首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recent advances in the characterisation of insect sodium channel gene sequences have identified a small number of point mutations within the channel protein that are implicated in conferring target-site resistance to pyrethroid insecticides (so-called knockdown resistance or kdr). The L1014F (leucine-to-phenylalanine) mutation located in the centre of segment 6 of the domain II region (IIS6) of the sodium channel (the so-called kdr trait) has been detected in the peach-potato aphid, Myzus persicae (Sulzer), and is considered to be the primary cause of pyrethroid resistance in this species. Here we report on the characterisation of a second mutation, M918T (methione-to-threonine), within the nearby IIS4-S5 intracellular linker (the so-called super-kdr trait) in a field clone also possessing L1014F, with both mutations present in heterozygous form. The resistance phenotype of M. persicae clones possessing various combinations of L1014F and M918T to a wide range of pyrethroids (both Type I and II) was assessed in leaf-dip bioassays and to lambda-cyhalothrin applied at up to ten times the recommended field rate as foliar sprays to aphids feeding on whole plants. Bioassay results demonstrated that presence of both mutations was associated with extreme resistance to all the pyrethroids tested relative to aphids lacking the mutations. Furthermore, this resistance well exceeded that shown by aphids that were homozygous for L1014F but lacking M918T. However, pre-treatment with piperonyl butoxide in the leaf-dip bioassays failed to suppress pyrethroid resistance in aphids carrying one or both of the mutations. The relevance of these findings for monitoring and managing pyrethroid resistance in M. persicae populations in the field is discussed.  相似文献   

2.
Knockdown resistance (kdr) to pyrethroid insecticides is caused by point mutations in the pyrethroid target site, the para-type sodium channel of nerve membranes. This most commonly involves alterations within the domain II (S4–S6) region of the channel protein where five different mutation sites have been identified across a range of insect species. To investigate the incidence of this mechanism in cat fleas, we have cloned and sequenced the IIS4–IIS6 region of the para sodium channel gene from seven laboratory flea strains. Analysis of these sequences revealed two amino acid replacements at residues previously implicated in pyrethroid resistance. One is the ‘common’ kdr mutation, a leucine to phenylalanine substitution (equivalent to L1014F of housefly) reported previously in several other insects. The other is a threonine to valine substitution (equivalent to T929V) and is a novel variant of the T929I mutation first identified in diamondback moth. The L1014F mutation was found at varying frequency in all of the laboratory flea strains, whereas the T929V mutation was found only in the highly resistant Cottontail strain. We have developed rapid PCR-based diagnostic assays for the detection of these mutations in individual cat fleas and used them to show that both L1014F and T929V are common in UK and US flea populations. This survey revealed a significant number of fleas that carry only the V929 allele indicating that co-expression with the F1014 allele is not necessary for flea viability.  相似文献   

3.
Voltage-gated sodium channels are the primary target of pyrethroid insecticides. Numerous point mutations in sodium channel genes have been identified in pyrethroid-resistant insect species, and many have been confirmed to reduce or abolish sensitivity of channels expressed in Xenopus oocytes to pyrethroids. Recently, several novel mutations were reported in sodium channel genes of pyrethroid-resistant Aedes mosquito populations. One of the mutations is a phenylalanine (F) to cysteine (C) change in segment 6 of domain III (IIIS6) of the Aedes mosquito sodium channel. Curiously, a previous study showed that alanine substitution of this F did not alter the action of deltamethrin, a type II pyrethroid, on a cockroach sodium channel. In this study, we changed this F to C in a pyrethroid-sensitive cockroach sodium channel and examined mutant channel sensitivity to permethrin as well as five other type I or type II pyrethroids in Xenopus oocytes. Interestingly, the F to C mutation drastically reduced channel sensitivity to three type I pyrethroids, permethrin, NRDC 157 (a deltamethrin analogue lacking the ??-cyano group) and bioresemthrin, but not to three type II pyrethroids, cypermethrin, deltamethrin and cyhalothrin. These results confirm the involvement of the F to C mutation in permethrin resistance, and raise the possibility that rotation of type I and type II pyrethroids might be considered in the control of insect pest populations where this particular mutation is present.  相似文献   

4.

Background

Chagas'' disease is an important public health concern in Latin America. Despite intensive vector control efforts using pyrethroid insecticides, the elimination of Triatoma infestans has failed in the Gran Chaco, an ecoregion that extends over Argentina, Paraguay, Bolivia and Brazil.The voltage-gated sodium channel is the target site of pyrethroid insecticides. Point mutations in domain II region of the channel have been implicated in pyrethroid resistance of several insect species.

Methods and Findings

In the present paper, we identify L925I, a new pyrethroid resistance-conferring mutation in T. infestans. This mutation has been found only in hemipterans. In T. infestans, L925I mutation occurs in a resistant population from the Gran Chaco region and is associated with inefficiency in the control campaigns. We also describe a method to detect L925I mutation in individuals from the field.

Conclusions and Significance

The findings have important implications in the implementation of strategies for resistance management and in the rational design of campaigns for the control of Chagas'' disease transmission.  相似文献   

5.
Voltage-gated sodium channels are the presumed site of action of pyrethroid insecticides and DDT. We screened several mutant sodium channel Drosophila lines for resistance to type I pyrethroids. In insecticidal bioassays the para(74) and para(DN7) fly lines showed greater than 4-fold resistance to allethrin relative to the allethrin sensitive Canton-S control line. The amino acid substitutions of both mutants are in domain III. The point mutation associated with para(74) lies within the S6 transmembrane region and the amino acid substitution associated with para(DN7) lies within the S4-S5 linker region. These sites are analogous to the mutations in domain II underlying knockdown resistance (kdr) and super-kdr, naturally occurring forms of pyrethroid resistance found in houseflies and other insects. Electrophysiological studies were performed on isolated Drosophila neurons from wild type and para(74) embryos placed in primary culture for three days to two weeks. The mutant para(74) sodium currents were kinetically similar to wild type currents, in activation, inactivation and time to peak. The only observed difference between para(74) and wild-type neurons was in the affinity of the type I pyrethroid, allethrin. Application of 500 nM allethrin caused removal of inactivation and prolonged tail currents in wild type sodium channels but had little or no effect on para(74) mutant sodium channels.  相似文献   

6.

Background

Resistance of Aedes aegypti to photostable pyrethroid insecticides is a major problem for disease-vector control programs. Pyrethroids target the voltage-gated sodium channel on the insects'' neurons. Single amino acid substitutions in this channel associated with pyrethroid resistance are one of the main factors that cause knockdown resistance in insects. Although kdr has been observed in several mosquito species, point mutations in the para gene have not been fully characterized in Ae. aegypti populations in Vietnam. The aim of this study was to determine the types and frequencies of mutations in the para gene in Ae. aegypti collected from used tires in Vietnam.

Methods and Findings

Several point mutations were examined that cause insensitivity of the voltage-gated sodium channel in the insect nervous system due to the replacement of the amino acids L1014F, the most commonly found point mutation in several mosquitoes; I1011M (or V) and V1016G (or I), which have been reported to be associated to knockdown resistance in Ae. aegypti located in segment 6, domain II; and a recently found amino acid replacement in F1269 in Ae. aegypti, located in segment 6, domain III. Among 756 larvae from 70 locations, no I1011M or I1011V nor L1014F mutations were found, and only two heterozygous V1016G mosquitoes were detected. However, F1269C mutations on domain III were distributed widely and with high frequency in 269 individuals among 757 larvae (53 collection sites among 70 locations surveyed). F1269C frequencies were low in the middle to north part of Vietnam but were high in the areas neighboring big cities and in the south of Vietnam, with the exception of the southern mountainous areas located at an elevation of 500–1000 m.

Conclusions

The overall percentage of homozygous F1269C seems to remain low (7.4%) in the present situation. However, extensive and uncontrolled frequent use of photostable pyrethroids might be a strong selection pressure for this mutation to cause serious problems in the control of dengue fever in Vietnam.  相似文献   

7.
Knockdown resistance (kdr) to pyrethroid insecticides has been attributed to point mutations in the para sodium channel gene in more than a half dozen insect pest species. In this study, we identified two novel para mutations in five highly resistant kdr-type German cockroach strains. The two mutations, from glutamic acid (E434) to lysine (K434) and from cysteine (C764) to arginine (R764), respectively, are located in the first intracellular linker connecting domains I and II. E434K is located near the beginning of the linker (closest to domain I), whereas C764R is found toward the end of the linker (closest to domain II). Two additional mutations from aspartic acid (D58) to glycine (G58), and from proline (P1880) to leucine (L1888), respectively, were found in one of the resistant strains. The four mutations coexist with the previously identified leucine to phenylalanine (L993F) kdr mutation in IIS6, and are present only in the highly resistant individuals of a given strain. These findings suggest that these mutations might be responsible for high levels of knockdown resistance toward pyrethroid insecticides in the German cockroach.  相似文献   

8.
The voltage-gated sodium channel is the primary target site of pyrethroid insecticides. In some insects, super knockdown resistance (super-kdr) to pyrethroids is caused by point mutations in the linker fragment between transmembrane segments 4 and 5 of the para-type sodium channel protein domain II (IIS4-5). Here, we identify two mutations in the IIS4-5 linker of the para-type sodium channel of the whitefly, Bemisia tabaci: methionine to valine at position 918 (M918V) and leucine to isoleucine at position 925 (L925I). Although each mutation was isolated independently from strains >100-fold resistant to a pyrethroid (fenpropathrin) plus organophosphate (acephate) mixture, only L925I was associated with resistance in strains derived from the field in 2000 and 2001. The L925I mutation occurred in all individuals from nine different field collections that survived exposure to a discriminating concentration of fenpropathrin plus acephate. Linkage analysis of hemizygous male progeny of unmated heterozygous F1 females (L925I×wild-type) shows that the observed resistance is tightly linked to the voltage-gated sodium channel locus. The results provide a molecular tool for better understanding, monitoring and managing pyrethroid resistance in B. tabaci.  相似文献   

9.
Resistance to insecticides is one interesting example of a rapid current evolutionary change. DNA variability in the voltage-gated sodium channel gene (trans-membrane segments 5 and 6 in domain II) was investigated in order to estimate resistance evolution to pyrethroid in codling moth populations at the World level. DNA variation among 38 sequences revealed a unique kdr mutation (L1014F) involved in pyrethroid resistance in this gene region, which likely resulted from several convergent substitutions. The analysis of codling moth samples from 52 apple orchards in 19 countries using a simple PCR-RFLP confirmed that this kdr mutation is almost worldwide distributed. The proportions of kdr mutation were negatively correlated with the annual temperatures in the sampled regions. Homozygous kdr genotypes in the French apple orchards showed lower P450 cytochrome oxidase activities than other genotypes. The most plausible interpretation of the geographic distribution of kdr in codling moth populations is that it has both multiple independent origins and a spreading limited by low temperature and negative interaction with the presence of alternative resistance mechanisms to pyrethroid in the populations.  相似文献   

10.
11.
Some strains of Heliothis virescens carry a novel sodium channel mutation, corresponding to the replacement of Val410 by Met (designated V410M) in the house fly Vssc1 sodium channel, that is genetically and physiologically associated with pyrethroid resistance. To test the functional significance of this mutation, we created a house fly Vssc1 sodium channel containing the V410M mutation by site-directed mutagenesis, expressed wildtype and specifically mutated sodium channels in Xenopus laevis oocytes, and evaluated the effects of the V410M mutation on the functional and pharmacological properties of the expressed channels by two-electrode voltage clamp. The V410M mutation caused depolarizing shifts of approximately 9mV and approximately 5mV in the voltage dependence of activation and steady-state inactivation, respectively, of Vssc1 sodium channels. The V410M mutation also reduced the sensitivity of Vssc1 sodium channels to the pyrethroid cismethrin at least 10-fold and accelerated the decay of cismethrin-induced sodium tail currents. The degree of resistance conferred by the V410M mutation in the present study is sufficient to account for the degree of pyrethroid resistance in H. virescens that is associated with this mutation. Although Val410 is located in a sodium channel segment identified as part of the binding site for batrachotoxin, the V410M mutation did not alter the sensitivity of house fly sodium channels to batrachotoxin. The effects of the V410M mutation on the voltage dependence and cismethrin sensitivity of Vssc1 sodium channels were indistinguishable from those caused by another sodium channel point mutation, replacement of Leu1014 by Phe (L1014F), that is the cause of knockdown resistance to pyrethroids in the house fly. The positions of the V410M and L1014F mutations in models of the tertiary structure of sodium channels suggest that the pyrethroid binding site on the sodium channel alpha subunit is located at the interface between sodium channel domains I and II.  相似文献   

12.
The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids) were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed.  相似文献   

13.
Extensive use of pyrethroid insecticides for urban pest control has led to widespread pyrethroid resistance in the German cockroach. A mutation at nucleotide position 2979 (G to C, causing a leucine to phenylalanine change) in the S6 transmembrane segment of domain II of the para-homologous voltage-gated sodium channel has been previously identified in knockdown-resistant cockroaches and demonstrated by site-directed mutagenesis to reduce channel sensitivity to pyrethroids. In a recent survey, 83% of pyrethroid-resistant German cockroach populations were found to possess this mutation. A German cockroach strain with a low incidence of the L993F mutation was subjected to selection pressure with cypermethrin and subsequently evaluated over several generations for the knockdown resistance phenotype. Correspondingly, we determined the genotype of individual cockroaches of each population at the 2979 position of the para-homologous gene. Genotype was discerned by development of a polymerase chain reaction method that employed a mismatched primer-template set. A direct relationship was observed between mean knockdown time and the presence of the kdr mutation. Furthermore, individuals homozygous for the kdr mutation exhibited a significantly higher mean knockdown time than heterozygotes or wildtype cockroaches. This is the first report demonstrating the progressive expression of the kdr allele in response to insecticide selection pressure.  相似文献   

14.
Permethrin as a topical acaricide cream is widely used to treat scabies. The neuronal voltage-sensitive sodium channel (Vssc), necessary for the generation of action potentials in excitable cells, is the target of pyrethroid acaricides such as permethrin. Pyrethroid resistance has been linked to specific mutations in the Vssc gene. Following the partial sequencing of the Vssc gene in the scabies mite Sarcoptes scabiei (L.) (Astigmata: Sarcoptidae), we compared Vssc gene sequences from permethrin-sensitive and -tolerant S. scabiei var. canis Gerlach mites, and identified a G to A single nucleotide polymorphism (SNP) in permethrin-tolerant mites resulting in an amino acid change from glycine to aspartic acid in domain III S6. The mutation is in a region of the gene where mutations have been identified in a range of pyrethroid-resistant arthropods. Results of in vitro permethrin exposure assays showed that survival rates for mites bearing the mutation were similar to those previously reported for mites from human subjects where clinical tolerance to permethrin had been observed. A real-time polymerase chain reaction-high-resolution melt (PCR-HRM) assay was developed to detect this SNP. This assay provides a useful methodology for screening for this and other mutations associated with permethrin resistance in scabies mite populations and thus facilitates surveillance for acaricide resistance.  相似文献   

15.
Pyrethroid insecticide resistance due to reduced nerve sensitivity, known as knockdown resistance (kdr or kdr-type), is linked to multiple point mutations in the para-homologous sodium channel genes. Previously we demonstrated that two mutations (E434K and C764R) in the German cockroach sodium channel greatly enhanced the ability of the L993F mutation (a known kdr -type mutation) to reduce sodium channel sensitivity to deltamethrin, a pyrethroid insecticide. Neither E434K nor C764R alone, however, altered sodium channel sensitivity. To examine whether E434K and C764R also enhance the effect of pyrethroid resistance-associated sodium channel mutations identified in other insects, we introduced a V to M mutation (V409M) into the cockroach sodium channel protein at the position that corresponds to the V421M mutation in the Heliothis virescens sodium channel protein. We found that the V409M mutation alone modified the gating properties of the sodium channel and reduced channel sensitivity to deltamethrin by 10-fold. Combining the V409M mutation with either the E434K or C764K alone did not reduce the V409M channel sensitivity to deltamethrin further. However, the triple mutation combination (V409M, E434K and C764R) dramatically reduced channel sensitivity by 100-fold compared with the wild-type channel. These results suggest that the E434K and C764R mutations are important modifiers of sodium channel sensitivity to pyrethroid insecticides.  相似文献   

16.
Helicoverpa zea is one of the most costly insect pests of food and fiber crops throughout the Americas. Pyrethroid insecticides are widely applied for its control as they are effective and relatively inexpensive; however, resistance to pyrethroids threatens agricultural systems sustainability because alternative insecticides are often more expensive or less effective. Although pyrethroid resistance has been identified in this pest since 1990, the mechanisms of resistance have not yet been elucidated at the molecular level. Pyrethroids exert their toxicity by prolonging the open state of the voltage-gated sodium channel. Here we report the cDNA sequence of the H. zea sodium channel α-subunit homologous to the para gene from Drosophila melanogaster. In field-collected males which were resistant to cypermethrin as determined by the adult vial test, we identify known resistance-conferring mutations L1029H and V421M, along with two novel mutations at the V421 residue, V421A and V421G. An additional mutation, I951V, may be the first example of a pyrethroid resistance mutation caused by RNA editing. Identification of the sodium channel cDNA sequence will allow for testing hypotheses on target-site resistance for insecticides acting on this channel through modeling and expression studies. Understanding the mechanisms responsible for resistance will greatly improve our ability to identify and predict resistance, as well as preserve susceptibility to pyrethroid insecticides.  相似文献   

17.
Modelling insecticide-binding sites in the voltage-gated sodium channel   总被引:1,自引:0,他引:1  
A homology model of the housefly voltage-gated sodium channel was developed to predict the location of binding sites for the insecticides fenvalerate, a synthetic pyrethroid, and DDT an early generation organochlorine. The model successfully addresses the state-dependent affinity of pyrethroid insecticides, their mechanism of action and the role of mutations in the channel that are known to confer insecticide resistance. The sodium channel was modelled in an open conformation with the insecticide-binding site located in a hydrophobic cavity delimited by the domain II S4-S5 linker and the IIS5 and IIIS6 helices. The binding cavity is predicted to be accessible to the lipid bilayer and therefore to lipid-soluble insecticides. The binding of insecticides and the consequent formation of binding contacts across different channel elements could stabilize the channel when in an open state, which is consistent with the prolonged sodium tail currents induced by pyrethroids and DDT. In the closed state, the predicted alternative positioning of the domain II S4-S5 linker would result in disruption of pyrethroid-binding contacts, consistent with the observation that pyrethroids have their highest affinity for the open channel. The model also predicts a key role for the IIS5 and IIIS6 helices in insecticide binding. Some of the residues on the helices that form the putative binding contacts are not conserved between arthropod and non-arthropod species, which is consistent with their contribution to insecticide species selectivity. Additional binding contacts on the II S4-S5 linker can explain the higher potency of pyrethroid insecticides compared with DDT.  相似文献   

18.
The super-kdr insecticide resistance trait of the house fly confers resistance to pyrethroids and DDT by reducing the sensitivity of the fly nervous system. The super-kdr genetic locus is tightly linked to the Vssc1 gene, which encodes a voltage-sensitive sodium channel alpha subunit that is the principal site of pyrethroid action. DNA sequence analysis of Vssc1 alleles from several independent super-kdr fly strains identified two amino acid substitutions associated with the super-kdr trait: replacement of leucine at position 1014 with phenylalanine (L1014F), which has been shown to cause the kdr resistance trait in this species, and replacement of methionine at position 918 with threonine (M918T). We examined the functional significance of these mutations by expressing house fly sodium channels containing them in Xenopus laevis oocytes and by characterizing the biophysical properties and pyrethroid sensitivities of the expressed channels using two-electrode voltage clamp. House fly sodium channels that were specifically modified by site-directed mutagenesis to contain the M918T/L1014F double mutation gave reduced levels of sodium current expression in oocytes but otherwise exhibited functional properties similar to those of wildtype channels and channels containing the L1014F substitution. However, M918T/L1014F channels were completely insensitive to high concentrations of the pyrethroids cismethrin and cypermethrin. House fly sodium channels specifically modified to contain the M918T single mutation, which is not known to exist in nature except in association with the L1014F mutation, gave very small sodium currents in oocytes. Assays of these currents in the presence of high concentrations of cismethrin suggest that this mutation alone is sufficient to abolish the pyrethroid sensitivity of house fly sodium channels. These results define the functional significance of the Vssc1 mutations associated with the super-kdr trait of the house fly and are consistent with the hypothesis that the super-kdr trait arose by selection of a second-site mutation (M918T) that confers to flies possessing it even greater resistance than the kdr allele containing the L1014F mutation.  相似文献   

19.
击倒抗性和钠离子通道   总被引:5,自引:0,他引:5  
综述了击倒抗性与钠离子通道关系的研究进展。毒理学和电生理学的研究表明,在许多拟除虫菊酯类杀虫剂抗性昆虫中存在击倒抗性。分子遗传学研究进一步发现,击倒抗性与钠离子通道位点连锁。最近的研究表明,昆虫神经系统对拟除虫菊酯类杀虫剂敏感性下降的击倒抗性机制是钠离子通道结构基因突变。但仍有一些问题,如突变的保守性和分布,需要进一步研究、阐明。  相似文献   

20.
The para-type sodium channel in insects is the primary target of pyrethroid and DDT insecticides. However, modifications in the target protein structure such as point mutations or substitutions, resulting from single nucleotide polymorphisms (SNP), cause insensitivity of the insect’s nervous system to pyrethroids and DDT and, in turn, result in insecticide resistance. Among these mutations, substitution of leucine to phenylalanine (L to F) in the 6th segment of domain II (IIS6) has been clearly associated with pyrethroid and DDT resistance in many insect species, including mosquitoes. Here, multiple copies of the sodium channel gene were identified in the mosquito Culex quinquefasciatus by Southern blot analysis and polymerase chain reaction (PCR) analysis. Two genomic DNA fragments of the mosquito sodium channel gene (509 and 181 bp) were detected by a single PCR primer pair. Sequence analysis indicated the lack of an intron sequence in the 181 bp sodium channel fragment. Single nucleotide polymorphism (SNP) analysis revealed a strong correlation among the frequencies of L-to-F allelic (T) expression at the RNA level, the frequencies and resistance allele (T) at the L-to-F site of the 509 bp genomic DNA fragment, which did include an intron sequence, and the levels of insecticide resistance. Taking together, this study, for the first time, not only revealed multiple copies of the sodium channel gene presented in the Culex mosquito genome but also suggested that the one with the intro sequence may be a functional copy of the sodium channel gene in the Culex mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号