首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Immunoreactivity to neuron-specific enolase (NSE), a specific neuronal marker, and calcitonin gene-related peptide (CGRP) was localized in lingual taste papillae in the pigs. Sequential staining for NSE and CGRP by an elution technique allowed the identification of neuronal subpopulations. NSE-staining revealed a large neuronal network within the subepithelial layer of all taste papillae. NSE-positive fibers then penetrated the epithelium as isolated fibers, primarily in the foliate and circumvallate papillae, or as brush-shaped units formed by a multitude of fibers, especially in the fungiform papillae and in the apical epithelium of the circumvallate papilla. Taste buds of any type of taste papillae were found to express a dense subgemmal/intragemmal NSE-positive neuronal network. CGRP-positive nerve fibers were numerous in the subepithelial layer of all three types of taste papillae. In the foliate and circumvallate papillae, these fibers penetrated the epithelium to form extragemmal and intragemmal fibers, while in the fungiforms, they concentrated almost exclusively in the taste buds as intragemmal nerve fibers. Intragemmal NSE- and CGRP-positive fiber populations were not readily distinguishable by typical neural swellings as previously observed in the rat. The NSE-positive neuronal extragemmal brushes never expressed any CGRP-like immunoreactivity. Even more surprising, fungiform taste buds, whether richly innervated by or devoid of NSE-positive intragemmal fibers, always harboured numerous intragemmal CGRP-positive fibers. Consequently, NSE is not a general neuronal marker in porcine taste papillae. Our observations also suggest that subgemmal/intragemmal NSE-positive fibers are actively involved in synaptogenesis within taste buds. NSE-positive taste bud cells were found in all three types of taste papillae. CGRP-positive taste bud cells were never observed.  相似文献   

2.
The distribution and abundance of the calcium binding protein, calbindin D-28k (CB) immunoreactivity in the taste buds of the circumvallate papillae and larynx were compared between normoxic and chronically hypoxic rats (10% O2 for 8 weeks). In the normoxic rats, CB immunoreactivity was observed in some cells and fibers of the intragemmal region of the taste buds in the circumvallate papillae. In contrast, in the subgemmal region of the laryngeal taste buds, fibers but not cells were immunoreactive for CB. In chronically hypoxic rats, CB immunoreactive cells and fibers in the taste buds were decreased in the circumvallate papillae. In the laryngeal taste buds, the density of the subgemmal CB immunoreactive fibers in chronically hypoxic rats was greater than in normoxic rats. It is considered that function of the laryngeal taste buds is different from that of the lingual taste buds, so that laryngeal taste buds may be involved in chemosensation other than taste. The altered density of CB immunoreactive cells and fibers in the lingual and laryngeal taste buds is a predominant feature of hypoxic adaptation, and chronic hypoxic exposure might change the chemical sensitivity of the circumvallate papillae and larynx through the regulation of intracellular Ca2+.  相似文献   

3.
4.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

5.
The distribution of carbonic anhydrase isozyme II (CA II)-like immunoreactivity (-LI) in the gustatory epithelium was examined in the adult rat. In the circumvallate and foliate papillae, CA II-LI was observed in the cytoplasm of the spindle-shaped taste bud cells, with weak immunoreaction in the surface of the gustatory epithelium. No neuronal elements displayed CA II-LI in these papillae. There was no apparent difference in the distribution pattern between the anterior and posterior portions of the foliate papillae. In immunoelectron microscopy, immunoreaction products for CA II were diffusely distributed in the entire cytoplasm of the taste bud cells having dense round granules at the periphery of the cells. No taste bud cells displaying CA II-LI were detected in the fungiform papillae, but a few thick nerve fibers displayed CA II-LI. In the taste buds of the palatal epithelium, neither taste bud cells nor neuronal elements exhibited CA II-LI. The present results indicate that CA II was localized in the type I cells designated as supporting cells in the taste buds located in the posterior lingual papillae of the adult animal.  相似文献   

6.
H C Liu  J C Lee 《Acta anatomica》1982,112(4):310-320
The foliate papillae of the rabbit, rat and mouse were studied by scanning electron microscopy and histochemistry. The papillae consisted of folds and grooves located on the posterolateral margin of the tongue in front of the circumvallate papillae. The numbers of folds and taste buds varied among the three animals species. Scanning electron microscopy showed that in longitudinal sections the taste buds were oval in shape and their pores were surrounded by microvilli. The reaction product of alkaline phosphatase could only be demonstrated in the superficial epithelium of the rabbit as well as in the mouse foliate papillae, but it also diffused into the taste buds in the rat. The intensity and distribution of the reactions of adenosine triphosphatase, acetylcholinesterase and butyrylcholinesterase were identical to those reported by other investigators in spite of differences in animal species and histochemical techniques employed.  相似文献   

7.
8.
The role of amiloride-sensitive Na+ channels (ASSCs) in the transduction of salty taste stimuli in rat fungiform taste buds has been well established. Evidence for the involvement of ASSCs in salt transduction in circumvallate and foliate taste buds is, at best, contradictory. In an attempt to resolve this apparent controversy, we have begun to look for functional ASSCs in taste buds isolated from fungiform, foliate, and circumvallate papillae of male Sprague-Dawley rats. By use of a combination of whole-cell and nystatin-perforated patch-clamp recording, cells within the taste bud that exhibited voltage-dependent currents, reflective of taste receptor cells (TRCs), were subsequently tested for amiloride sensitivity. TRCs were held at - 70 mV, and steady-state current and input resistance were monitored during superfusion of Na(+)-free saline and salines containing amiloride (0.1 microM to 1 mM). Greater than 90% of all TRCs from each of the papillae responded to Na+ replacement with a decrease in current and an increase in input resistance, reflective of a reduction in electrogenic Na+ movement into the cell. ASSCs were found in two thirds of fungiform and in one third of foliate TRCs, whereas none of the circumvallate TRCs was amiloride sensitive. These findings indicate that the mechanism for Na+ influx differs among taste bud types. All amiloride-sensitive currents had apparent inhibition constants in the submicromolar range. These results agree with afferent nerve recordings and raise the possibility that the extensive labeling of the ASSC protein and mRNA in the circumvallate papillae may reflect a pool of nonfunctional channels or a pool of channels that lacks sensitivity to amiloride.  相似文献   

9.
M Witt  I J Miller 《Histochemistry》1992,98(3):173-182
Taste buds (TB) in the foliate, circumvallate and fungiform papillae of the rabbit tongue were examined with lectin histochemistry by means of light (LM) and electron (EM) microscopy. Biotin- and gold-labeled lectins were used for the detection of carbohydrate residues in TB cells and subcutaneous salivary glands. At the LM level, the lectins of soybean (SBA) and peanut (PNA) react with material of the foliate and circumvallate taste pores only after pretreatment of the section with neuraminidase. This indicates that the terminal trisaccharide sequences are as follows: Sialic acid-Gal-GalNAc in O-glycosylated glycoproteins or Sialic acid-Gal-GlcNAc in N-glycosylated glycoproteins. In fungi-form taste buds the lectins of Dolichos biflorus (DBA) and Helix pomatia (HPA), also specific to GalNAc residues, are reactive without preincubation with neuraminidase. Wheat germ agglutinin (WGA), specific to GlcNAc, reacts with TBs of all papillae; and the lectin from Ulex europaeus (UEA I), specific to fucose, binds to individual TB cells. The presence of sialic acid may protect mucus or other glycoproteins in TB cells and inside the taste pore from premature enzymatic degradation. In a post-embedding EM procedure on LR-White-embedded tissue sections, only gold-labeled HPA was found to bind especially on membrane surfaces of the microvilli which protrude into the taste pore; however HPA did not bind to the electron-dense mucus inside the taste pore. The mucus situated in the trough and at the top of the adjacent epithelial cells also is strongly HPA-positive, but is of different origin and composition than that found in the taste pore. These results demonstrate distinct carbohydrate histochemical differences between fungiform and circumvallate/foliate taste buds. The different configuration of galactosyl residues and the occurrence of mannose in circumvallate and foliate TBs leads to the suggestion that the lectin reactivities of TBs are not only due to the presence of mucins, but also to N-linked glycoproteins, possibly with a hormone-like paraneuronal function. A possible relationship to v. Ebner glands in these papillae is discussed.  相似文献   

10.
Summary Taste buds were found to stain strongly and selectively in intact papillae with highly acidic dyes such as ponceau S. In intact tongues the taste buds in the fungiform, circumvallate and foliate papillae of the cynomolgus monkey and in the fungiform papillae of the rat as well as the taste discs in the fungiform papillae of the frog could be visualized. This method enables a rapid location and counting of taste buds in taste papillae without preparing histological sections. In cynomolgus tongue material fixed in formalin, the dyes penetrate into the buds. In fresh tongues only the taste pore region of the buds stains, which suggests that in vivo taste buds are impenetrable underneath the pore.  相似文献   

11.
Taste buds were found to stain strongly and selectively in intact papillae with highly acidic dyes such as ponceau S. In intact tongues the taste buds in the fungiform, circumvallate and foliate papillae of the cynomolgus monkey and in the fungiform papillae of the rat as well as the taste discs in the fungiform papillae of the frog could be visualized. This method enables a rapid location and counting of taste buds in taste papillae without preparing histological sections. In cynomolgus tongue material fixed in formalin, the dyes penetrate into the buds. In fresh tongues only the taste pore region of the buds stains, which suggests that in vivo taste buds are impenetrable underneath the pore.  相似文献   

12.
Subepithelial blood vessels of the rat lingual papillae and their spatial relations to the connective tissue papillae and surface structures were demonstrated by light and scanning electron microscopy. In the rat, four types of papillae were distinguished on the dorsal surface of the tongue, i.e. the filiform, fungiform, foliate and circumvallate papillae. Vascular beds of various appearance were found in all four types of lingual papillae: a simple or twisted capillary loop in the filiform papilla; a basket- or petal-like network in the fungiform papilla; a ring-like network in the foliate papilla, and a conglomerated network surrounded by double heart-shaped capillary networks in the circumvallate papilla. These characteristic vascular beds corresponded to the shape of the connective tissue papillae and surface structures. The vascular bed beneath the gustatory epithelium in the fungiform, foliate and circumvallate papilla consisted of fine capillary networks next to the taste buds.  相似文献   

13.
The distribution of calbindin D28k (CB)-like immunoreactivity (-LI) in the circumvallate papilla (CVP) was examined during development and regeneration following bilateral crush injury to the glossopharyngeal nerve in the rat. In the adult CVP, CB-like immunoreactive (-IR) nerve fibers were observed in the subgemmal region and some penetrated into the taste buds. CB-LI was also detected in the cytoplasm of the spindle-shaped gustatory cells in the lower half of the trench epithelium, which contained numerous synaptic vesicles and bundles of intermediate filaments. These CB-IR gustatory cells made synapse-like contacts with CB-IR nerve terminals. Some CB-IR nerve terminals made contacts with the gustatory cells negative for CB-LI. At least three developmental stages were defined with regard to the developmental changes in the distribution of CB-LI: (1) Stage I (embryonic day (E) 18–postnatal day (P)5): CB-IR nerve fibers appeared in the lamina propria just beneath the newly-formed CVP at E18, but the gustatory epithelium of the CVP contained no CB-IR structures. Taste buds with taste pores appeared at P1. (2) Stage II (P5–10): thin CB-IR nerve fibers began entering the trench epithelium, but no CB-IR cells were observed. (3) Stage III (P10–adult): in addition to the intragemmal and perigemmal CB-IR nerve fibers, very few CB-IR cells appeared in the taste buds around P10, and their numbers increased progressively. The changes in the distribution of taste buds and CB-LI following glossopharyngeal nerve injury were similar to those observed during development. On post-operative day (PO) 4, the taste buds and CB-IR cells decreased markedly in number. These CB-IR cells became round in shape, and the number of CB-IR nerve fibers decreased markedly. On PO8, both taste buds and CB-IR cells disappeared completely. The regenerated taste buds were first observed on PO12, increased rapidly in number by PO20, and increased slowly thereafter. CB-IR nerve fibers accumulated at the subgemmal region and began penetrating into the trench wall epithelium around PO16. CB-IR cells appeared between PO20 and PO24, and their numbers increased progressively and reached the normal level on PO40. The topographical localizations of the taste buds and CB-IR cells during development and regeneration were comparable to those of normal animals. The delay of the time courses for appearance of CB-IR nerve fibers and CB-IR cells compared to the appearance of taste buds during development and regeneration suggests that CB in the gustatory epithelium may participate in the survival of the taste bud cells rather than in the induction of the taste buds.  相似文献   

14.
The localization of adenylate cyclase activity in the fungiform,foliate and circumvallate papillae of rats, rabbits, cats anddogs was determined histochemically using an incubation mediumwith a high pH. Light-microscopic study showed that adenylatecyclase activity is localized not only at the apex of tastebuds but also in other tissues, such as the von Ebner's glandsand the blood vessels or capillaries. The adenylate cyclaseactivity at the apex of taste buds was detectable in all thetaste papillae of rats, rabbits, cats and dogs except for thefungiform papillae of rabbits, though the amount of reactionproduct varied in different papillae. Electron-microscopic studyshowed that the number and density, as well as the size, ofsmall round-shaped electron-dense granules caused by the precipitationof lead with imidodiphosphate at the apex of taste buds arelow in the circumvallate papillae of cats compared with thosein the foliate papillae of rabbits. This may explain the resultthat the amount of reaction product varied in different papillae.  相似文献   

15.
The distribution of substance P (SP)- and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers in the taste buds of the epiglottis and aryepiglottic folds was compared between normoxic control and chronically isocapnic hypoxic rats (10% O2 and 3-4% CO2 for 3 months). In the normoxic laryngeal taste buds, SP- and CGRP-immunoreactive fibers were detected within the taste buds, where they appeared as thin processes with many varicosities. Most CGRP fibers showed coexistence with SP, but a few fibers showed the immunoreactivity of CGRP only. The density of intra- and subgemmal SP and CGRP fibers penetrating into the laryngeal taste buds was significantly higher in chronically hypoxic rats than in normoxic control rats. Water intake in the hypoxic rats was significantly lower than in the normoxic rats. These results indicate that the increased density of SP- and CGRP-containing nerve fibers within the laryngeal taste buds is a predominant feature of hypoxic adaptation. The altered peptidergic innervation and reduced water intake support the hypothesis that the laryngeal taste buds are involved in water reception, and that the water reception may be under the control of peptidergic innervation.  相似文献   

16.
Summary Taste buds (TB) in the foliate, circumvallate and fungiform papillae of the rabbit tongue were examined with lectin histochemistry by means of light (LM) and electron (EM) microscopy. Biotin- and gold-labeled lectins were used for the detection of carbohydrate residues in TB cells and subcutaneous salivary glands. At the LM level, the lectins of soybean (SBA) and peanut (PNA) react with material of the foliate and circumvallate taste pores only after pretreatment of the section with neuraminidase. This indicates that the terminal trisaccharide sequences are as follows: Sialic acid-Gal-GalNAc in O-glycosylated glycoproteins or Sialic acid-Gal-GlcNAc in N-glycosylated glycoproteins. In fungiform taste buds the lectins of Dolichos biflorus (DBA) and Helix pomatia (HPA), also specific to GalNAc residues, are reactive without preincubation with neuraminidase. Wheat germ agglutinin (WGA), specific to GlcNAc, reacts with TBs of all papillae; and the lectin from Ulex europaeus (UEA I), specific to fucose, binds to individual TB cells. The presence of sialic acid may protect mucus or other glycoproteins in TB cells and inside the taste pore from premature enzymatic degradation. In a post-embedding EM procedure on LR-White-embedded tissue sections, only gold-labeled HPA was found to bind especially on membrane surfaces of the microvilli which protrude into the taste pore; however HPA did not bind to the electron-dense mucus inside the taste pore. The mucus situated in the trough and at the top of the adjacent epithelial cells also is strongly HPA-positive, but is of different origin and composition than that found in the taste pore. These results demonstrate distinct carbohydrate histochemical differences between fungiform and circumvallate/foliate taste buds. The different configuration of galactosyl residues and the occurrence of mannose in circumvallate and foliate TBs leads to the suggestion that the lectin reactivities of TBs are not only due to the presence of mucins, but also to N-linked glycoproteins, possibly with a hormone-like, paraneuronal function. A possible relationship to v. Ebner glands in these papillae is discussed.  相似文献   

17.
18.
19.
Summary The influence of salivation on the location of gustatory alkaline phosphatase has been examined. In untreated rats, taste buds at the ends of fungiform papillae showed almost no activity. However, if salivation was suppressed for 12 hours in fasted animals, alkaline phosphatase activity could be clearly demonstrated in association with these taste buds. The results indicated that alkaline phosphatase may be removed from its site of secretion by saliva and that the enzyme is secreted from fungiform as well as circumvallate and foliate papillae.  相似文献   

20.
The dorsal surface of the mammalian tongue is covered with four kinds of papillae, fungiform, circumvallate, foliate and filiform papillae. With the exception of the filiform papillae, these types of papillae contain taste buds and are known as the gustatory papillae. The gustatory papillae are distributed over the tongue surface in a distinct spatial pattern. The circumvallate and foliate papillae are positioned in the central and lateral regions respectively and the fungiform papillae are distributed on the anterior part of the tongue in a stereotyped array. The patterned distribution and developmental processes of the fungiform papillae indicate some similarity between the fungiform papillae and the other epithelial appendages, including the teeth, feathers and hair. This is because 1) prior to the morphological changes, the signaling molecules are expressed in the fungiform papillae forming area with a stereotyped pattern; 2) the morphogenesis of the fungiform papillae showed specific structures in early development, such as epithelial thickening and mesenchymal condensation and 3) the fungiform papillae develop through reciprocal interactions between the epithelium and mesenchymal tissue. These results led us to examine whether or not the early organogenesis of the fungiform papillae is a good model system for understanding both the spacing pattern and the epithelial-mesenchymal interaction during embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号