首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Understanding the effects of abiotic environmental factors on invasive plants species traits is of importance for practical prevention. To examine the effects of soil fertility and flooding regime on the growth of Ambrosia trifida L., a mesocosm experiment was conducted for 18 weeks. Two levels of soil fertility (high and low) and three types of flooding regime (non-flooded, flooded, and periodically flooded) were prepared. Shoot height and dry weight of each plant were measured. We found both individual and interactive effects of soil fertility and flooding regime on the overall growth performance of A. trifida (p?<?0.05). The highest shoot height (154.7?±?4.4 cm) and total dry weight (TDW, 13.0?±?1.4 g) were obtained under high fertility and non-flooded condition. Height and weight were relatively low under flooding conditions (flooded and periodically flooded). In particular, shoot height (102.3?±?3.2 cm) and TDW (3.2?±?0.3 g) were the lowest under low fertility and periodically flooded condition. On the other hand, the ratio of above- to below-ground dry weight was relatively high under flooded conditions, showing the adaptive phenotypic plasticity. Adventitious root formation and more biomass allocation to shoots were a flooding-adaptive mechanism of A. trifida, well developed under high fertility condition. We suggest maintaining appropriate water regime and avoiding eutrophication in wetlands would be necessary to prevent A. trifida from invading. These findings will contribute to the conservation of biodiversity in wetlands by effective management of A. trifida.

  相似文献   

2.
Due to the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces it is necessary to accurately determine the organisms responsible for these maladies and to identify them in an accurate and timely manner. Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods may often be time consuming and inaccurate, necessitating the development of identification protocols that are rapid, sensitive, and precise. To this end, we have devised a simple PAN-PCR approach which when coupled to cloning and sequencing of the clones allows for the unambiguous identification of multiple fungal organisms. Universal primers are used to amplify ribosomal DNA sequences which are then cloned and transformed into Escherichia coli. Individual clones are then sequenced and individual sequences analyzed and organisms identified. Using this method we were capable of identifying Stachybotrys chartarum, Penicillium purpurogenum, Aspergillus sydowii, and Cladosporium cladosporioides from a mixed culture. This method was found to be rapid, highly specific, easy to perform, and cost effective.  相似文献   

3.
Sections (8 cm2) of unused, nonsterile gypsum wallboard (dry wall) were inoculated with varying densities (104 to ∼108/ml) of conidia from 14- to 21-day cultures of Stachybotrys chartarum grown on cellulose agar. The sections were permitted to air dry and were placed into vessels with 86% or 92% RH and incubated at 22–25°C for up to 12 weeks. The moisture content of the dryboard increased from near 10% to over 35%. Selected sections with confluent surface growth, mainly of S. chartarum, were obtained within 3 weeks. Sections were cleaned with a quaternary or quaternary and chlorine dioxide or a concentrated oxygen-saline solution and treated, in some cases, with a preservative system and returned to humidity vessels. Reemergence of S. chartarum from inoculated and treated surfaces occurred within 5 weeks only with sections treated with the quaternary alone. Other fungi, mostly species of Aspergillus, Chaetomium and Penicillium, slowly colonized (between 9–12 weeks) at least some areas of most treated surfaces and most uninoculated control surfaces. Stachybotrys chartarum was also found on several sections of uninoculated controls. Sections treated with a quaternary/acrylic and placed in a dynamic challenging chamber remained visually free of colonized fungi for over 90 days. These studies indicate that control samples of uninstalled wallboard, available from local distributors, can contain a baseline bioburden, including S. chartarum, that will colonize surfaces under high humidity conditions. Sanitation and preservation treatment of the wallboard can markedly delay regrowth of these fungi, particularly of S. chartarum. Received: 8 January 1999 / Accepted: 22 February 1999  相似文献   

4.
Rand TG  White K  Logan A  Gregory L 《Mycopathologia》2003,156(2):119-131
Stachybotrys chartarum is an important toxigenic fungus often associated with chronically wet cellulose-based building materials. The purpose of this study was to evaluate some histological, immunohistochemical and morphometric changes in mouse lung tissues exposed intratracheally to either 50 l of 1.4 × 106 S. chartarum spores (35 ng toxin/kg BW), isosatratoxin-F (35ng/kg BW),50 l of 1.4 × 106 Cladosporium cladosporioides spores, or 50 l saline. Exposure of lung tissues to S. chartarum or C. cladosporioides spores resulted in granuloma formation at the sites of spore impaction. Some of the lung tissues impacted by S. chartarum spores also showed erythrocyte accumulation in the alveolar air space, dilated capillaries engorged with erythrocytes, and hemosiderin accumulation at spore impaction sites, which were features not noted in the C. cladosporioides-spore treated animals. Immunohistochemistry revealed reduced collagen IV distribution in lung granulomas in S. chartarum-treated animals especially at 48 and 72 hr post-exposure compared to that in lungs of mice with C. cladosporioides-spore induced granulomas. Quantitative analysis of pooled S. chartarum and C. cladosporioides spore impacted lungs revealed significant depression (P < 0.05) of alveolar air space from 71.4 ± 6.1 in untreated animals to 56.04 ± 6.1 in the S. chartarum- and 60.24 ± 5.5% in the C. cladosporioides-spore treated animals. It also revealed that alveolus air space in S. chartarum treated animals declined significantly from 63.74 ± 3.1% at12 hr post-exposure to 42.94 ± 7.9% at 72 hr post-exposure and was increased to 54.84 ± 5.2% at 96 hr post-exposure. Alveolus air space in C. cladosporioidestreated animals also decreased significantly from 64.84 ± 7.1% at 12 hr exposure to 54.94 ± 5.4% at 48 hr post-exposure and was increased to 64.64 ± 10.1% at 96 hr post-exposure. It also revealed significant (P <0.05) alveolar accumulation of erythrocytes from 1.24 ± 1.4% in the untreated animals to 3.44 ± 1.5% in the pooled S. chartarum spore treated animals. Erythrocyte abundance in S. chartarum treated animals increased significantly (P <0.001) from 2.14 ± 1. 7% at 12 hr post-exposure to 5.54 ± 1.5% at 72 hr and 4.94 ± 1.4% at 96 hr post-exposure. These results further reveal that exposure to S. chartarum spores elicit tissue responses in vivo significantly different from those associated with exposure to pure trichothecene toxin and to spores of a non-toxigenic fungus.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
Although water regime modification and salinity are recognised as significant threats to wetland ecosystems worldwide, the effects of long-term saline flooding (decades) on woody tree persistence are poorly quantified. We compared the condition, growth, structure and reproduction (sexual and asexual) of mature individuals of the clonal tree, Melaleuca ericifolia (Myrtaceae), that experienced continual (>30 years) flooding with trees that were only intermittently (approximately every 5 years) flooded. An index developed to assess the condition of multi-stemmed trees found that continually flooded trees were in significantly poorer condition than intermittently flooded trees, having lower crown cover, foliar cover and foliar density, and a higher incidence of dead stags and dieback. Annual stem growth correlated strongly with condition scores. Evidence for a trade-off between sexual and asexual reproductions was found; flooded trees were constrained in their vegetative lateral spread (<12 m dia.) and flowered more than intermittently flooded trees, which were not restricted in lateral spread (~30 m dia.). Flooded trees used intensively by the colonially roosting Australian Sacred Ibis (Threskiornis molucca) were in especially poor condition. These trees flowered infrequently and produced the lowest number of infructescences, but produced many new vegetative stems (ramets) within their centre. Although chronic flooding appeared to compromise the condition of M. ericifolia trees in Dowd Morass, their existence upon woody hummocks (~40 cm high) upon which they are able to produce new stems is likely to be a key mechanism in their persistence. It is unknown, however, how long this process can maintain the existing population. Production and maintenance of a large aerial seed bank by living mature trees under flooded conditions may allow M. ericifolia to regenerate sexually upon drawdown and may be important for population persistence in the longer term.  相似文献   

6.
The importance of mounds created by Macrotermes subhyalinus as safe site for tree regeneration was analysed in a savannah woodland of Burkina Faso. Plantlets (height <1.5 m) were sampled and followed over an year in 72 × 4 m2 quadrats located on M. subhyalinus mounds and adjacent areas. The mechanisms of regeneration and plantlet mortality were also determined. We identified three regeneration mechanisms: seedlings regenerated by seed (abundant on mounds), sprouts (abundant on adjacent areas) and root suckers (a rare case on both sites). A total of 37 species representing 17 families and 30 genera were found on all quadrats, of which 29 species were found on termite mounds and 22 species on adjacent areas. Species richness and density of plantlets at the 4 m2 scale were higher on mounds than in the adjacent area (P < 0.05). Among plantlet categories, seedling density was significantly different among microhabitats (P < 0.001) and across sampling periods (P < 0.01) and, the majority of plantlet individuals appeared within the 0–25 cm height class. The mortality of plantlets and particularly seedling mortality differed significantly between microhabitats (P < 0.01) and between periods (P < 0.01), whereas more than half the variation in the death of Acacia erythrocalyx seedlings (the most abundant species) were related to the density of the live seedlings of the same species (P < 0.001). The observed mortality rate was way below 50%; plantlet density remained higher on mound during sampling periods as compared to the adjacent area. It can thus be concluded that Macrotermes termite mounds are favourable sites for the recruitments of woody plants in savannah woodlands.  相似文献   

7.
Rao CY  Burge HA  Brain JD 《Mycopathologia》2000,149(1):27-34
Stachybotrys chartarum is a fungal species that can produce mycotoxins, specifically trichothecenes. Exposures in the indoor environment have reportedly induced neurogenic symptoms in adults and hemosiderosis in infants. However, little evidence has linked measured exposures to any fungal agent with any health outcome. We present here a study that focuses on quantitatively assessing the health risks from fungal toxin exposure. Male, 10 week old Charles River-Dawley rats were intratracheally instilled with approximately 9.6 million Stachybotrys chartarum spores in a saline suspension. The lungs were lavaged 0 h (i.e., immediately post-instillation), 6, 24 or 72 h after instillation. Biochemical indicators (albumin, myeloperoxidase, lactic dehydrogenase, hemoglobin) and leukocyte differentials in the bronchoalveolar lavage fluid and weight change were measured. We have demonstrated that a single, acute pulmonary exposure to a large quantity of Stachybotrys chartarum spores by intratracheal instillation causes severe injury detectable by bronchoalveolar lavage. The primary effect appears to be cytotoxicity and inflammation with hemorrhage. There is a measurable effect as early as 6 h after instillation, which may be attributable to mycotoxins in the fungal spores. The time course of responses supports early release of some toxins, with the most severe effects occurring between 6 and 24 h following exposure. By 72 h, recovery has begun, although macrophage concentrations remained elevated.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
Two 1 ha plots of a Southern Brazilian subtropical riverine forest, subject to different frequency and duration of floods, were compared to detect the differences in physiognomic structure, tree community composition, richness and diversity. Each plot was made up of 100 contiguous 10×10 m subplots, where 3451 trees with pbh 15 cm were measured and identified. The survey observed 30 tree species, in the frequently flooded plot and 48 in the occasionally flooded plot. A detailed topographical and soil survey was carried out in both plots and indicated that the levels of organic matter and most mineral nutrients were higher in the frequently flooded stand. The forest understory was denser in the occasionally flooded stand which also showed taller emergent trees. Multivariate ordination and grouping techniques showed that the species’ abundance distribution was strongly related to the topographical variation. There was a clear pattern of species turnover according to topographic position, indicating that tree species developed different abilities to survive flooding events. As a result, the two plots also differed in their tree frequency per species regeneration, vertical distribution and dispersion groups. Both species richness and diversity decreased with increasing flood frequency, also showing a patchy distribution within both stands. At a local scale, flooding regime is regulating the spatial variation of α-diversity by forming different seral stages of predictable species composition. Compared to regularly flooded riverine and floodplain forests, riverine forests, with unpredictable flooding regimes, may show higher diversity at a local scale and more abundant opportunistic species of high environmental plasticity.  相似文献   

9.
Li S  Hartman GL  Jarvis BB  Tak H 《Mycopathologia》2002,154(1):41-49
As part of our effort to investigate fungi associated with soybean roots, Stachybotrys chartarum was isolated from soybean root lesions. Since this fungus has not been reported to cause a disease of soybean, the objectives were to identify and characterize this fungus using biological, chemical, and molecular approaches. Fungal morphology was examined using light and environmental scanning electron microscopy. Phialides bearing conidia arose from determinate, macronematous, dark olivaceous conidiophores. The phialides were obovate or ellipsoidal in whorls. Conidia were unicellular, round or ellipsoidal, 5–13 × 4–7 μm, initially hyaline with smooth walls then dark brown to black and rough-walled when mature. Radial growth of the fungus on cornmeal, oatmeal and potato dextrose agar was 38, 47, and 33 mm in diam., respectively, after 10 days at 25 °C. Pathogenicity was performed using sorghum grain colonized by S. chartarum placed below sown soybean seeds in a soil : sand (1 : 1) steam-pasteurized mix. Three weeks after inoculation, root lesions ranged from 7 to 25 mm long. The fungus was reisolated from soybean root lesions and was reidentified as S. chartarum. Biochemical analysis indicated that this soybean isolate produced satratoxins G and H along with roridin L-2, as well as the spircyclic lactones and lactams in rice culture. PCR using a S. chartarum-specific primer StacR3 and IT51 amplified a 198-bp DNA fragment from the total genomic DNA. The DNA sequence of the ITS region was 100% identical to the S. chartarum strain ATCC 9182, one nucleotide mismatch with S. chartarum strain UAMH 7900, and differed from all published sequences of 12 other species of Stachybotrys and 2 species of Memnoniella in GenBank with genetic divergence ranging from 5.26 to 9.98%. This molecular evidence further supports the identification of S. chartarum isolated from soybean root lesions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Anthracnose, caused by the hemiotrophic fungus Colletotrichum sublineolum, is one of the most important diseases affecting sorghum production worldwide. The main goal of this study was to select saprobe fungi from the semi‐arid north‐east of Brazil that could increase sorghum resistance to anthracnose and investigate this increased resistance at both physiological and biochemical levels. Plants were sprayed with Curvularia inaequalis, Gonytrichum macroladum, Memnoniella levispora, Pithomyces chartarum, Periconia hispidula, Phaeoisaria clematidia, Dictyochaeta heteroderae, Sarcopodium circinatum, Periconia byssoides, Moorella speciosa, Stachybotrys chartarum, Pseudobotrytis terrestres, Memnoniella echinata, Stachybotrys globosa and Gonytrichum clamydosporium 24 h before inoculation with C. sublineolum. Plants sprayed with water served as the control treatment. The area under the anthracnose progress curve was significantly reduced in comparison with the control treatment only for plants sprayed with C. inaequalis. Therefore, C. inaequalis was selected for physiological and biochemical evaluations. The peroxidases, chitinases and β‐1,3‐glucanases activities were significantly higher for plants sprayed with C. inaequalis and inoculated with C. sublineolum than for plants not sprayed with Cinaequalis and inoculated with C. sublineolum. There was no apparent decrease in the values of net carbon assimilation rate, stomatal conductance to water vapour or transpiration rate for plants sprayed with C. inaequalis and infected by C. sublineolum in comparison with plants not sprayed with C. inaequalis and infected by C. sublineolum. In conclusion, sorghum resistance against C. sublineolum infection was greatly potentiated by C. inaequalis without any apparent change in the photosynthetic capacity of the infected plants.  相似文献   

11.
The objective of this study was to compare the growth and short-term (single season) competitive performance of three species of Polygonum known to differ in flooding tolerance and life history. Polygonum amphibium is a perennial with low sexual reproductive effort and a relatively high degree of flooding tolerance, P. lapathifolium is an annual species with a high sexual reproductive effort and a low tolerance to flooding, and P. hydropiperoides is intermediate to the other two in terms of sexual reproductive effort and flooding tolerance. In order to determine the relative growth and competitive abilities of these species, mixtures and monocultures of plants were grown in pots and maintained under three flooding regimes: 1) flooded, 2) partially drained, and 3) well drained. Both P. hydropiperoides and P. amphibium grew best under flooded and partially drained conditions with reduced growth in the drained treatment. Polygonum lapathifolium, in contrast, grew as well in the drained treatment as in the more flooded treatments. Results from competition experiments were consistent in showing the relative competitive abilities to be P. lapathifolium > P. hydropiperoides > P. amphibium regardless of flooding regime. Thus, short-term competitive performance was found to trade off with flood tolerance rather than with sexual reproductive effort.  相似文献   

12.
Relationships among aboveground net primary production (ANPP) and forest canopy properties were investigated in secondary successional forests of similar age and disturbance history in northern Lower Michigan, USA. Aboveground biomass, ANPP, canopy leaf area index (LAI), and several canopy nitrogen (N) measures were estimated from 12 stands representing major landform-level ecosystems and vegetation associations. Stand single-date and growing season average normalized difference vegetation indices (NDVI) were derived from Landsat TM. ANPP correlated most strongly with total canopy N content (r 2 = 0.81, P < 0.001), followed by LAI (r 2 = 0.73, P < 0.001) and area-based canopy-average leaf N concentration (r 2 = 0.37, P < 0.05). No significant relationship was detected between ANPP and mass-based canopy-average leaf N concentration. Stand ANPP correlated positively with both total canopy N content (r 2 = 0.62, P < 0.05) and mass-based leaf N concentration (r 2 = 0.53, P < 0.05) of commonly dominant Populus spp. Relatively higher ANPP, total canopy N content and LAI corresponded to simultaneous presence of shade-intolerant P. grandidentata with shade-tolerant species. Both forms of NDVI were significantly related to ANPP, and more strongly to total canopy N content and LAI; relationships were stronger for seasonally averaged (r 2 ≥ 0.75, P < 0.001) than for single-date NDVI (r 2 ≥ 0.52, P < 0.01). Results indicate that on the transitioning study landscapes, ANPP was more closely related to canopy N content than to LAI, seasonally averaged NDVI was a more reliable predictor of ANPP and canopy properties than the single-date index, whereas measured canopy characteristics varied significantly between major landform-level ecosystems. The ongoing decline of P. grandidentata is likely to alter aboveground carbon and pools and fluxes in the course of succession.  相似文献   

13.
The role of species richness, functional diversity and species identity of native Florida sandhill understory species were tested with Imperata cylindrica, an exotic rhizomatous grass, in mesocosms. I. cylindrica was introduced 1 year after the following treatments were established: a control with no native species, five monocultures, a grass mix treatment, a forb mix treatment, and a 3-species treatment and a 5-species treatment. Monthly cover, final biomass, root length, root length density (RLD) and specific root length (SRL) of all species were determined for one full growing season. There was a significant negative linear relationship between the cover of native species and I. cylindrica (r 2 = 0.59, P = 0.01) and a negative logarithmic relationship between the biomass of native species and I. cylindrica (r 2 = 0.70, P = 0.003). There was no diversity–invasibility relationship. Grasses proved to be the most resistant functional group providing resistance alone and in mixed functional communities. Repeated measures analysis demonstrated that treatments including Andropogon virginicus were the most resistant to invasion over time (P < 0.001). Significantly greater root length (P = 0.002), RLD (P = 0.011) and SRL (P < 0.001) than all of the native species and I. cylindrica in monocultures and in mixed communities made A. virginicus successful. The root morphology characteristics allowed it to be a great competitor belowground where I. cylindrica was most aggressive. The results suggest that species identity could be more important than species or functional richness in determining community resistance to invasion.  相似文献   

14.
The increased frequency of heavy rains as a result of global climate change can lead to flooding and changes in light availability caused by the presence of thick clouds. To test the hypothesis that reduction in light availability can alleviate the harmful effects of soil flooding on photosynthesis, the authors studied the effects of soil flooding and acclimation from high to low light on the photosynthetic performance of Eugenia uniflora. Seedlings acclimated to full sunlight (about 35 mol m−2 d−1) for 5 months were transferred to partial sunlight (about 10 mol m−2 d−1) and were either subjected to soil flooding or not flooded. Chlorophyll fluorescence was measured throughout the flooding period and leaf gas exchange was measured 16 days after flooding was initiated. Minimal fluorescence yield (Fo) was significantly higher and the quantum efficiency of open PSII centres (Fv/Fm) was significantly lower in flooded than in non-flooded plants in full sunlight. Sixteen days after flooding was initiated, stomatal conductance (gssat) and net photosyntheses expressed on a leaf area (Asat-area), weight (Asat-wt) and chlorophyll (Asat-Chl) basis decreased in response to soil flooding. Flooding decreased stomatal conductance by similar amounts in full and partial sunlight, but Asat-area in partial and full sunlight was 3.4 and 16.8 times lower, respectively, in flooded than in non-flooded plants. These results indicate that changes from full to partial sunlight during soil flooding can alleviate the effects of flooding stress on photosynthesis in E. uniflora seedlings acclimated to full sunlight. The responses of photosynthesis in trees to flooding stress may be dependent on changes in light environment during heavy rains.  相似文献   

15.
Disturbance alters the structure and dynamics of communities. Here, we examined the effects of seasonal flooding on the lizard community structure by comparing two adjacent habitats, a seasonally flooded and a non‐flooded forest, in a Cerrado–Amazon ecotone area, the Cantão State Park, Tocantins state, Brazil. Despite the strong potential impact of seasonal flooding, the only significant environmental difference detected was more termite mounds in non‐flooded forests. Species richness was significantly higher in the non‐flooded forest. Colobosaura modesta, followed by Mabuya frenata and Anolis brasiliensis, were the only species that differed in number of captures between sites. Colobosaura modesta was exclusively found in the non‐flooded forest, while Anolis brasiliensis was the most captured in the flooded forest. Mabuya frenata is indicated as an indicator species in the flooded forest, and Colobosaura modesta in the non‐flooded forest. We found a significant association between lizard abundances and habitat characteristics, with flooding, canopy cover, and logs being the best predictors. A phylogenetic community structure analysis indicated a lack of structure in both lizard assemblages. Overall, we show that seasonal flooding can strongly impact species richness and species occurrence patterns, but not phylogenetic community structure. The Amazon–Cerrado transition is undergoing pronounced transformations due to deforestation and climate change. Despite being species‐poor compared with central areas in Amazon or Cerrado, this ecotone harbors species with important adaptations that could hold the key to persistence in human‐disturbed landscapes or during periods of climate change.  相似文献   

16.
Maternal oxidative stress during pregnancy may impair fetal growth and help in the development of diseases in adulthood. The aim of current study was to assess total oxidation status (TOS), related parameters and their relationship to DNA damage (%) and homocysteine level in normal pregnant women in low-income participants. In a cross-sectional study healthy women were grouped as normal, while age matched nulliparous and singleton pregnancies were included for first, second and third trimester groups. TOS (P < 0.01), melanodialdehyde (MDA) (P < 0.001), aspartate aminotransferase (AST) (P < 0.01), triiodothyronine (T3) (P < 0.01), thyroxine (T4) (P < 0.01), and homocysteine (P < 0.001), in pregnant women were significantly higher as compared to normal healthy women. While serum total proteins (P < 0.01), albumin (P < 0.01) and total antioxidant status (TAS) (P < 0.001) decreased significantly as compared to normal healthy women. Women in third trimester showed a significantly high level of body temperature (P < 0.01), triglyceride (P < 0.01), LDL-cholesterol (P < 0.05), AST (P < 0.01), T3 (P < 0.01), homocysteine (P < 0.001), TOS (P < 0.01) and MDA (P < 0.001) but a lower concentration of serum proteins, albumin and TAS at the end of the pregnancy. Pearson correlation indicated a positive relationship of homocysteine with triglycerides (P < 0.027), TOS (P < 0.01), MDA (P < 0.035) and had a negative relationship with total protein (P < 0.026). DNA damage was strongly related with T3 (P < 0.008), TOS (P < 0.02), MDA (P < 0.037) and MBI (P < 0.048) profiles of pregnant women. These changes were considered normal for pregnant women having optimum blood pressure and normal child birth. Hormonal influences and hemodilution may contribute towards the observed changes in this study.  相似文献   

17.
Phylloicus sp. larvae live on leaf patches in slow flowing waters and build dorso-ventrally flattened cases from leaf pieces. We hypothesized that Phylloicus larvae are selective towards certain leaf species to build a more resistant case. We exposed Phylloicus larvae to equal-area leaf discs of three plant species from the Brazilian Cerrado (Myrcia guyanensis, Miconia chartacea and Protium brasiliense) and one non-native species (Eucalyptus camaldulensis). Phylloicus larvae built cases with discs of all plant species. However, discs of E. camaldulensis and M. guyanensis were used more (36.4% and 35.7%, respectively) than those of P. brasiliense (20.0%). Discs of M. chartacea were used in an intermediate proportion (28.6%). Selection was resource density-dependent, i.e. when P. brasiliense was offered at higher abundance, it was used more frequently by larvae (ANOVA, P < 0.001). Plant species differed in leaf toughness, phenolic concentration and biomass:area ratio (Kruskal–Wallis, P < 0.05). Larvae preferentially used leaves with higher phenolic concentrations (R s = 0.907, P < 0.001) independently of toughness and biomass:area ratio. We suggest that Phylloicus selects for case-building leaves that are chemically protected against microbial degradation and shredder consumption, and this selection depends on leaf abundance. Our results also reinforce the importance of riparian resources and their diversity to the maintenance of aquatic consumers in tropical shaded streams. Handling editor: D. Dudgeon  相似文献   

18.
Dippers from the genus Cinclus are highly specialised predators on aquatic invertebrates, and occupy linear territories along rivers where measurements of variations in quality are relatively straightforward. For these reasons, they are ideal model species in which to examine factors affecting territory size. In this paper, we investigated the influence of stream habitats on the territory length of the Brown Dipper (Cinclus pallasii) in Taiwan. The biomass of aquatic insects and other stream habitat variables were analyzed to determine their relationships with the territory length of Brown Dippers from November 1988 to May 1989. Compared with slow-moving waters, riffle areas contained significantly greater insect biomass (paired t test, t 11 = 3.49, P < 0.01), of which trichopteran larvae contributed about 70%. Dippers spent more time foraging in riffles than in slow-moving waters. In addition, dippers preferred foraging in shallow riffles, but avoided deep, slow-moving waters (G = 62.53, df = 3, P < 0.001). Territory length (1,045 ± 165 m [SE], n = 14) was negatively related to proportion of riffles (r 2 = 0.5715, P < 0.01), total aquatic insect biomass (r 2 = 0.5840, P < 0.01), and altitude (r 2 = 0.7176, P < 0.001). In factor analysis, four factors were extracted from the 14 stream variables. However, only factor 1 was significantly related to territory length (r 2 = 0.5207, P < 0.01). Factor 1 explained 42.8% of the total variance and collectively revealed the importance of high food abundance. In other words, Brown Dipper territories were the shortest along high-altitude streams with abundant riffles, fewer pools and abundant aquatic insects. These results indicate that abundant supply of accessible invertebrate prey is the most important factor affecting the territory length of Brown Dippers. This is consistent with Cinclus species elsewhere, and reveals the importance of clean, productive river ecosystems.  相似文献   

19.
Gammarus lacustris and Hyalella azteca (hereafter G. lacustris and H. azteca, respectively) are important components of secondary production in wetlands and shallow lakes of the upper Midwest, USA. Within the past 50 years, amphipod densities have decreased while occurrences of fish and intensity of agricultural land use have increased markedly across this landscape. We investigated influences of fish, sedimentation, and submerged aquatic vegetation (SAV) on densities of G. lacustris and H. azteca in semipermanent and permanent wetlands and shallow lakes (n = 283) throughout seven eco-physiographic regions of Iowa, Minnesota, and North Dakota during 2004–2005. G. lacustris and H. azteca densities were positively correlated with densities of SAV (P < 0.001 and P < 0.001, respectively). Both species were negatively correlated with densities of large fish (non-Cyprinidae; P = 0.01 and P = 0.013, respectively) and with high densities of fathead minnows (Pimephales promelas; P < 0.001 and P = 0.033, respectively). H. azteca densities also were negatively correlated with densities of small fish (e.g., other minnows [Cyprinidae] and sticklebacks [Gasterosteidae]; P = 0.048) and common carp (Cyprinus spp.; P = 0.022). G. lacustris densities were negatively correlated with high levels of suspended solids (an index for sedimentation; P < 0.001). H. azteca densities were positively correlated with the width of upland-vegetation buffers (P = 0.004). Our results indicate that sedimentation and fish reduce amphipod densities and may contribute to the current low densities of amphipods in the upper Midwest. Thus, removing/excluding fish, and providing a thick buffer of upland vegetation around wetlands may help restore amphipod densities and wetland and water quality within this landscape.  相似文献   

20.
Y. Ye  Y. T. Gu  H. Y. Gao  C. Y. Lu 《Hydrobiologia》2010,641(1):287-300
To investigate the effects of the simultaneous occurrence of salt stress and tidal sea-level rise on mangroves, potted Kandelia candel seedlings were treated under deep flooding (flooded 40 cm above the soil surface for 16 h per day, inundating the entire plant) and shallow flooding (flooded just above the soil surface for 8 h per day) at salinity levels of 5, 15, and 25 ppt over 14 months. Deep flooding enhanced stem elongations at all salinity levels but increased stem biomass only at 5 ppt. Deep flooding increased both leaf production and leaf fall; leaf biomass increased at 5 ppt, but decreased at 15 and 25 ppt. Biomass ratios of root/shoot (R/S) of deep flooding treatments were significantly lower than those of shallow flooding treatments. Under deep flooding, superoxide dismutase (SOD) activities did not show significant change between 5 and 15 ppt, but increased at 25 ppt. With increasing salinity level, peroxidase (POD) activities increased, and the difference between shallow and deep flooding was enhanced. Malonaldehyde (MDA) content significantly decreased at 25 ppt with 40 cm flooding, but was not affected by other treatments. These results demonstrated that the growth and physiological responses of K. candel seedlings under deep flooding conditions varied with salinity level; growth was enhanced at low salinity level but inhibited at high salinity level. It is therefore probable that K. candel will shift from downstream to upstream, where the influence of fresher river water resources will ameliorate the effects of increased salinities that accompany deeper tidal flooding in these mangrove ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号