首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is part of a Special Issue “Chemosignals and Reproduction”.Many lizards have diverse glands that produce chemosignals used in intraspecific communication and that can have reproductive consequences. For example, information in chemosignals of male lizards can be used in intrasexual competition to identify and assess the fighting potential or dominance status of rival males either indirectly through territorial scent-marks or during agonistic encounters. Moreover, females of several lizard species “prefer” to establish or spend more time on areas scent-marked by males with compounds signaling a better health or body condition or a higher genetic compatibility, which can have consequences for their mating success and inter-sexual selection processes. We review here recent studies that suggest that the information content of chemosignals of lizards may be reliable because several physiological and endocrine processes would regulate the proportions of chemical compounds available for gland secretions. Because chemosignals are produced by the organism or come from the diet, they should reflect physiological changes, such as different hormonal levels (e.g. testosterone or corticosterone) or different health states (e.g. parasitic infections, immune response), and reflect the quality of the diet of an individual. More importantly, some compounds that may function as chemosignals also have other important functions in the organism (e.g. as antioxidants or regulating the immune system), so there could be trade-offs between allocating these compounds to attending physiological needs or to produce costly sexual “chemical ornaments”. All these factors may contribute to maintain chemosignals as condition-dependent sexual signals, which can inform conspecifics on the characteristics and state of the sender and allow making behavioral decisions with reproductive consequences. To understand the evolution of chemical secretions of lizards as sexual signals and their relevance in reproduction, future studies should examine what information the signals are carrying, the physiological processes that can maintain the reliability of the message and how diverse behavioral responses to chemosignals may influence reproductive success.  相似文献   

2.
The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens.  相似文献   

3.
This article is part of a Special Issue “Chemosignals and Reproduction”.Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran “breeding glands”, 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction.  相似文献   

4.
This article is part of a Special Issue “Chemosignals and Reproduction”.A rich variety of chemosignals have been identified that influence mammalian behaviour, including peptides, proteins and volatiles. Many of these elicit innate effects acting either as pheromones within species or allelochemicals between species. However, even innate pheromonal responses in mammals are not as hard-wired as the original definition of the term would suggest. Many, if not most mammalian pheromonal responses are only elicited in certain behavioural or physiological contexts. Furthermore, certain pheromones are themselves rewarding and act as unconditioned stimuli to link non-pheromonal stimuli to the pheromonal response, via associative learning. The medial amygdala, has emerged as a potential site for this convergence by which learned chemosensory input is able to gain control over innately-driven output circuits. The medial amygdala is also an important site for associating social chemosensory information that enables recognition of conspecifics and heterospecifics by association of their complex chemosensory signatures both within and across olfactory chemosensory systems. Learning can also influence pheromonal responses more directly to adapt them to changing physiological and behavioural context. Neuromodulators such as noradrenaline and oxytocin can plasticise neural circuits to gate transmission of chemosensory information. More recent evidence points to a role for neurogenesis in this adaptation, both at the peripheral level of the sensory neurons and via the incorporation of new neurons into existing olfactory bulb circuits. The emerging picture is of integrated and flexible responses to chemosignals that adapt them to the environmental and physiological context in which they occur.  相似文献   

5.
6.
Pheromones mediate social interactions among individuals in a wide variety of species, from yeast to mammals. In social insects such as honey bees, pheromone communication systems can be extraordinarily complex and serve to coordinate behaviors among many individuals. One of the primary mediators of social behavior and organization in honey bee colonies is queen pheromone, which is produced by multiple glands. The types and quantities of chemicals produced differ significantly between virgin and mated queens, and recent studies have suggested that, in newly mated queens, insemination volume or quantity can affect pheromone production. Here, we examine the long-term impact of different factors involved during queen insemination on the chemical composition of the mandibular and Dufour''s glands, two of the major sources of queen pheromone. Our results demonstrate that carbon dioxide (an anesthetic used in instrumental insemination), physical manipulation of genital tract (presumably mimicking the act of copulation), insemination substance (saline vs. semen), and insemination volume (1 vs. 8 µl) all have long-term effects on mandibular gland chemical profiles. In contrast, Dufour''s gland chemical profiles were changed only upon insemination and were not influenced by exposure to carbon dioxide, manipulation, insemination substance or volume. These results suggest that the chemical contents of these two glands are regulated by different neuro-physiological mechanisms. Furthermore, workers responded differently to the different mandibular gland extracts in a choice assay. Although these studies must be validated in naturally mated queens of varying mating quality, our results suggest that while the chemical composition of Dufour''s gland is associated with mating status, that of the mandibular glands is associated with both mating status and insemination success. Thus, the queen appears to be signaling both status and reproductive quality to the workers, which may impact worker behavior and physiology as well as social organization and productivity of the colony.  相似文献   

7.
In this restricted review of the literature on libido and mating behavior in bulls, boars and rams it is assumed that libido and mating ability are important traits which can affect production significantly in food and fibre producing animals. These traits are strongly influenced by genetic factors, they vary widely in their expression among individuals and they can be reliably assessed or measured. Rearing young post-puberal males in all-bachelor groups can delay or inhibit the subsequent expression of heterosexual mating behavior. In the species reviewed, females adopt the major role in seeking sexual partners. Visual cues are of greater importance than olfactory cues in eliciting male sexual response. Bulls and rams rend to distribute their services among receptive females within their genetic limitations with females newly in estrus being most attractive to the males. Social interactions among males in multi-sire groups can markedly influence the reproductive performance of both individual males and the female herd or flock. Single sire breeding, while potentially more efficient than multi-sire breeding, is dependent upon the reproductive capabilities of the sire. Proper assessment of factors such as libido and mating ability before breeding can greatly reduce the possibility of poor reproductive performance from single sires.  相似文献   

8.
Social–chemical recognition is exhibited by all the Liolaemus lizards tested to date, except Liolaemus fitzgeraldi, which during post-hibernation did not discriminate chemosignals of same-sex individuals from a control. To clarify if L. fitzgeraldi is unique among the studied Liolaemus in lacking social–chemical recognition or if this was previously undetected, we recorded behavior during pre- and post-hibernation when confronted with chemosignals of conspecifics and from themselves. L fitzgeraldi showed self-recognition and seasonal changes in two exploratory behaviors. Potentially, conspecific recognition in L fitzgeraldi was undetected due to seasonality, but this species may rely comparatively less on chemical communication than congeners.  相似文献   

9.
Chemical communication mediates social interactions in insects. For the fruit fly, D. melanogaster, the chemical display is a key fitness trait because it leads to mating. An exchange of cues that resembles a dialogue between males and females is enacted by pheromones, chemical signals that pass between individual flies to alter physiology and behavior. Chemical signals also affect the timing of locomotor activity and sleep. We investigated genetic and environmental determinants of chemical communication. To evaluate the role of the social environment, we extracted a chemical blend from individual males selected from groups composed of one genotype and compared these extracts to those from groups of mixed genotypes. To evaluate the role of the physical environment, these comparisons were performed under a light-dark cycle or in constant darkness. Here, we show that chemical signaling is affected by the social environment, light-dark cycle, and genotype as well as the complex interplay of these variables. Gene-by-environment interactions produce highly significant effects on chemical signaling. We also examined individual responses within the groups. Strikingly, the response of one wild-type fly to another is modulated by the genotypic composition of his neighbors. Chemical signaling in D. melanogaster may be a "fickle" trait that depends on the individual's social background.  相似文献   

10.
Sexual communication can contribute to population divergence and speciation because of its effect on assortative mating. We examined the role of communication in assortative mating in the Enchenopa binotata species complex of treehoppers. These plant-feeding insects are a well studied case of sympatric speciation resulting from shifts to novel host-plant species. Shifting to hosts with different phenologies causes changes in life-history timing. In concert with high host fidelity, these changes reduce gene flow between populations on ancestral and novel hosts and facilitate a rapid response to divergent natural selection. However, some interbreeding can still occur because of partial overlap of mating periods. Additional behavioral mechanisms resulting in reproductive isolation may thus be important for divergence. In E. binotata, mating pairs form after an exchange of plant-borne vibrational signals. We used playback experiments to examine the relevance of inter- and intraspecific variation in male advertisement signals for female mate choice in a member of the E. binotata species complex. Female signals given in response to male signals provided a simple and reliable assay. Male species and male individual identity were important determinants of female responses. Females failed to respond to the signals of the two most closely related species in the complex, but they responded strongly to the signals of conspecific males, as well as to those of the most basal species in the complex. Communication systems in the E. binotata species complex can therefore play a role in reproductive isolation. Female responses were influenced by among-individual variation in male signals and females, suggesting the involvement of sexual selection in the evolution of these communication systems.  相似文献   

11.
After mating, females may experience a decline in sexual receptivity and attractiveness that may be associated with changes in the production and emission of sex pheromones. In some cases, these changes are produced by chemical substances or structures (e.g., mating plugs) produced by males as a strategy to avoid or reduce sperm competition. In scorpions, sex pheromones may be involved in finding potential mates and starting courtship. Here, we tested the hypothesis that the males of Urophonius brachycentrus, a species that produces a mating plug, use chemical communication (sex pheromones) to detect, localize, and discriminate females according to their mating status (virgin or inseminated), aided by chemical signaling. We also explored the effect of extracting of the mating plug on chemical communication and mating acceptance. We used Y‐maze olfactometers with different stimuli to analyze male choice and exploration time. To evaluate mating acceptance, we measured the attractiveness and receptivity of females of different mating status. We found that chemical communication occurs through volatile pheromones, but not contact pheromones. Males equally preferred sites with virgin or inseminated females with removed mating plug. In turn, females with these mating statuses were more attractive and receptive for males than inseminated females. This study suggests that the mating plug significantly affects female chemical attractiveness with an effect on volatile pheromones and decreasing sexual mating acceptance of females. The decline in the female's sexual receptivity is a complex process that may respond to several non‐exclusive mechanisms imposed by males and strategically modulated by females.  相似文献   

12.
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  相似文献   

13.
陈博  文乐雷  赵菊鹏  梁宏合  陈建  焦晓国 《生态学报》2017,37(11):3932-3938
越来越多的研究发现,雄性产生精子(精液)也需付出代价。雄性除了依据配偶质量和竞争对手的竞争强度适应性调整生殖投入外,雄性在求偶和交配行为上也相应产生适应性反应,求偶和交配行为具有可塑性。目前雄性求偶和交配行为可塑性研究主要集中于雌性多次交配的类群中,在雌性单次交配的类群中研究甚少。以雌蛛一生只交配一次而雄蛛可多次交配的星豹蛛为研究对象,比较:(1)前一雄性拖丝上信息物质对后续雄蛛求偶和交配行为的影响,(2)雌雄不同性比对雄蛛求偶和交配行为的影响。研究结果表明,星豹蛛前一雄蛛拖丝上的信息物质对后续雄蛛求偶潜伏期、求偶持续时间和交配持续时间都没有显著影响,但前一雄蛛拖丝上的信息物质对后续雄蛛求偶强度有显著抑制作用。同时,性比对星豹蛛雄蛛求偶和交配行为都没有显著影响。可见,星豹蛛雄蛛对同种雄性拖丝上的化学信息可产生求偶行为的适应性调整,而对性比不产生适应性反应。  相似文献   

14.
Mammalian chemosignals—or scent marks—are characterized by astounding chemical diversity, reflecting both complex biochemical pathways that produce them and rich information exchange with conspecifics. The microbiome of scent glands was thought to play prominent role in the chemical signal synthesis, with diverse microbiota metabolizing glandular products to produce odorants that may be used as chemosignals. Here, we use gas chromatography–mass spectrometry and metagenomic shotgun sequencing to explore this phenomenon in the anogenital gland secretions (AGS) of the giant panda (Ailuropoda melanoleuca). We find that this gland contains a diverse community of fermentative bacteria with enzymes that support metabolic pathways (e.g., lipid degradation) for the productions of volatile odorants specialized for chemical communication. We found quantitative and qualitative differences in the microbiota between AGS and digestive tract, a finding which was mirrored by differences among chemical compounds that could be used for olfactory communication. Volatile chemical compounds were more diverse and abundant in AGS than fecal samples, and our evidence suggests that metabolic pathways have been specialized for the synthesis of chemosignals for communication. The panda’s microbiome is rich with genes coding for enzymes that participate in the fermentation pathways producing chemical compounds commonly deployed in mammalian chemosignals. These findings illuminate the poorly understood phenomena involved in the role of symbiotic bacteria in the production of chemosignals.Subject terms: Zoology, Microbial ecology  相似文献   

15.
Conflict between the sexes over reproductive interests can drive rapid evolution of reproductive traits and promote speciation. Here we show that inter-species mating between Caenorhabditis nematodes sterilizes maternal individuals. The principal effectors of male-induced harm are sperm cells, which induce sterility and shorten lifespan by displacing conspecific sperm, invading the ovary, and sometimes breaching the gonad to infiltrate other tissues. This sperm-mediated harm is pervasive across species, but idiosyncrasies in its magnitude implicate both independent histories of sexually antagonistic coevolution within species and differences in reproductive mode (self-fertilizing hermaphrodites versus females) in determining its severity. Consistent with this conclusion, in androdioecious species the hermaphrodites are more vulnerable, the males more benign, or both. Patterns of assortative mating and a low incidence of invasive sperm occurring with conspecific mating are indicative of ongoing intra-specific sexual conflict that results in inter-species reproductive incompatibility.  相似文献   

16.
Entomopathogenic nematodes are lethal insect parasites that reproduce exclusively inside their hosts in nature. Infection decisions made by the free-living infective-stage juveniles have an impact on reproductive success, but it is likely that mating decisions are made by adults while inside their host. We investigated sexual communication between male and female adult stages of Steinernema carpocapsae (Rhabditida: Steinernematidae) to assess whether mating is chemically mediated during the adult stage or results from incidental encounters between adults inside the insect host. To assess chemical communication, we measured the behavioral response of adult male S. carpocapsae to several different potential sources of chemical information. Male S. carpocapsae responded to virgin females only and were not influenced by mated conspecific females, conspecific males, or heterospecific females. These results show that species-specific communication takes place between adult entomopathogenic nematodes within the host cadaver just prior to mating.  相似文献   

17.
This article is part of a Special Issue (Chemosignals and Reproduction).As highly visual animals, primates, in general, and Old World species (including humans), in particular, are not immediately recognized for reliance in their daily interactions on olfactory communication. Nevertheless, views on primate olfactory acuity and the pervasiveness of their scent signaling are changing, with increased appreciation for the important role of body odors in primate social and sexual behavior. All major taxonomic groups, from lemurs to humans, are endowed with scent-producing organs, and either deposit or exude a wealth of volatile compounds, many of which are known semiochemicals. This review takes a comparative perspective to illustrate the reproductive context of primate signaling, the relevant information content of their signals, the sexually differentiated investigative responses generated, and the behavioral or physiological consequences of message transmission to both signaler and receiver. Throughout, humans are placed alongside their relatives to illustrate the evolutionary continuum in the sexual selection of primate chemosignals. This ever-growing body of evidence points to a critical role of scent in guiding the social behavior and reproductive function throughout the primate order.  相似文献   

18.
Stressors that are chronic have clear suppressive effects on reproductive behaviors in both males and females. Stressors that are acute have effects on reproductive behavior that are less clear. We measured the effects of an acute bout of handling in laboratory-housed male and female Ocoee salamanders (Desmognathus ocoee), a species with a prolonged mating season. Handling resulted in decreased locomotory activity and elevated plasma corticosterone, a hallmark of the vertebrate stress response. Handling also decreased plasma testosterone in males and elevated plasma estradiol in females. Despite the handling-induced changes in hormone levels, handling had minimal impact on courtship and mating. Other species in which reproduction is insensitive to acute stressors may live in extreme environments with limited reproductive opportunities, whereas Ocoee salamanders live in a relatively temperate environment with multiple reproductive opportunities. Together, these data indicate that an allostatic response to a stressor can alter locomotory activity and elevate corticosterone without suppressing nonessential behaviors like courtship and mating in a species in which reproductive opportunities can occur over a period of multiple months. The lack of reproductive suppression in Ocoee salamanders might be due to the low energetic cost of courtship and mating in this species combined with potentially elevated energetic stores, highlighting the importance of considering energy budgets when making predictions about behavioral effects of acute stressors.  相似文献   

19.
Communication is in phytophagous stink bugs of the subfamily Pentatominae related to mating behavior that among others includes location and recognition of the partner during calling and courting. Differences in temporal and frequency parameters of vibratory signals contributes to species reproductive isolation. Chinavia impicticornis and C. ubica are two green Neotropical stink bugs that live and mate on the same host plants. We tested the hypothesis that differences in temporal and spectral characteristics of both species vibratory signals enable their recognition to that extent that it interrupts further interspecific communication and copulation. To confirm or reject this hypothesis we monitored both species mating behaviour and recorded their vibratory songs on the non-resonant loudspeaker membranes and on the plant. The level of interspecific vibratory communication was tested also by playback experiments. Reproductive behavior and vibratory communication show similar patterns in both Chinavia species. Differences observed in temporal and spectral characteristics of female and male signals enable species discrimination by PCA analyses. Insects that respond to heterospecific vibratory signals do not step forward to behaviors leading to copulation. Results suggest that species isolation takes place in both investigated Chinavia species at an early stage of mating behavior reducing reproductive interference and the probability of heterospecific mating.  相似文献   

20.
夏继刚  张嫱  刘香  张宁 《生态学报》2021,41(15):6083-6090
化学预警信息(Chemical alarm cue,CAC)在鱼类捕食者-猎物关系中发挥重要作用,并与二者生存适合度密切关联。繁殖期鱼类的繁殖生理投入和化学预警响应均具有较高的能量需求,因而可能存在某种程度上的生存-繁殖的权衡(Trade-off)。选取高体鳑鲏(Rhodeus ocellatus,卵生,繁殖投入较低)、斑马鱼(Danio rerio,卵生,繁殖投入较高)、孔雀鱼(Poecilia reticulata,卵胎生,繁殖投入较高)和皮球鱼(Poecilia latipinna,卵胎生,繁殖投入很高)等繁殖方式各异、能量投入不同的4种淡水鱼类为实验对象,测定了繁殖IV期实验鱼对不同浓度的化学预警信息(Damage-released chemical alarm cues,DCAC)的行为响应模式,并探究了4种实验鱼的化学预警响应与其性腺指数(Gonadosomatic index,GSI)的关联。结果表明:(1)DCAC对4种实验鱼的空间分布、活跃状态、逃逸行为等大部分化学预警响应参数均有不同程度的影响(P<0.05);(2)4种实验鱼GSI与其化学预警响应参数的变化无显著相关性(P>0.05)(除高浓度DCAC处理组皮球鱼GSI与底栖时间的变化负相关外)。研究回答了长期以来有关繁殖期鱼类化学预警通讯是否缺失的问题,证实了繁殖期不同繁殖生理投入/繁殖对策的4种淡水鱼类均有显著的化学预警响应,提示鱼类GSI与其化学预警响应程度通常不相关(仅高风险环境下繁殖生理投入很高的物种中可能呈现负相关)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号