was 2.1 ± 0.3 m s?1 at preferred body temperature (Tb, 30°C). To account for sprint locomotion, we meaured two mechanical parameters and examined the ultrastructural features of a major locomotory muscle in normal walking and running locomotion, the iliofibularis muscle, which is considered to act as an extensor of the lower hind limb. The time to peak isometric twitch tension and time to half relaxation were 52 ± 7 ms and 76 ± 5 ms, respectively. The comparative ultrastructure of the fast and slow fibes provides structure-to-function correlation. The sarcoplasmic reticulum and T-tubules system are abundant in fast fibres which serve to transmit Ca2+ and spread the excitatory impulse intracellularly with great rapidity. In contrast, the membranous system of slow fibres is relatively poor and this indicates slow impulse propagation. Thus, these results show that the fast locomotion of Agama stellio stellio can, in part, be explained by the physiology and ultrastructure of the fibres of the locomotory muscles.  相似文献   

5.
People prefer to move in energetically optimal ways during walking. We recently found that this preference arises not just through evolution and development, but that the nervous system will continuously optimize step frequency in response to new energetic cost landscapes. Here we tested whether energy optimization is also a major objective in the nervous system’s real-time control of step width using a device that can reshape the relationship between step width and energetic cost, shifting people’s energy optimal step width. We accomplished this by changing the walking incline to apply an energetic penalty as a function of step width. We found that people didn’t spontaneously initiate energy optimization, but instead required experience with a lower energetic cost step width. After initiating optimization, people adapted, on average, 3.5 standard deviations of their natural step width variability towards the new energy optimal width. Within hundreds of steps, they updated this as their new preferred width and rapidly returned to it when perturbed away. This new preferred width reduced energetic cost by roughly 14%, however, it was slightly narrower than the energetically optimal width, possibly due to non-energy objectives that may contribute to the nervous system’s control of step width. Collectively, these findings suggest that the nervous systems of able-bodied people can continuously optimize energetic cost to determine preferred step width.  相似文献   

6.
A wide range of selective pressures have been advanced as possible causes for the adoption of bipedalism in the hominin lineage. One suggestion has been that because modern human walking is relatively efficient compared to that of a typical quadruped, the ancestral quadruped may have reaped an energetic advantage when it walked on two legs. While it has become clear that human walking is relatively efficient and human running inefficient compared to "generalized endotherms", workers differ in their opinion of how the cost of human bipedal locomotion compares to that of a generalized primate walking quadrupedally. One view is that human walking is particularly efficient in comparison to other primates. The present study addresses this by comparing the cost of human walking and running to that of the eight primate species for which data are available and by comparing cost in primates to that of a "generalized endotherm". There is no evidence that primate locomotion is more costly than that of a generalized endotherm, although more data on adult Old World monkeys and apes would be useful. Further, human locomotion does not appear to be particularly efficient relative to that of other primates.  相似文献   

7.
In walking, humans prefer a moderate step width that minimizes energetic cost and vary step width from step-to-step to maintain lateral balance. Arm swing also reduces energetic cost and improves lateral balance. In running, humans prefer a narrow step width that may present a challenge for maintaining lateral balance. However, arm swing in running may improve lateral balance and help reduce energetic cost. To understand the roles of step width and arm swing, we hypothesized that net metabolic power would be greater at step widths greater or less than preferred and when running without arm swing. We further hypothesized that step width variability (indicator of lateral balance) would be greater at step widths greater or less than preferred and when running without arm swing. Ten subjects ran (3m/s) at four target step widths (0%, 15%, 20%, and 25% leg length (LL)) with arm swing, at their preferred step width with arm swing, and at their preferred step width without arm swing. We measured metabolic power, step width, and step width variability. When subjects ran at target step widths less (0% LL) or greater (15%, 20%, and 25% LL) than preferred, both net metabolic power demand (by 3%, 9%, 12%, and 15%) and step width variability (by 7%, 33%, 46%, and 69%) increased. When running without arm swing, both net metabolic power demand (by 8%) and step width variability (by 9%) increased compared to running with arm swing. It appears that humans prefer to run with a narrow step width and swing their arms so as to minimize energetic cost and improve lateral balance.  相似文献   

8.
The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigated the possible independence of the neural mechanisms underlying human walking and running. Subjects were tested on a split-belt treadmill and adapted to walking or running on an asymmetrically driven treadmill surface. Despite the acquisition of asymmetrical movement patterns in the respective modes, the emergence of asymmetrical movement patterns in the subsequent trials was evident only within the same modes (walking after learning to walk and running after learning to run) and only partial in the opposite modes (walking after learning to run and running after learning to walk) (thus transferred only limitedly across the modes). Further, the storage of the acquired movement pattern in each mode was maintained independently of the opposite mode. Combined, these results provide indirect evidence for independence in the neural control mechanisms underlying the two locomotive modes.  相似文献   

9.
On Earth, a person uses about one-half as much energy to walk a mile as to run a mile. On another planet with lower gravity, would walking still be more economical than running? When people carry weights while they walk or run, energetic cost increases in proportion to the added load. It would seem to follow that if gravity were reduced, energetic cost would decrease in proportion to body weight in both gaits. However, we find that under simulated reduced gravity, the rate of energy consumption decreases in proportion to body weight during running but not during walking. When gravity is reduced by 75%, the rate of energy consumption is reduced by 72% during running but only by 33% during walking. Because reducing gravity decreases the energetic cost much more for running than for walking, walking is not the cheapest way to travel a mile at low levels of gravity. These results suggest that the link between the mechanics of locomotion and energetic cost is fundamentally different for walking and for running.  相似文献   

10.
The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring-mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed.  相似文献   

11.
The amount and architecture of vigilance states are governed by two distinct processes, which occur at different time scales. The first, a slow one, is related to a wake/sleep dependent homeostatic Process S, which occurs on a time scale of hours, and is reflected in the dynamics of NREM sleep EEG slow-wave activity. The second, a fast one, is manifested in a regular alternation of two sleep states – NREM and REM sleep, which occur, in rodents, on a time scale of ∼5–10 minutes. Neither the mechanisms underlying the time constants of these two processes – the slow one and the fast one, nor their functional significance are understood. Notably, both processes are primarily apparent during sleep, while their potential manifestation during wakefulness is obscured by ongoing behaviour. Here, we find, in mice provided with running wheels, that the two sleep processes become clearly apparent also during waking at the level of behavior and brain activity. Specifically, the slow process was manifested in the total duration of waking periods starting from dark onset, while the fast process was apparent in a regular occurrence of running bouts during the waking periods. The dynamics of both processes were stable within individual animals, but showed large interindividual variability. Importantly, the two processes were not independent: the periodic structure of waking behaviour (fast process) appeared to be a strong predictor of the capacity to sustain continuous wakefulness (slow process). The data indicate that the temporal organization of vigilance states on both the fast and the slow time scales may arise from a common neurophysiologic mechanism.  相似文献   

12.
Compared to most quadrupedal mammals, humans are energetically inefficient when running at high speeds. This fact can be taken to mean that human bipedalism evolved for reasons other than to reduce relative energy cost during locomotion. Recalculation of the energy expended during human walking at normal speeds shows that (1) human bipedalism is at least as efficient as typical mammalian quadrupedalism and (2) human gait is much more efficient than bipedal or quadrupedal locomotion in the chimpanzee. We conclude that bipedalism bestowed an energetic advantage on the Miocene hominoid ancestors of the Hominidae.  相似文献   

13.
Inspired from template models explaining biological locomotory systems and Raibert׳s pioneering legged robots, locomotion can be realized by basic sub-functions: elastic axial leg function, leg swinging and balancing. Combinations of these three can generate different gaits with diverse properties. In this paper we investigate how locomotion sub-functions contribute to stabilize walking at different speeds. Based on this trilogy, we introduce a conceptual model to quantify human locomotion sub-functions in walking. This model can produce stable walking and also predict human locomotion sub-function control during swing phase of walking. Analyzing experimental data based on this modeling shows different control strategies which are employed to increase speed from slow to moderate and moderate to fast gaits.  相似文献   

14.
Terrestrial legged locomotion requires repeated support forces to redirect the body's vertical velocity component from down to up. We assume that the redirection is accomplished by impulsive leg forces that cause small-angle glancing collisions of a point-mass model of the animal. We estimate the energetic costs of these collisions by assuming a metabolic cost proportional to positive muscle work involved in generating the impulses. The cost of bipedal running estimated from this collisional model becomes less than that of walking at a Froude number (v2/gl) of about 0.7. Two strategies to reduce locomotion costs associated with the motion redirection are: (1) having legs simulate purely elastic springs, as is observed in human running; and (2) sequencing the leg forces during the redirection phase; examples of this sequencing are the ba-da-dump pattern of a horse gallop and having push-off followed by heel-strike in human walking.  相似文献   

15.
Ahn J  Hogan N 《PloS one》2012,7(3):e31767
The control architecture underlying human reaching has been established, at least in broad outline. However, despite extensive research, the control architecture underlying human locomotion remains unclear. Some studies show evidence of high-level control focused on lower-limb trajectories; others suggest that nonlinear oscillators such as lower-level rhythmic central pattern generators (CPGs) play a significant role. To resolve this ambiguity, we reasoned that if a nonlinear oscillator contributes to locomotor control, human walking should exhibit dynamic entrainment to periodic mechanical perturbation; entrainment is a distinctive behavior of nonlinear oscillators. Here we present the first behavioral evidence that nonlinear neuro-mechanical oscillators contribute to the production of human walking, albeit weakly. As unimpaired human subjects walked at constant speed, we applied periodic torque pulses to the ankle at periods different from their preferred cadence. The gait period of 18 out of 19 subjects entrained to this mechanical perturbation, converging to match that of the perturbation. Significantly, entrainment occurred only if the perturbation period was close to subjects' preferred walking cadence: it exhibited a narrow basin of entrainment. Further, regardless of the phase within the walking cycle at which perturbation was initiated, subjects' gait synchronized or phase-locked with the mechanical perturbation at a phase of gait where it assisted propulsion. These results were affected neither by auditory feedback nor by a distractor task. However, the convergence to phase-locking was slow. These characteristics indicate that nonlinear neuro-mechanical oscillators make at most a modest contribution to human walking. Our results suggest that human locomotor control is not organized as in reaching to meet a predominantly kinematic specification, but is hierarchically organized with a semi-autonomous peripheral oscillator operating under episodic supervisory control.  相似文献   

16.
The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between robustness and energy efficiency in walking. It is found that, compared to asymmetric walking, symmetric walking with flatter angles of attack reveals such a compromise. With increasing leg stiffness, energy efficiency increases continuously. However, robustness is the maximum at moderate leg stiffness and decreases slightly with increasing stiffness. Hence, an adjustable leg compliance would be preferred, which is adaptable to the environment. If the ground is even, a high leg stiffness leads to energy efficient walking. However, if external perturbations are expected, e.g. when the robot walks on uneven terrain, the leg should be softer and the angle of attack flatter. In the case of underactuated robots with constant physical springs, the leg stiffness should be larger than k = 14 in order to use the most robust gait. Soft legs, however, lack in both robustness and efficiency.  相似文献   

17.
The energetic cost of maintaining lateral balance during human running   总被引:1,自引:0,他引:1  
To quantify the energetic cost of maintaining lateral balance during human running, we provided external lateral stabilization (LS) while running with and without arm swing and measured changes in energetic cost and step width variability (indicator of lateral balance). We hypothesized that external LS would reduce energetic cost and step width variability of running (3.0 m/s), both with and without arm swing. We further hypothesized that the reduction in energetic cost and step width variability would be greater when running without arm swing compared with running with arm swing. We controlled for step width by having subjects run along a single line (zero target step width), which eliminated any interaction effects of step width and arm swing. We implemented a repeated-measures ANOVA with two within-subjects fixed factors (external LS and arm swing) to evaluate main and interaction effects. When provided with external LS (main effect), subjects reduced net metabolic power by 2.0% (P = 0.032) and step width variability by 12.3% (P = 0.005). Eliminating arm swing (main effect) increased net metabolic power by 7.6% (P < 0.001) but did not change step width variability (P = 0.975). We did not detect a significant interaction effect between external LS and arm swing. Thus, when comparing conditions of running with or without arm swing, external LS resulted in a similar reduction in net metabolic power and step width variability. We infer that the 2% reduction in the net energetic cost of running with external LS reflects the energetic cost of maintaining lateral balance. Furthermore, while eliminating arm swing increased the energetic cost of running overall, arm swing does not appear to assist with lateral balance. Our data suggest that humans use step width adjustments as the primary mechanism to maintain lateral balance during running.  相似文献   

18.
Elastically-suspended loads have been shown to reduce the peak forces acting on the body while walking with a load when the suspension stiffness and damping are minimized. However, it is not well understood how elastically-suspended loads can affect the energetic cost of walking. Prior work shows that elastically suspending a load can yield either an increase or decrease in the energetic cost of human walking, depending primarily on the suspension stiffness, load, and walking speed. It would be useful to have a simple explanation that reconciles apparent differences in existing data. The objective of this paper is to help explain different energetic outcomes found with experimental load suspension backpacks and to systematically investigate the effect of load suspension parameters on the energetic cost of human walking. A simple two-degree-of-freedom model is used to approximate the energetic cost of human walking with a suspended load. The energetic predictions of the model are consistent with existing experimental data and show how the suspension parameters, load mass, and walking speed can affect the energetic cost of walking. In general, the energetic cost of walking with a load is decreased compared to that of a stiffly-attached load when the natural frequency of a load suspension is tuned significantly below the resonant walking frequency. The model also shows that a compliant load suspension is more effective in reducing the energetic cost of walking with low suspension damping, high load mass, and fast walking speed. This simple model could improve our understanding of how elastic load-carrying devices affect the energetic cost of walking with a load.  相似文献   

19.
Theoretical studies and robotic experiments have shown that asymptotically stable periodic walking may emerge from nonlinear limit-cycle oscillators in the neuro-mechanical periphery. We recently reported entrainment of human gait to periodic mechanical perturbations with two essential features: 1) entrainment occurred only when the perturbation period was close to the original (preferred) walking period, and 2) entrainment was always accompanied by phase locking so that the perturbation occurred at the end of the double-stance phase. In this study, we show that a highly-simplified state-determined walking model can reproduce several salient nonlinear limit-cycle behaviors of human walking: 1) periodic gait that is 2) asymptotically stable; 3) entrainment to periodic mechanical perturbations only when the perturbation period is close to the model''s unperturbed period; and 4) phase-locking to locate the perturbation at the end of double stance. Importantly, this model requires neither supra-spinal control nor an intrinsic self-sustaining neural oscillator such as a rhythmic central pattern generator. Our results suggest that several prominent limit-cycle features of human walking may stem from simple afferent feedback processes without significant involvement of supra-spinal control or a self-sustaining oscillatory neural network.  相似文献   

20.
In Medieval Europe, soldiers wore steel plate armour for protection during warfare. Armour design reflected a trade-off between protection and mobility it offered the wearer. By the fifteenth century, a typical suit of field armour weighed between 30 and 50 kg and was distributed over the entire body. How much wearing armour affected Medieval soldiers' locomotor energetics and biomechanics is unknown. We investigated the mechanics and the energetic cost of locomotion in armour, and determined the effects on physical performance. We found that the net cost of locomotion (C(met)) during armoured walking and running is much more energetically expensive than unloaded locomotion. C(met) for locomotion in armour was 2.1-2.3 times higher for walking, and 1.9 times higher for running when compared with C(met) for unloaded locomotion at the same speed. An important component of the increased energy use results from the extra force that must be generated to support the additional mass. However, the energetic cost of locomotion in armour was also much higher than equivalent trunk loading. This additional cost is mostly explained by the increased energy required to swing the limbs and impaired breathing. Our findings can predict age-associated decline in Medieval soldiers' physical performance, and have potential implications in understanding the outcomes of past European military battles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号