首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters and for simultaneous removal of sulfide or thiosulfate and nitrate. A suspended culture of sulfur-utilizing denitrifying bacteria was fast and efficiently established by bio-augmentation of activated sludge with Thiobacillus denitrificans. The stoichiometry of the process and the key factors, i.e. N/S ratio, that enable combined sulfide and nitrogen removal, were determined. An optimum N/S ratio of 1 (100% nitrate removal without nitrite formation and low thiosulfate concentrations in the effluent) has been obtained during reactor operation with thiosulfate at a nitrate loading rate (NLR) of 17.18 mmol N L(-1) d(-1). Complete nitrate and sulfide removal was achieved during reactor operation with sulfide at a NLR of 7.96 mmol N L(-1) d(-1) and at N/S ratio between 0.8 and 0.9, with oxidation of sulfide to sulfate. Complete nitrate removal while working at nitrate limiting conditions could be achieved by sulfide oxidation with low amounts of oxygen present in the influent, which kept the sulfide concentration below inhibitory levels.  相似文献   

2.
A significant amount of nitrous oxide (N(2)O), which is one of the serious greenhouse gases, is emitted from nitrification and denitrification of wastewater. Batch wastewater nitrifications with enriched nitrifiers were carried out under oxygen-limited condition with synthetic (without organic carbon) and real wastewater (with organic carbon) in order to find out the effect of ammonium concentration on N(2)O emission. Cumulated N(2)O-N emission reached 3.0, 5.7, 6.2, and 13.5 mg from 0.4 l of the synthetic wastewater with 50, 100, 200, and 500 mg/l NH(4)(+)-N, respectively, and 1.0 mg from the real wastewater with 125 mg/l NH(4)(+)-N. The results indicate that N(2)O emission increased with ammonium concentration and the load. The ammonium removal rate and nitrite concentration also increased N(2)O emission. Comparative analysis of N(2)O emission from synthetic and real wastewaters revealed that wastewater nitrification under oxygen-limited condition emitted more N(2)O than that of heterotrophic denitrification. Summarizing the results, it can be concluded that denitrification by autotrophic nitrifiers contributes significantly to the N(2)O emission from wastewater nitrification.  相似文献   

3.
Ambient nitrous oxide (N(2)O) emissions from Great Boiling Spring (GBS) in the US Great Basin depended on temperature, with the highest flux, 67.8 ± 2.6 μmol N(2)O-N m(-2) day(-1) , occurring in the large source pool at 82 °C. This rate of N(2)O production contrasted with negligible production from nearby soils and was similar to rates from soils and sediments impacted with agricultural fertilizers. To investigate the source of N(2)O, a variety of approaches were used to enrich and isolate heterotrophic micro-organisms, and isolates were screened for nitrate reduction ability. Nitrate-respiring isolates were identified by 16S rRNA gene sequencing as Thermus thermophilus (31 isolates) and T. oshimai (three isolates). All isolates reduced nitrate to N(2)O but not to dinitrogen and were unable to grow with N(2)O as a terminal electron acceptor. Representative T. thermophilus and T. oshimai strains contained genes with 96-98% and 93% DNA identity, respectively, to the nitrate reductase catalytic subunit gene (narG) of T. thermophilus HB8. These data implicate T. thermophilus and T. oshimai in high flux of N(2)O in GBS and raise questions about the genetic basis of the incomplete denitrification pathway in these organisms and on the fate of biogenic N(2)O in geothermal environments.  相似文献   

4.
An activated sludge model for greenhouse gases no. 1 was calibrated with data from a wastewater treatment plant (WWTP) without control systems and validated with data from three similar plants equipped with control systems. Special about the calibration/validation approach adopted in this paper is that the data are obtained from simulations with a mathematical model that is widely accepted to describe effluent quality and operating costs of actual WWTPs, the Benchmark Simulation Model No. 2 (BSM2). The calibration also aimed at fitting the model to typical observed nitrous oxide (N2O) emission data, i.e., a yearly average of 0.5 % of the influent total nitrogen load emitted as N2O-N. Model validation was performed by challenging the model in configurations with different control strategies. The kinetic term describing the dissolved oxygen effect on the denitrification by ammonia-oxidizing bacteria (AOB) was modified into a Haldane term. Both original and Haldane-modified models passed calibration and validation. Even though their yearly averaged values were similar, the two models presented different dynamic N2O emissions under cold temperature conditions and control. Therefore, data collected in such situations can potentially permit model discrimination. Observed seasonal trends in N2O emissions are simulated well with both original and Haldane-modified models. A mechanistic explanation based on the temperature-dependent interaction between heterotrophic and autotrophic N2O pathways was provided. Finally, while adding the AOB denitrification pathway to a model with only heterotrophic N2O production showed little impact on effluent quality and operating cost criteria, it clearly affected N2O emission productions.  相似文献   

5.
Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO??) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N?O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O?) is associated with N?O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N?O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N?O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N?O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N?O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.  相似文献   

6.
A hydrogenotrophic denitrification system was evaluated in removing nitrate from synthetic aquaculture wastewater for recirculation purposes. Two membrane bioreactor (MBR) systems, namely, aeration–denitrification system (ADS) and denitrification–aeration system (DAS) were studied with 50 mg/L of influent concentrations for both organic matter and nitrate nitrogen. The DAS achieved better removal efficiency of 91.4% total nitrogen (T-N) and denitrification rate of 363.7 mg/L.day at a HRT of 3 h compared to ADS. Further, there was no nitrite accumulation in the DAS effluent. The nitrite accumulation in ADS effluent was lesser when CO2 was used as buffer rather than K2HPO4 and KH2PO4. Estimation of kinetic parameters of hydrogenotrophic bacteria indicated lesser sludge production compared to heterotrophic denitrification. In the DAS, membrane fouling was nonexistent in the aeration reactor that was used to produce the recirculating effluent. On the contrary, membrane fouling was observed in the denitrification reactor that supplied hydrogen to the mixed liquor. Thus, this study demonstrated DAS capability in maintaining the acceptable water quality appropriate for aquaculture, in which a closed recirculating system is typically used.  相似文献   

7.
The denitrification capacity of different phylogenetic bacterial groups was investigated on addition of different substrates in activated sludge from two nutrient-removal plants. Nitrate/nitrite consumption rates (CRs) were calculated from nitrate and nitrite biosensor, in situ measurements. The nitrate/nitrite CRs depended on the substrate added, and acetate alone or combined with other substrates yielded the highest rates (3-6 mg N gVSS(-1) h(-1)). The nitrate CRs were similar to the nitrite CRs for most substrates tested. The structure of the active denitrifying population was investigated using heterotrophic CO2 microautoradiography (HetCO2-MAR) and FISH. Probe-defined denitrifiers appeared as specialized substrate utilizers despite acetate being preferentially used by most of them. Azoarcus and Accumulibacter abundance in the two different sludges was related to differences in their substrate-specific nitrate/nitrite CRs. Aquaspirillum-related bacteria were the most abundant potential denitrifiers (c. 20% of biovolume); however, Accumulibacter (3-7%) and Azoarcus (2-13%) may have primarily driven denitrification by utilizing pyruvate, ethanol, and acetate. Activated sludge denitrification was potentially conducted by a diverse, versatile population including not only Betaproteobacteria (Aquaspirillum, Thauera, Accumulibacter, and Azoarcus) but also some Alphaproteobacteria and Gammaproteobacteria, as indicated by the assimilation of 14CO2 by these probe-defined groups with a complex substrate mixture as an electron donor and nitrite as an electron acceptor in HetCO2-MAR-FISH tests.  相似文献   

8.
A laboratory investigation has been undertaken to asses the effects of two operating parameters, mean cell residence time (MCRT) and anoxic hydraulic retention time (HRT), on the performance of an anoxic/oxic activated sludge system. The performance of the system was evaluated in terms of its COD, nitrogen, and biomass characteristics. An activated sludge system is capable of producing a better effluent, in terms of COD and nitrogen characteristics, when it is operated in an anoxic/oxic fashion. A longer MCRT and an adequate anoxic HRT are desirable in the operation of an anoxic/oxic activated sludge system. For the wastewater used in this investigation, the anoxic/oxic unit was capable of producing an effluent with the following characteristics when it was operated at MCRT = 20 days, total system HRT = 10 h, and anoxic HRT = 3-5 h: COD = 15 mg/L; VSS = 10 mg/L; TKN = 1.30 mg/L; NH(3) - N = 0.60 mg/L; and NO(2) + NO(3) - N = 5.0 mg/L. A uniform distribution of biomass is achievable in an anoxic/oxic activated sludge system because of the intensive recirculation/convection maintained. The provision of an anoxic zone in the aeration tank promotes a rapid adsorption of feed COD into the biomass without an immediate utilization for cell synthesis. This, in turn, results in a high microbial activity and a lower observed biomass yield in the system. A tertiary treatment efficiency is achievable in an anoxic/oxic activated sludge system with only secondary treatment operations and costs. A conventional activated sludge system can be easily upgraded by converting to the anoxic/oxic operation with minor process modifications.  相似文献   

9.
A lab-scale sequencing batch reactor fed with real municipal wastewater was used to study nitrous oxide (N(2)O) emissions from simulated wastewater treatment processes. The experiments were performed under four different controlled conditions as follows: (1) fully aerobic, (2) anoxic-aerobic with high dissolved oxygen (DO) concentration, (3) anoxic-aerobic with low DO concentration, and 4) intermittent aeration. The results indicated that N(2)O production can occur from both incomplete nitrification and incomplete denitrification. N(2)O production from denitrification was observed in both aerobic and anoxic phases. However, N(2)O production from aerobic conditions occurred only when both low DO concentrations and high nitrite concentration existed simultaneously. The magnitude of N(2) O produced via anoxic denitrification was lower than via oxic denitrification and required the presence of nitrite. Changes in DO, ammonium, and nitrite concentrations influenced the magnitude of N(2)O production through denitrification. The results also suggested that N(2)O can be produced from incomplete denitrification and then released to the atmosphere during aeration phase due to air stripping. Therefore, biological nitrogen removal systems should be optimized to promote complete nitrification and denitrification to minimize N(2)O emissions.  相似文献   

10.
Polyphosphate accumulation among denitrifying bacteria in activated sludge   总被引:12,自引:0,他引:12  
Jørgensen KS  Pauli AS 《Anaerobe》1995,1(3):161-168
Bacterial polyphosphate accumulation and denitrification are important processes in biological removal of nutrients from wastewater. It has been suggested that phosphorus accumulators are able to denitrify. However, the bacteria known as the most important phosphorus accumulators, belonging to the genus Acinetobacter are generally not known to denitrify. To clarify how commonly both physiological traits are present in the same organism, we screened 165 isolates from activated sludge and wastewater for their ability to denitrify, and the ability of the denitrifying isolates to accumulate polyphosphate. Of the 165 isolates, 149 were from acetate mineral medium (87 of these identified as Acinetobacter by the API 20 NE identification system) and 16 were from nutrient broth and nitrate medium. Only 15 of 165 isolates tested showed true respiratory denitrification activity. In the presence of acetylene they converted more than 80% of 5mM NO3- to N2O in 6 days. None of the Acinetobacter isolates were among the 15 respiratory denitrifiers. The denitrifying isolates were identified as species of Pseudomonas, Agrobacterium, Pasteurella, Sphingomonas or could not be identified by the API 20 NE identification system. According to the BIOLOG identification system the denitrifiers were species of Pseudomonas, Hydrogenophaga, Citrobacter, Xanthomonas or they could not be identified. The ability of confirmed denitrifiers to accumulate phosphate was measured in experiments where cells pregrown under phosphorus limitation were exposed to phosphate (8 mg P/L) under aerobic conditions. The rates of excess phosphate uptake varied from 0.3 to more than 23 mg P/g dry matter/h. Rates for four isolates were higher than those reported for Acinetobacter strains. These results show that polyphosphate accumulation and denitrification in activated sludge can be carried out by the same organisms.  相似文献   

11.
In order to estimate N2O emissions from immersed biofilters during nitrogen removal in tertiary treatments at urban wastewater treatment plants (WWTPs), a fixed culture from the WWTP of “Seine Centre” (Paris conurbation) was subjected to lab-scale batch experiments under various conditions of oxygenation and a gradient of methanol addition. The results show that during nitrification, N2O emissions are positively related to oxygenation (R 2 = 0.99). However, compared to the rates of ammonium oxidation, the percentage of emitted N2O is greater when oxygenation is low (0.5–1 mgO2 L−1), representing up to 1% of the oxidized ammonium (0.4% on average). During denitrification, the N2O emission reaches a significant peak when the quantity of methanol allows denitrification of between 66% and 88%. When methanol concentrations lead to a denitrification of close to 100%, the flows of N2O are much lower and represent on average 0.2% of the reduced nitrate. By considering these results, we can estimate, the emissions of N2O during nitrogen removal, at the “Seine Centre” WWTP, to approximately 38 kgN-N2O day−1.  相似文献   

12.
In this work, both experimental and modeling approaches are used to explore the formation of soluble microbial products (SMP) by activated sludge under anoxic conditions. With substrate consumption, the SMP concentration increases gradually. Utilization associated products (UAP) are the main fraction of SMP when substrate is present; whereas biomass associated products (BAP) are the major content of SMP as substrate is completely consumed. The fraction of the accumulated SMP accounts for 3-4% of initial organic substrate. Three dimensional excitation emission matrix analysis results indicate that the SMP concentration increases in the denitrification process. The accumulation of nitrite up to 22.6 mg/l under anoxic conditions has no significant effect on the SMP formation. With a consideration of SMP formation under anoxic conditions, an ASM3-based denitrification model is developed. The results show that the developed model is able to capture the relationship between the SMP formation and the substrate consumption by activated sludge in the denitrification process.  相似文献   

13.
Nitrous oxide (N 2O), nitric oxide (NO), denitrification losses and NO3 leaching from an irrigated sward were quantified under Mediterranean conditions. The effect of injected pig slurry (IPS) with and without the nitrification inhibitor dicyandiamide (DCD) was evaluated and also compared with that of a surface pig slurry application (SPS) and a control treatment (Control) without fertiliser. After application, fluxes of NO and N 2O peaked from SPS (3.06 mg NO-N m –2 d –1 and 108 mg N 2O-N m –2 d –1) and IPS (3.50 mg NO-N m –2 d –1 and 105 mg N 2O-N m –2 d –1). However, when irrigation was applied, N 2O and NO emissions declined. The total N 2O and denitrification losses were slightly large from IPS than from SPS, although the differences were not significant (P < 0.05). Emission of NO was not affected by the method of pig slurry application. DCD inhibited nitrification during the first 20–30 days and reduced N 2O and NO emissions from pig slurry by at least 46% and 37%, respectively. Considering the 215 days following pig slurry application, the emission factor of N 2O based on N fertiliser was 1.60% (SPS), 2.95% (IPS), and 0.50% (IPS + DCD). The emission factor for NO was 0.14% (SPS), 0.12% (IPS), and 0.02% (IPS + DCD). Environmental conditions of the crop favoured the denitrification process as the most important source of N 2O during the experimental period. The differences in the denitrification rate between treatments could be explained by the pattern of water soluble carbon (WSC), that was the highest value in injected pig slurry (with and without DCD). Due to low drainage (5% of water applied), leaching losses of NO3 were lower than those of denitrification from the upper soil layer (0–10 cm) in all treatments and especially with IPS + DCD, where the nitrification inhibitor was very efficient in reducing leaching losses.  相似文献   

14.
Earthworms emit the greenhouse gas nitrous oxide (N2O), and ingested denitrifiers in the gut appear to be the main source of this N2O. The primary goal of this study was to determine if earthworms also emit dinitrogen (N2), the end product of complete denitrification. When [15N]nitrate was injected into the gut, the earthworms Aporrectodea caliginosa and Lumbricus terrestris emitted labeled N2 (and also labeled N2O) under in vivo conditions; emission of N2 by these two earthworms was relatively linear and approximated 1.2 and 6.6 nmol N2 per h per g (fresh weight), respectively. Isolated gut contents also produced [15N]nitrate-derived N2 and N2O under anoxic conditions. N2 is formed by N2O reductase, and acetylene, an inhibitor of this enzyme, inhibited the emission of [15N]nitrate-derived N2 by living earthworms. Standard gas chromatographic analysis demonstrated that the amount of N2O emitted was relatively linear during initial incubation periods and increased in response to acetylene. The calculated rates for the native emissions of N2 (i.e., without added nitrate) by A. caliginosa and L. terrestris were 1.1 and 1.5 nmol N2 per h per g (fresh weight), respectively; these emission rates approximated that of N2O. These collective observations indicate that (i) earthworms emit N2 concomitant with the emission of N2O via the in situ activity of denitrifying bacteria in the gut and (ii) N2O is quantitatively an important denitrification-derived end product under in situ conditions.  相似文献   

15.
Small-scale laboratory research was conducted to compare the effects of different aeration rates and oxic/anoxic phasing on nitrous oxide (N(2)O) formation from dairy manure slurries. Manure slurry samples were incubated in triplicate for three-weeks under a range of continuous sweep gas flows (0.01-0.23Lmin(-1)kg(-1) slurry) with and without oxygen (air and dinitrogen gas). The net release of N(2)O-N was affected by both aeration rates and oxic/anoxic conditions, whereas ammonia volatilization depended mainly on gas flow rates. Maximum N(2)O-N losses after three-weeks incubation were 4.2% of total slurry N. Major N losses (up to 50% of total slurry N) were caused by ammonia volatilization that increased with increasing gas flow rates. The lowest nitrous oxide and ammonia production was observed from low flow phased oxic/anoxic treatment.  相似文献   

16.
Simultaneous nitrification and denitrification (SND) was investigated in the single aeration tank of a municipal wastewater treatment plant. Microelectrode measurements and batch experiments were performed to test for the presence of SND. Microelectrodes recorded the presence of O(2) concentration gradients in individual activated sludge flocs. When the O(2) concentration in the bulk liquid was <45 microM, anoxic zones were detected within flocs with a larger diameter (approximately 3000 microm). The O(2) penetration depth in the floc was found to be dependent on the O(2) concentration in the bulk liquid. Nitrification was restricted to the oxic zones, whereas denitrification occurred mainly in the anoxic zones. The nitrification rate of the activated sludge increased with increasing O(2) concentration in the bulk liquid, up to 40 microM, and remained constant thereafter. SND was observed in the aerated activated sludge when O(2) concentration was in the range of 10 to 35 microM.  相似文献   

17.
This paper presents the integrated removal of carbon (measured as chemical oxygen demand i.e. COD) and NO(x)-N by sequentially adapted sludge, studied in an airlift reactor (ALR). Simultaneous removal of COD and nitrate occurs by denitrification (anoxic) and oxidation (aerobic). Aerobic (riser) and anoxic (remaining part) conditions prevail in different parts of the reactor. Studies were carried out in a 42 L ALR operated at low aeration rate to maintain anoxic and aerobic conditions as required for denitrification and COD removal, respectively. The sludge was adapted sequentially to increasing levels of NO(x)-N and COD over a period of 45 days. Nitrate removal efficiency of the sludge increased due to adaptation and degraded 900 ppm NO(3)-N completely in 2h (initially the sludge could not degrade 100 ppm NO(3)-N). The performance of the adapted sludge was tested for the degradation of synthetic waste with COD/N loadings in the range of 4-10. The reduction of COD was significantly faster in the presence of NO(x)-N and was attributed to the availability of oxygen from NO(x)-N and distinct conditions in the reactor. This hypothesis was justified by the material balance of COD.  相似文献   

18.
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.  相似文献   

19.
A laboratory scale aeration treatment system was built to study the fate of nitrogen during aeration of pig slurry. For each run evaluated, the nitrogen mass balance was determined including measurement of the nitrous oxide gas emissions. Intermittent aeration led to a nitrogen removal of about 53% of the total nitrogen content of the raw slurry. About 18% of the total nitrogen content of the raw slurry was emitted as N2O during aeration with an aerobic to anoxic ratio equal to 0.625. In contrast, the extension of the anoxic period (aerobic to anoxic ratio = 0.375) allowed complete denitrification and avoided N2O emissions.  相似文献   

20.
为了获得异养硝化-好氧反硝化菌株,从养殖池塘污泥中分离筛选到一株具有异养硝化-好氧反硝化能力的酵母菌,命名为DW-1。经形态学观察和26S rDNA序列分析后鉴定为皱褶念珠菌DW-1(Diutina rugosa DW-1)。以氨氮为唯一氮源,初步探讨了碳源、C/N、初始pH值、培养温度、摇床转速对菌株DW-1除氮性能的影响。结果表明,在以乙酸钠为唯一碳源,C/N为25,pH为6.0、适宜培养温度为32℃、转速为170 r/min的条件下,菌株DW-1氨氮降解率和总氮去除率分别为94.94%、48.69%,而整个过程中亚硝氮积累量仅为0.067 mg/L。皱褶念珠菌DW-1的异养硝化-好氧反硝化特性表明其在降解含氮废水方面具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号