首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work evaluates the pretreatment of sugarcane bagasse combining supercritical carbon dioxide (SC-CO2) and ultrasound to enhance the enzymatic hydrolysis of pretreated bagasse. In a first step the influence of process variables on the SC-CO2 pretreatment to enhance the enzymatic hydrolysis was evaluated by mean of a Plackett–Burmann design. Then, the sequential treatment combining ultrasound + SC-CO2 was evaluated. Results show that treatment using SC-CO2 increased the amount of fermentable sugar obtained of about 280% compared with the non-treated bagasse, leading to a hydrolysis efficiency (based on the amount of cellulose) as high as 74.2%. Combining ultrasound + SC-CO2 treatment increased about 16% the amount of fermentable sugar obtained by enzymatic hydrolysis in comparison with the treatment using only ultrasound. From the results presented in this work it can be concluded that the combined ultrasound + SC-CO2 treatment is an efficient and promising alternative to carry out the pretreatment of lignocellulosic feedstock at relatively low temperatures without the use of hazardous solvents.  相似文献   

2.
《农业工程》2014,34(1):66-71
Burned and unburned mineral soils (0–10 cm) from a 40-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at different temperatures (25 °C and 35 °C) and humidity [25%, 50%, and 75% of water holding capacity (WHC)] conditions. Carbon (C) mineralization of all soils was determined using CO2 respiration method. The results showed that CO2 evolution rates of the burned and control soils exhibited similar temporal patterns, and similar responses to temperature and moisture. CO2 evolution rates for all soil samples decreased with incubation time. At different humidity conditions, average rate of C mineralization and cumulative mineralized C from burned and control soils were significantly higher at 35 °C than at 25 °C. This implied that C mineralization was less sensitive to soil moisture than to temperature. In both soils at 25 °C or 35 °C, the amount of soil evolved CO2 over the 90 days incubation increased with increasing moisture content from 25% to 75% WHC. A temperature coefficient (Q10) varied with soil moisture contents. The maximum values recorded for Q10 were 1.7 in control soil and 1.6 in burned soil both at 25% WHC. However, there were no significant differences in Q10 values between the control and burned soils over all moisture ranges (P > 0.05). The data of cumulative C–CO2 released from control and burned soils were fitted to two different kinetic models. The two simultaneous reactions model described mineralization better than the first-order exponential model, which reflected the heterogeneity of substrate quality. Based on these results, it is possible to conclude that temperature and moisture are important in the controls of C mineralization, and the combined effects of these variables need to be considered to understand and predict the response of CO2 release in subtropical ecosystems to climate change.  相似文献   

3.
Partial hydrolysis catalyzed by phospholipase A1 (Lecitase Ultra) in a solvent free system was firstly used to produce diacylglycerols (DAGs)-enriched soybean oil. In this study, five reaction parameters namely agitation speed (100–500 rpm), reaction time (2–10 h), water content (10–50 wt% of oil mass), enzyme load (5–40 U/g of oil mass), and reaction temperature (30–70 °C) were investigated. The reaction was up-scaled to 1 kg of soybean oil at 40 °C of reaction temperature, with 300 rpm of agitation speed, 40 wt% of water content, 6 h of reaction time and 22 U/g of enzyme load. Purification by molecular distillation yielded 70% DAG-enriched oil with 42.64 wt% of DAG. The composition of acylglycerols of soybean oil and the DAG-enriched soybean oil was analyzed and identified by high performance liquid chromatography (HPLC) and HPLC/electrospray ionization/mass spectrometer. The released fatty acid from the partial hydrolysis of soybean oil catalyzed by phospholipase A1 showed a higher saturated fatty acid content than that of the raw material. Compared to the lipase catalyzed process, this new phospholipase A1 catalyzed one showed the advantages of low amount production of byproduct, namely, monoacylglycerols.  相似文献   

4.
Co-composting of sewage sludge and animal fat mixtures was studied in order to determine the possibility of using this technology to recycle fat-enriched wastes. A maximum fat content of 30% in fat:sludge mixtures is recommended to achieve the international sanitation requirements on compost quality and to avoid an excessive thermophilic composting time. Under these conditions a fat content reduction of 85% was achieved. Biological activity was highly dependent on the moisture content as shown by the respiratory quotient values. Moisture content is a critical control factor because of the hydrophobic nature of fats and should be maintained above 40% in the composting of fats. Biological indices of the compost obtained after 69 days of process (maturity grade: IV; respiration index: 1.1 mg O2 g OM−1 h−1) indicated a high stability and maturity degree of the material. Lipases responsible for fat hydrolysis were monitored during the composting process and a sample from the thermophilic period was characterized in terms of stability in front of pH and temperature. Optimal conditions for lipase stability were found at 38.3 °C and pH 7.97, however, the maximum lipolytic activity was observed at thermophilic temperatures. Lipases from the thermophilic period were purified by anion exchange chromatography and visualised by SDS-PAGE. Two major bands were observed at molecular weights of 29 and 62 kDa. These bands could not be identified precisely by N-terminal sequence analysis.  相似文献   

5.
Esterification of glycerol and oleic acid catalyzed by lipase Candida sp. 99-125 was carried out to synthesize monoglyceride (MAG) and diglyceride (DAG) in solvent-free system. Beta-cyclodextrin as an assistant was mixed with the lipase powder. Six reaction variables, initial water content (0–14 wt% of the substrate mass), the glycerol/oleic acid molar ratio (1:1–6:1), catalyst load (3–15 wt% of the substrate mass), reaction temperature (30–60 °C), agitator speed (130–250 r/min) and beta-cyclodextrin/lipase mass ratio (0–2) were optimized. The optimal conditions to the synthesis of MAG and DAG were different: the optimal glycerol/oleic acid molar ratio, beta-cyclodextrin/lipase mass ratio, catalyst load and reaction temperature were 6:1, 0, 5%, 50 °C for MAG, and 5:1, 1.5, 10%, 40 °C for DAG, respectively. The optimal water content and agitator speed for both MAG and DAG were 10% and 190 r/min, respectively. Under the optimal conditions, 49.6% MAG and 54.3% DAG were obtained after 8 h and 4 h, respectively, and the maximum of 81.4% MAG plus DAG (28.1% MAG and 53.3% DAG) was obtained after 2 h under the DAG optimal condition. Above 90% purity of MAG and DAG can be obtained by silica column separation.  相似文献   

6.
Soil respiration is the main form of carbon flux from soil to atmosphere in the global carbon cycle. The effect of temperature on soil respiration rate is important in evaluating the potential feedback of soil organic carbon to global warming. We incubated soils from the alpine meadow zone and upper rocky zone along an altitudinal gradient (4400–5500 m a.s.l.) on the Tibetan Plateau under various temperature and soil moisture conditions. We evaluated the potential effects of temperature and soil moisture on soil respiration and its variation across altitudes. Soil respiration rates increased as the temperature increased. At 60% of soil water content, they averaged 0.21–5.33 μmol g soil−1 day−1 in the alpine meadow zone and 0.11–0.50 μmol g soil−1 day−1 in the rocky zone over the experimental temperature range. Soil respiration rates in the rocky zone did not increase between 25 and 35 °C, probably because of heat stress. Rates of decomposition of organic matter were high in the rocky zone, where the CN ratio was smaller than in the middle altitudes. Soil respiration rates also increased with increasing soil water content from 10% to 80% at 15 °C, averaging 0.04–2.00 μmol g soil−1 day−1 in the alpine meadow zone and 0.03–0.35 μmol g soil−1 day−1 in the rocky zone. Maximum respiration rates were obtained in the middle part of the alpine slope in any case of experimental temperature and soil moisture. The change patterns in soil respiration rate along altitude showed similar change pattern in soil carbon content. Although the altitude is a variable including various environmental factors, it might be used as a surrogate parameter of soil carbon content in alpine zone. Results suggest that temperature, soil moisture and altitude are used as appropriate environmental indicators for estimating the spatial distribution of potential soil respiration in alpine zone.  相似文献   

7.
《Process Biochemistry》2010,45(10):1730-1737
An aerobic xylanolytic Gracilibacillus sp. TSCPVG growing at moderate to extreme salinity (1–30%) and neutral to alkaline pH (6.5–10.5) was isolated from the salt fields near Sambhar district of Rajasthan, India. β-xylanase (18.44 U/ml) and β-xylosidase (1.01 U/ml) were produced in 60 h in the GSL-2 mineral base medium with additions of (in g/l) Birchwood xylan (7.5), yeast extract (10.0), tryptone (8.0), proline (2.0), thiamine (2.0), Tween-40 (2.0) and NaCl (35) at pH 7.5, 30 °C and 180 rpm. The β-xylanase was active within a broad salinity range (0–30% NaCl), pH (5.0–10.5) and temperature (50–70 °C). It exhibited maximal activity with 3.5% NaCl, pH 7.5 at 60 °C. It was extremely halotolerant retaining more than 80% of activity at 0 and 30% NaCl and alkali-tolerant retaining 76% of activity at pH 10.5. The acetone precipitated xylanase was highly stable (100%) at variable salinities of 0–30% NaCl, pH of 5.0–10.5 and temperatures of 0–60 °C for 48 h. HPLC analysis showed xylose, arabinose and xylooligosaccharides as hydrolysis products of xylan. This is the first report on hemi-cellulose degrading halo-alkali-thermotolerant enzyme from a moderately halophilic Gram-positive Gracilibacillus species.  相似文献   

8.
《Process Biochemistry》2010,45(6):986-992
The study was carried out to immobilise the acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon (MAC400) for the application of hydrolysis of olive oil. MAC400 was prepared from rice husk by the two stages process. P. gessardii was isolated from the beef tallow acclimatised soil. The acidic lipase (ALIP) was produced from a slaughterhouse waste, namely beef tallow as a substrate and immobilised onto MAC400. The maximum immobilisation capacity of the MAC400 was 3570 U/g at optimum immobilisation conditions; time (180 min), pH (5.0) and temperature (30 °C). The immobilised lipase had better thermal stability and reusability than the free lipase. The immobilisation of ALIP onto MAC400 (MAC400–ALIP) followed pseudo-first-order rate kinetics with rate constant 0.012/min. The Michaelis–Menten constant of MAC400–ALIP was lower than that of the ALIP, which confirmed the higher affinity between enzyme and substrate. The immobilization of acidic lipase onto MAC400 was confirmed by Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern analysis. Reusability study of MAC400–ALIP on olive oil hydrolysis showed 82% of hydrolysis up to 13 runs and 50% of hydrolysis up to 35 cycles of reuse. This work concludes that the acidic lipase immobilised mesoporous activated carbon matrix can be considered as a potential biocatalyst for the hydrolysis of olive oil. Thus, the enzyme immobilised matrix has potential industrial applications.”  相似文献   

9.
Deoxynivalenol (DON) is a common mycotoxin contaminating corn and wheat and conjugated forms are also present. Recent studies have suggested that current analytical methods for DON analysis in feedstuffs do not detect conjugated forms in the absence of hydrolysis. The aim of the current study, therefore, was to determine the optimal conditions in which conjugated DON in corn and wheat can be hydrolyzed by trifluoromethanesulfonic acid (TFMSA). The optimal hydrolysis procedure was determined based on reaction duration, reaction temperature and TFMSA concentration. Total DON concentrations were determined using ELISA with free DON concentrations determined by ELISA and GC–MS. The optimal hydrolysis conditions for determination of conjugated DON in corn were found to be 0.5 M TFMSA incubated for 20 min at 22 °C. Optimal conditions for wheat samples were 0.5 M TFMSA incubated for 40 min at 40 °C. Using these optimal hydrolysis conditions, 10 corn samples and 10 wheat samples were analyzed to determine the presence of conjugated DON. All samples contained conjugated DON with an increase of 8–70% for DON in corn following hydrolysis and an increase of 7–75% for DON in wheat. This hydrolysis procedure will aid in the accurate determination of total DON and conjugated DON in feedstuffs.  相似文献   

10.
This work aimed to assess the effect of sub-/super-critical CO2 on the structure and activity of Candida rugosa Lip7 (CRL7) in its solution form. The structure was examined by SDS-PAGE gel electrophoresis, circular dichroism (CD) and fluorescence spectra photometry. Results revealed that the primary structure remained intact after sub-/super-critical CO2 treatment, and the secondary structure altered at the pressure of 10 MPa and temperature 40 °C for 30 min incubation, but it was reflex to its native form with increasing incubation time up to 150 min under 10 MPa and 40 °C. Meanwhile, the tertiary structure via fluorescence spectra analysis showed that the intensity of the maximal emission wavelength at 338 nm decreased under the conditions of 10 MPa and 40 °C for 150 min. Furthermore, the residue hydrolysis activity and kinetics constants (Vmax and Km) of CRL7 treated with sub-/super-critical CO2 were also investigated. In cases of 6 MPa and 35 °C, or 10 MPa and 40 °C for 30 min, activity variance of CRL7 was maybe caused by its secondary structure alteration. But in case of 10 MPa and 40 °C for 150 min, the tertiary structure change was perhaps responsibility for CRL7 activity enhancement.  相似文献   

11.
《Process Biochemistry》2004,39(11):1543-1551
Corrugated cardboard samples were subjected to two-step saccharification. A first prehydrolysis stage was carried out to solubilise the hemicellulosic fraction as hemicellulosic sugars, and the solid phase from prehydrolysis was used as a substrate for the enzymic hydrolysis of cellulose. The prehydrolysis step was carried out for 0–180 min in media containing 1–3 wt.% of H2SO4 and the fraction of solid recovered after treatments and the compositions of solid and liquid phases from treatments were measured. The susceptibility of prehydrolysed solids towards the enzymic hydrolysis was assessed in further experiments. Under selected prehydrolysis conditions (3% H2SO4, 180 min), 78.2% of initial hemicelluloses was saccharified, leading to liquors containing up to 10 g hemicellulosic sugars/l and 9.2 g glucose/l. The corresponding solid phase, enriched in cellulose, showed good susceptibility towards enzymatic hydrolysis, leading to solutions containing up to 17.9 g glucose/l (conversion yield=63.6%) and a glucose/total sugar ratio of 0.93 g/g. Mathematical models assessing the effects of the operational conditions on both the prehydrolysis stage and the susceptibility of substrates towards enzymic hydrolysis have been developed.  相似文献   

12.
Climate change factors interact to modify plant growth and development. The objective of this study was to evaluate the response to temperature of big bluestem (Andropogon gerardii Vitman) development, growth, reproduction and biomass partitioning under low and high carbon dioxide concentrations ([CO2]) grown in controlled environmental conditions. Ten sunlit soil–plant–atmosphere-research (SPAR) chambers were used to study the effects of two [CO2] of low (360 μL L−1) and high (720 μL L−1), and five different day/night temperatures of 20/12, 25/17, 30/22, 35/27 and 40/32 °C. Big bluestem cv. Bonelli seeds were sown in pure, fine sand, in 11 rows at equal spacing and after emergence were thinned to 10 plants per row. At maturity, individual plants were harvested and divided into leaves, stems, panicles and roots. Biomass decreased either above or below the optimum temperature of 30/22 °C. The effect of high [CO2] on biomass accumulation (12–30% increase) was visible at less than optimum temperature (30/22 °C) and absent at two high temperatures. With increase in temperature, irrespective of the [CO2], biomass partitioned to leaves increased (35%) where as that to stems decreased (33%). Panicle weight was 6–7% of biomass at 25/17 °C and fell to 1.6% at 40/32 °C. The biomass partitioned to roots, across the temperatures, was constant for plants grown at low [CO2] but decreased by 7% for those grown at high [CO2]. The decrease in panicle/seed production at two high temperatures (>30/22 °C) might reduce this species population and dominance in tallgrass prairies. The temperature response functions at different [CO2] will be useful to improve the predictive capabilities of dynamic global vegetation models in simulating dynamics of rangelands, where big bluestem is the dominant species.  相似文献   

13.
In various occupations, workers may be exposed to extreme environmental conditions and physical activities. Under these conditions the ability to follow the workers' body temperature may protect them from overheating that may lead to heat related injuries. The "Dräger" Double Sensor (DS) is a novel device for assessing body-core temperature (Tc). The purpose of this study was to evaluate the accuracy of the DS in measuring Tc under heat stress. Seventeen male participants performed a three stage protocol: 30 min rest in a thermal comfort environment (20–22 °C, 50% relative humidity), followed by an exposure to a hot environment of 40 °C, 40% relative humidity −30 min at rest and 60 min of exercise (walking on a treadmill at 5 km/h and 2% elevation). Simultaneously temperatures measured by the DS (TDS) and by rectal temperature (Tre) (YSI-401 thermistor) were recorded and then compared. During the three stages of the study the average temperature obtained by the DS was within±0.3 °C of rectal measurement. The correlation between TDS and Tre was significantly better during the heat exposures phases than during resting under comfort conditions. These preliminary results are promising for potential use of the DS by workers under field conditions and especially under environmental heat stress or when dressed in protective garments. For this goal, further investigations are required to validate the accuracy of the DS under various levels of heat stress, clothing and working levels.  相似文献   

14.
《Process Biochemistry》2014,49(8):1288-1296
This study details on cloning and characterization of Cu,Zn superoxide dismutase (Ca–Cu,Zn SOD) from a medicinally important plant species Curcuma aromatica. Ca–Cu,Zn SOD was 692 bp with an open reading frame of 459 bp. Expression of the gene in Escherichia coli cells followed by purification yielded the enzyme with Km of 0.047 ± 0.008 μM and Vmax of 1250 ± 24 units/mg of protein. The enzyme functioned (i) across a temperature range of −10 to +80 °C with temperature optima at 20 °C; and (ii) at pH range of 6–9 with optimum activity at pH 7.8. Ca–Cu,Zn SOD retained 50% of the maximum activity after autoclaving, and was stable at a wide storage pH ranging from 3 to 10. The enzyme tolerated varying concentrations of denaturating agent, reductants, inhibitors, trypsin, was fairly resistant to inactivation at 80 °C for 180 min (kd, 6.54 ± 0.17 × 10−3 min−1; t1/2, 106.07 ± 2.68 min), and had midpoint of thermal transition (Tm) of 70.45 °C. The results suggested Ca–Cu,Zn SOD to be a kinetically stable protein that could be used for various industrial applications.  相似文献   

15.
The influence of temperatures on the life parameters of the solitary oothecal parasitoid Evania appendigaster, was investigated in the laboratory. Parasitized oothecae of Periplaneta americana were left to develop under seven constant temperatures: 15, 17, 20, 25, 30, 35, and 40 °C. At the end, we found that: (i) E. appendigaster was able to complete development within the temperature range of 17–34 °C; (ii) mean adult longevity decreased as temperature increased, with the temperature of 40 °C being fatal in a matter of hours; (iii) males lived longer than females between 15 and 30 °C; (iv) adult emergence rate was the highest at 25 °C, and (v) no wasps emerged at 15 or 40 °C. Non-emerged oothecae contained either unhatched eggs or dead larvae. We determined the theoretical lower developmental threshold and thermal constant for the complete development as 12.9 °C and 584.8 day-degrees for males, and 13.1 °C and 588.2 day-degrees for females, respectively. A good balance between faster development, maximum adult longevity and good egg viability was obtained between 25–30 °C, and that would be the best temperature range for rearing E. appendigaster.  相似文献   

16.
Temperature and pH play an important role in the stability of phycocyanin, a natural blue colorant. Systematic investigations showed the maximum stability of phycocyanin was in the pH range 5.5–6.0. Incubation at temperatures between 47 and 64 °C caused the concentration (CR) and half-life of phycocyanin in solution to decrease rapidly. The CR value remained at approximately 50% after incubating for 30 min at 59 °C. After heating at 60 °C for 15 min, the CR value of phycocyanin at pH 7.0 was maintained at around 62–70% when 20–40% glucose or sucrose was added, and the half-life increased from 19 min to 30–44 min. 2.5% sodium chloride was found to be an effective preservative for phycocyanin at pH 7.0 as a CR value of 76% was maintained and the half-life of 67 min was increased.  相似文献   

17.
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme–substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml?1 min?1 whereas, Km apparently increased from 1.71 to 3.17 mM ml?1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.  相似文献   

18.
Exploitation of olive kernel for bioenergy production, with respect to the green house gases (GHGs) mitigation, is the main aim of this work. In this study, olive kernels were used as a solid biofuel, and high temperature steam gasification (HTSG) was investigated, in the fixed bed unit at KTH Sweden, with regard to hydrogen maximization in the produced gasification gas. Experiments were carried out in a temperature range of 750–1050 °C, with steam as the gasifying agent. The behaviour of olive kernels, under residence times from 120 up to 960 s, has been studied. At 1050 °C, a medium to high calorific value gas was obtained (LHVgas = 13.62 MJ/Nm3), while an acquired H2/CO molar ratio equal to four proved that olive kernel HTSG gasification could be an effective technology for a hydrogen-rich gas production (~40%vv H2 in the produced gasification gas at 1050 °C). The produced char contained 79%ww of fixed carbon, low chlorine and sulphur content, which enables it for further re-use for energetic purposes. Tar content in the produced gas at 750 °C was 124.07 g/Nm3, while a 1050 °C at 79.64% reduction was observed and reached the value of 25.26 g/Nm3.  相似文献   

19.
Two cold-adapted lipases (Lipase-A and Lipase-B in the paper) of mesophilic Geotrichum sp. SYBC WU-3 were purified by using (NH4)2SO4 fractionation, chromatography separation on a DEAE-cellulose-32 column and a Sephadex G100 column. The molecular mass of Lipase-A and Lipase-B were determined to be approximately 41.1 and 35.8 kDa, respectively by SDS-PAGE. The optimum temperature for the activity of Lipase-A was found to be 20 °C, and that of Lipase-B was 15 °C. Lipase-A and Lipase-B had good stability when temperature was below 40 °C. Both the optimum pH for the activity of the lipases was 9.5. Lipase-A retained about 80% of its activity when pH was between 3 and 6 and Lipase-B maintained over 80% activity in the pH range of 3–8. The two lipases showed hydrolysis efficiency to various p-nitrophenyl esters, but they were more active with shorter p-nitrophenyl esters (C2 and C4).  相似文献   

20.
The effect of relative humidity (RH) and temperature on CO2 assimilation (An), stomatal conductance (Sc), transpiration rate (Tr), chlorophyll content, fresh and dry weight, leaf length, leaf area, leaf width, formation of new root and survival rate have been assayed in Doritaenopsis in growth chamber after 1 month of acclimatization. Reduced growth was observed at below and above 25 °C whereas it was increased with increasing humidity. Relative water content (RWC) was decreased at 50% and 70% humidity after second day of transfer and recovered completely with the progression of acclimatization. RWC also reduced at high temperature but recovered slowly and a gradual decrease of RWC was observed at 15 °C. A visual symptom of severe leaf tip burn was observed at 50–70% humidity and at 35 °C during acclimatization. At 15 °C and 50% humidity sudden decrease of photosynthetic efficiency (Fv/Fm) was observed, which could not recover in temperature treated plantlets during acclimatization period. Chlorophyll content increased with increasing humidity and at 15 and 35 °C chlorophyll content was decreased compared to 25 °C. Chlorophyll a/b ratio was unchanged while total chlorophyll/carotenoids ratio was increased from low to high temperature. Exposure of plantlets to high temperature led to a noticeable decrease in An, Sc and Tr, and at 15 °C they were more decreased whereas significant differences were not observed in the parameters tested under humidity after 25 days of acclimatization. During daytime at 15 °C, increase in An, Sc and Tr indicates the plantlets adaptability in the new environment. The peroxidase activity remained unaffected in all humidity stress whereas low temperature increased the peroxidase activity compared to high temperature. These finding suggests that photosynthetic properties was greatly affected by air temperature conditions with a reduction of An, Sc and Tr at 15 and 35 °C compared to humidity stress that played a greater role in limiting photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号