首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Protoplasts isolated from the aleurone have been used extensively in molecular studies focusing on hormone-mediated regulation of gene expression in barley seed. To extend the use of aleurone protoplasts to other species, we have determined the conditions necessary for the isolation of protoplasts from rice aleurone layers of germinated seed. Many of the common cell wall degrading enzymes used in making protoplasts were tested for their ability to release protoplasts from rice aleurone layers. Cellulysin was found to be the most effective. Transformation of these aleurone protoplasts was accomplished using polyethylene glycol and DNA constructs containing the firefly luciferase reporter gene under the control of two different promoters were tested. Luciferase expression was 24-fold greater when the reporter gene was under the control of the CaMV 35S promoter than when the promoter from the alcohol dehydrogenase 1 gene was used. With the isolation and transformation of aleurone protoplasts from rice, it is now possible to investigate molecular events occurring in this tissue during germination.  相似文献   

2.
3.
Transient Gene Expression in Intact and Organized Rice Tissues   总被引:7,自引:2,他引:5       下载免费PDF全文
Regulated gene expression of chimeric genes has been studied extensively in electroporated protoplasts. The applicability of these assays is limited, however, because protoplasts are not always physiologically identical to the cells from which they are derived. We have developed a procedure to electroporate DNA into intact and organized leaf structures of rice. Optimization of the new gene delivery system mainly involved eliminating explant-released nucleases, prolonging the DNA/explant incubation time, and expanding the pulse time. Using a [beta]-glucuronidase gene under the control of constitutive promoters, we demonstrated that all cell types within a leaf base were susceptible to electroporation-mediated DNA uptake. Although the technique was initially developed for leaf bases of young etiolated rice seedlings, we proved that it was equally applicable both to other monocotyledons, including wheat, maize, and barley, and to other explants, such as etiolated and green sheath and lamina tissues from rice. Transient gene expression assays with electroporated leaf bases showed that the promoter from a pea light-harvesting chlorophyll a/b-binding protein gene displayed both light- and chloroplast-dependent expression in rice, and that the promoter from the Arabidopsis S-adenosylmethionine synthetase gene was, as in transgenic Arabidopsis and tobacco, preferentially expressed in cells surrounding the vascular bundles.  相似文献   

4.
The rice (Oryza sativa L.) catalase (EC 1.11.1.6) gene CatB is expressed in roots and cultured cells. We examined the promoter activity of its 5'-flanking region in a monocot and in two dicots. Transient expression assays in rice Oc and tobacco BY-2 suspension cell protoplasts showed that CatB's 5'-flanking DNA fragments (nucleotides -1066 to +298) had about 20 and 3-4 times as much promoter activity, respectively, as the CaMV 35S promoter. Serial deletion analyses of the CatB promoter region revealed that the shortest fragment (-56 to +298) still had about 10 times as much promoter activity as the CaMV 35S promoter in rice protoplasts. In tobacco protoplasts, the activity of the fragment (-56 to +298) was about half of the CaMV 35S promoter. Transgenic rice and Arabidopsis plants carrying GUS genes driven by the 5'-truncated CatB promoters were generated and their GUS activity was examined. The region ranging from -329 to +298 showed preferential expression in the roots of rice and Arabidopsis, and in the shoot apical meristems of Arabidopsis. In situ hybridization revealed that CatB was highly expressed in branch root primordia and root apices of rice. Fusion of the GUS gene to the region (-329 to +298) conferred strong expression in these same areas, indicating that the presence of this region was sufficient to express CatB specifically in the roots. There may be new regulatory element(s) in this region, because it contained no previously known cis-regulatory elements specific for gene expression in roots.  相似文献   

5.
Summary The influence of a variety of parameters was investigated on polyethylene glycol (PEG)-mediated transient nptII and gus gene expression in mesophyll protoplasts of Arabidopsis thaliana ecotype, Estland, in order to develop a suitable transient gene expression system. The investigation revealed that a combination of 20% PEG, incubation time of 15 min, 20–30 μg plasmid concentration per ml along with 50 μg carrier DNA m/l, and inclusion of calcium and magnesium ions during transfection followed by a culture period of 24 h registered maximum NPTII activity. Of the various promoters used for driving expression of the gus gene, the ubiquitin promoter from A. thaliana was the most efficient followed by 35S promoter of the CaMV and the actin promoter of rice. For comparison, similar studies in protoplasts of rice, wheat, and Brassica also revealed the differences in strength of these promoters. Arabidopsis ubiquitin promoter was the most effective in Brassica, and the rice actin1 promoter was the most effective in rice and wheat.  相似文献   

6.
7.
Gene constructs that contained the -glucuronidase (GUS) gene under the control of a pollen-specific Zm13 promoter from maize and a LAT52 promoter from tomato were introduced by electroporation into pollen protoplasts isolated from bicellular pollen grains of Lilium longiflorum. After 20 h in culture, the pollen protoplasts exhibited the apparent expression of GUS in a fluorometric assay. The GUS activity induced under the control of the Zm13 promoter was over 10 000 times higher than activity in the control (with no DNA or without electroporation). By contrast, the GUS gene was nearly silent in the lily microspore protoplasts and generative cell protoplasts. The GUS activity driven by the Zm13 and LAT52 promoters was also detected by a cytochemical assay. The frequency of blue-staining pollen protoplasts was about 70% in the case of the Zm13 promoter. The efficiency of gene transfer by electroporation was much higher than by particle bombardment. This protoplast-specific electroporation system is suitable for rapid and reliable examination of pollen-specific promoters, being as good as the particle bombardment system.  相似文献   

8.
9.
10.
11.
12.
13.
Transient assay systems using protoplasts have been utilized in several plant species and are a powerful tool for rapid functional gene analysis and biochemical manipulations. A protoplast system has not been used in switchgrass (Panicum virgatum L.), even though it is a bioenergy crop that has received considerable attention. Here we report the first protocol to isolate large numbers of viable protoplasts from both leaves and roots of two switchgrass genotypes. Furthermore, we demonstrate transient expression of PEG-mediated DNA uptake in the isolated protoplasts by measuring the activity of beta-glucuronidase (GUS) reporter gene driven by either the Cauliflower mosaic virus (CaMV) 35S promoter or the maize ubiquitin 1 promoter. Protoplast transformation with either the 35S or the ubiquitin promoter resulted in an increase in GUS activity compared to the untransformed controls; however, the extent of GUS activity was considerably higher for the ubiquitin promoter than for the 35S promoter. Collectively, our results indicate an efficient protoplast isolation and transient assay system that can be used to facilitate gene expression studies in switchgrass.  相似文献   

14.
Promoters play key roles in conferring temporal, spatial, chemical, developmental, or environmental regulation of gene expression. Promoters that are subject to specific regulations are useful for manipulating foreign gene expression in plant cells, tissues, or organs with desirable patterns and under controlled conditions, and have been important for both basic research and applications in agriculture biotechnology. Recent advances in genomics technologies have greatly facilitated identification and study of promoters in a genome scale with high efficiency. Previously we have generated a large T-DNA tagged rice mutant library (TRIM), in which the T-DNA was designed with a gene/promoter trap system, by placing a promoter-less GUS gene next to the right border of T-DNA. GUS activity screens of this library offer in situ and in planta identifications and analyses of promoter activities in their native configurations in the rice genome. In the present study, we systematically performed GUS activity screens of the rice mutant library for genes/promoters constitutively, differentially, or specifically active in vegetative and reproductive tissues. More than 8,200 lines have been screened, and 11% and 22% of them displayed GUS staining in vegetative tissues and in flowers, respectively. Among the vegetative tissue active promoters, the ratio of leaf active versus root active is about 1.6. Interestingly, all the flower active promoters are anther active, but with varied activities in different flower tissues. To identify tissue specific ABA/stress up-regulated promoters, we compared microarray data of ABA/stress induced genes with those of tissue-specific expression determined by promoter trap GUS staining. Following this approach, we showed that the peroxidase 1 gene promoter was ABA up-regulated by 4 fold within 1 day of exposure to ABA and its expression is lateral root specific. We suggest that this be an easy bioinformatics approach in identifying tissue/cell type specific promoters that are up-regulated by hormones or other factors. Su-May Yu and Swee-Suak Ko equally contributed to this work.  相似文献   

15.
Evaluation of selectable markers for rice transformation   总被引:15,自引:1,他引:14       下载免费PDF全文
A variety of expression systems and selection régimes have been developed to transform plants such as tobacco, petunia, and tomato. We investigated several of these to determine whether the promoters and selectable markers used in dicotyledonous plants are suitable for selecting transformed rice callus. We compared transient expression driven by constitutive and regulated promoters in rice (Oryza sativa) protoplasts and found that the 2′ promoter of the octopine T-DNA is approximately 3 to 4 times more efficient than the CAMV 35S promoter, 10 times more efficient than the nos promoter and the 1′ promoter, and more than 100 times better than two other regulated plant promoters. Similar results were obtained in tobacco (Nicotiana tabacum) protoplasts with the exception that the nos promoter was expressed nearly 10 times better in rice. Further studies demonstrated that rice callus growth is sensitive to low concentrations of methotrexate, phosphinothricin, and bleomycin, and to moderate concentrations of G418 and hygromycin, but is only partially inhibited by relatively high concentrations of kanamycin. Finally, we tested the ability of stably introduced resistance genes to protect callus against some of the selective agents. Genes that inactivated phosphinothricin or G418 permitted transformed calli to grow almost unimpeded on toxic concentrations of these selective agents. However, a gene conferring resistance to methotrexate could not be used to select for activily growing transformants. Southern analysis of the transformed cell lines demonstrated that 50% of the transformants contained a single plasmid copy and that nearly all integrated copies showed rearrangements. These results on the use of selectable markers in rice should facilitate efforts to obtain transformants of this important grain.  相似文献   

16.
D McElroy  W Zhang  J Cao    R Wu 《The Plant cell》1990,2(2):163-171
  相似文献   

17.
18.
19.
Transgenic rice plants have been regenerated by somatic embryogenesis from cell suspension derived protoplasts electroporated with plasmid carrying the NPTII gene under the control of the 35S promoter from cauliflower mosaic virus. Heat shock of protoplasts prior to electroporation maximised the throughput of kanamycin resistant colonies. Omission of kanamycin from the medium for plant regeneration was essential for the recovery of transgenic rice plants carrying the NPTII gene. This report of the production of kanamycin resistant transgenic rice plants establishes the use of protoplasts for rice genetic engineering.Abbreviations NPTII neomycin phosphotransferase - SDS sodium dodecyl sulphate  相似文献   

20.
Previous work has shown that in rice suspension cells, NaCl at 0.4 M can induce Em gene expression and act synergistically with ABA, possibly by potentiating the ABA response pathway through a rate-limiting intermediate (R.M. Bostock and R.S. Quatrano (1992) Plant Physiol., 98, 1356–1363). Since calcium is an intermediate in ABA regulation of stomatal closure, we tested the effect of calcium changes on ABA-inducible Em gene expression in transiently transformed rice protoplasts. We show that calcium is required for ABA-inducible Em-GUS expression and can act in synergy with ABA. The trivalent ions lanthanum, gadolinium, and aluminum, which are known to interact with calcium- and other signaling pathways, can act at sub-millimolar concentrations to increase GUS reporter gene expression driven by several promoters in transiently transformed rice protoplasts. This effect is not specific for the ABA-inducible Em promoter, but is synergistic with ABA. The lanthanum synergy with ABA does not require calcium. In rice suspension cells, lanthanum alone does not induce Em gene expression, in contrast to transiently transformed protoplasts, yet can act synergistically with ABA to effectively increase the sensitivity to ABA greater than tenfold. Trivalent ions may be a useful tool to study the regulation of gene expression. The possible effects of trivalent ions on ABA signal transduction and gene expression are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号