首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
生态交错带及其研究进展   总被引:14,自引:5,他引:9  
生态交错带研究对探索自然生态规律和保护环境有重要意义。近30a来,有关生态交错带的论文数平均年增57%,显示其得到了愈来愈广泛的关注。回顾了生态交错带概念的产生与发展,区分了它与边缘、生态边界层与生态过渡带等概念的异同;简述了其7个基本属性,即高生物多样性、丰富的特有种、大量外来种、频繁的物质流动、敏感的时空动态性、结构的异质性和脆弱性;总结提炼了生态交错带的基本原理和假说;综述了生态交错带的生物多样性产生机制、对全球变化的响应与反馈、生态设计与管理以及生态交错带模型发展和整合的研究进展。提出今后需要大力发展理论研究、多尺度模型转化和多因子综合分析,以完善生态交错带理论并支持生态学机理的探索。  相似文献   

2.
Abstract. Several properties have been suggested to be characteristic of ecotones, but their prevalence has rarely been tested. We sampled five ecotones to seek evidence on seven generalizations that are commonly made about ecotones: vegetational sharpness, physiognomic change, occurrence of a spatial community mosaic, many exotic species, ecotonal species, spatial mass effect, and species richness higher or lower than either side of the ecotone. The ecotones were in a sequence from scattered mangroves, through salt marsh, rush‐marsh, scrub, woodland, to pasture. We developed a method to objectively define, by rapid vegetational change, the position and depth of an ecotone, identifying five ecotones. Their positions were consistent across three sampling schemes and two spatial grain sizes. One ecotone is a switch ecotone, produced by positive feedback between community and environment. Another is anthropogenic, due to clearing for agriculture. Two others are probably environmental in cause, and one may be largely a relict environmental ecotone. Sharp changes in species composition occurred. Three ecotones were associated with a change in plant physiognomy. In two, the ecotone was located just outside a woodland canopy, in the zone influenced by the canopy. Community mosaicity was evident at only one ecotone. There were few strictly ecotonal species; many species occurred more frequently within ecotones than in adjacent vegetation, but there were never significantly more ecotonal species than expected at random. There was little evidence for the spatial mass effect reducing ecotonal sharpness, or leading to higher species richness within ecotones. Species richness was higher than in the adjacent habitat in only one ecotone. It seems that supposedly characteristic ecotone features depend on the particular ecological situation, and the ecology of the species present, rather than being intrinsic properties of ecotones.  相似文献   

3.
Abstract. Four contrasting ecotones were sampled to address three questions: (1) Are there ‘ecotonal’ species, (2) Do ecotones possess higher (or lower) species richness than the adjacent communities? and (3) Are exotic species more likely to occur in ecotones? One ecotone was edaphic, one was apparently caused by a positive‐feedback switch, one was environmental/anthropogenic and one was entirely anthropogenic. The exact position of each ecotone was established from the spatial change in ordination scores. Ecotonal species, in the sense of species mainly restricted to the ecotone at the site, were present in all four ecotones. All but one of the ecotonal species were native. The switch ecotone and the purely anthropogenic ecotone also contained native species that were significantly more frequent in the ecotone than in either adjacent community. Species richness was intermediate between that of the two adjacent communities in three of the ecotones. In the environmental/anthropogenic ecotone, species richness was higher than in adjacent communities, but not significantly so. There were appreciable numbers of exotic species in the two ecotones with anthropogenic influence, one of which had a proportion of exotic species intermediate between the two adjacent communities. Contrary to theory, the proportion of exotic species in the second ecotone was significantly lower than in either adjacent community. We conclude that all three features we examined depend on the particular ecological conditions and the ecology of the species present; they are not intrinsic properties of ecotones.  相似文献   

4.
5.
Ecotones are zones of transition between two adjacent ecological systems and are characterized by a high rate of change compared to these adjacent areas. They are dynamic entities with both a spatial and temporal property, reflected in an ecotone width and location, which vary across time during succession or environmental change on both a local or global scale. Various techniques have been proposed to characterize ecotones, one of them being a sigmoid wave curve fit on the transects across the ecotone. In this paper, we test the robustness of a sigmoid wave model approach on simulated ecotone data with a varying degree of steepness, patchiness and transect length. An analysis of variance (ANOVA) provided us details on the sensitivity of the estimated ecotone width for the steepness, the transect length as well as for the patchiness of the ecotone. The statistics also allowed us to investigate the interaction between the different parameters on the resulting ecotone width. We conclude that the sigmoid wave curve-fitting algorithm provides a robust way to describe ecotones with various degrees of steepness and patchiness. Depending on the transect window size used, a sigmoid wave curve-fitting algorithm will pick up variations in ecotone steepness or in ecotone steepness and patchiness.  相似文献   

6.
边缘效应的空间尺度与测度   总被引:7,自引:0,他引:7  
周婷  彭少麟 《生态学报》2008,28(7):3322-3333
综述了边缘效应的空间尺度类型以及在不同尺度上的测度方法.基于大量的研究整合,认为边缘效应空间尺度的划分,可以根据空间尺度的不同以及边缘效应形成和维持因素,分为大中小3个尺度类型,即大尺度的生物群区交错带、中尺度的景观类型之间的生态交错带和小尺度的斑块(生态系统)之间的群落交错区.大尺度主要是以植被气候带为标志的生物群区间的边缘效应,这种地带性的交错区主要受大气环境条件的影响.中尺度类型主要包括城乡交错带、林草交错带、农牧交错带等类型,是不同生态系统要素的空间交接地带,在物质能量等相互流动的作用下变得更为复杂.小尺度水平上是指斑块之间的交错所形成的边缘效应,受小地形等微环境条件及生物非生物等因子的制约,研究主要集中在群落边缘、林窗边缘和林线交错带等方面.对边缘效应测度的定量化研究有助于更加深入理解边缘效应.在大尺度水平上,边缘效应测度的研究主要是应用数量生态学等方法,研究不同气候带之间界线的划分及其物种分布的梯度规律性.中尺度水平上应用景观生态学的3S技术等方法,侧重于研究交错带的动态变化趋势及位置宽度的判定.小尺度水平上通过对距离边缘的长度,各群落中种群的数量、结构、多样性等定量指标的测定来构建测度公式,从而对边缘效应的强度进行量化,并反映边缘对群落的正负效应.总体上看,主要集中于中小尺度上,未来应该强化大尺度边缘效应测度的研究.  相似文献   

7.
Zhou T  Peng S L 《农业工程》2008,28(7):3322-3333
Classification of spatial scales and measurement of edge effects in ecology were reviewed. The spatial scales can be classified into large scale (biome ecotone), meso-scale (ecological ecotone) and small scale (community ecotone) through the formation and maintenance of edge effects in ecology based on the synthetic analysis of published literatures. The biome ecotone is influenced by climate, regional dominant vegetation and terrain environment. The ecological ecotone is usually distributed in the transitional region with remarkable habitat heterogeneity. It connects adjacent ecosystems and affects the flow of energy and nutrient. Nowadays, study on edge effects in ecology mainly focuses on boundary sensitivity which associates with urban-rural ecotone, forest-grassland ecotone, agro-pastoral ecotone, forest-farmland ecotone, water-land ecotone and forest-swamp ecotone. As to the community ecotone which links with different patches to the interior of the community, previous studies focused on community edge, gap edge and treelines. The borderlines of different biome ecotones and the gradients of species distribution in the biome ecotones have been investigated through the method of quantitative ecology. The dynamic change, location and width of the ecological ecotone have been studied using the Geographic Information System (GIS), Remote Sensing (RS) and Global Positioning System (GPS) technologies and the landscape ecology theory. As important indicators, distance from edge, population, structure and diversity determined for establishing models can be applied to measure the intensity of edge effects and decide the positive or negative impact on communities. Although study on the edge effects in ecology was mostly reported at the meso-scale and small scale, study at large scale should be paid more attention as it is the potential value in ecology and global change fields.  相似文献   

8.
M. M. Coelho  M. Zalewski 《Hydrobiologia》1995,303(1-3):223-228
In most types of freshwater ecosystems fish diversity depends greatly on land/inland water ecotones. So, to maintain biodiversity of fish communities in inland waters, management and restoration of aquatic terrestrial ecotones will be an important tool. However, to provide a scientific background for such conservation activities, it will be desirable to test the importance of different types of ecotones in structuring and maintaining the genetic diversity of fish populations. The relevance of population genetics data to ecotone studies can only be understood in an ecological context as evolution is a function of environment. We suggest that as ecotone complexity increases opportunities for survival of individuals, improving trophic conditions and spatial habitat heterogeneity, so the population size and variation increase with increased genetic diversity and vulnerability to environment changes decreases.  相似文献   

9.
Species native to ecotones are often overlooked in restoration efforts despite the increasing rarity of ecotone habitat. In fragmented, fire-suppressed landscapes, true ecotone may no longer exist. Restoration biologists interested in reintroducing ecotone species must decide whether to plant them in historic ecotones maintained by manual thinning or whether to opt for discrete restoration areas that are easier to maintain. We investigated these two alternatives with Lantana canescens , a rare tropical shrub native to the ecotone between pine and hardwood forests of Miami-Dade County, Florida, U.S.A. Our short-term findings show that after 15 and 18 months, survival of transplants was 69% in a restored site and 65% and 84% in two historic ecotone sites. The restored site had significantly higher photosynthetically active radiation (PAR) (75%) than the historic ecotones (25–39%). Correspondingly, 267 seedlings have recruited at the restored site, whereas only 8 have emerged at both historic ecotone sites. Seedling establishment was associated with higher PAR at the restored site. We found that overall population sustainability was higher at the restored site where there is the additional benefit of less maintenance. Our work suggests that, by reducing succession, a discrete restoration area can approach the historic conditions of hardwood/pine forest ecotone more closely than degraded historic ecotones themselves. We present a viable solution for conserving rare ecotone species when their natural habitat and the processes that maintained it no longer exist.  相似文献   

10.
Few studies have found strong evidence to suggest that ecotones promote species richness and diversity. In this study we examine the responses of a high‐Andean bird community to changes in vegetation and topographical characteristics across an Andean tree‐line ecotone and adjacent cloud forest and puna grassland vegetation in southern Peru. Over a 6‐month period, birds and vegetation were surveyed using a 100 m fixed‐width Distance Sampling point count method. Vegetation analyses revealed that the tree‐line ecotone represented a distinctive high‐Andean vegetation community that was easily differentiated from the adjacent cloud forest and puna grassland based on changes in tree‐size characteristics and vegetation cover. Bird community composition was strongly seasonal and influenced by a pool of bird species from a wider elevational gradient. There were also clear differences in bird community measures between tree‐line vegetation, cloud forest and puna grassland with species turnover (β‐diversity) most pronounced at the tree‐line. Canonical Correspondence Analysis revealed that the majority of the 81 bird species were associated with tree‐line vegetation. Categorizing patterns of relative abundance of the 42 most common species revealed that the tree‐line ecotone was composed primarily of cloud forest specialists and habitat generalists, with very few species from the puna grassland. Only two species, Thlypopsis ruficeps and Anairetes parulus, both widespread Andean species more typical of montane woodland vegetation edges, were categorized as ecotone specialists. However, our findings were influenced by significant differences in species detectability between all three vegetation communities. Our study highlights the importance of examining ecotones at an appropriate spatial and temporal scale. Selecting a suitable distance between sampling points based on the detection probabilities of the target bird species is essential to obtain an unbiased picture of how ecotones influence avian richness and diversity.  相似文献   

11.
The reduction–oxidation (redox) state of peatland pore waters plays an important role in many peatland biogeochemical processes. Recent research has also shown that the interface between ecosystems, or the ecotone, may be responsible for a disproportionate amount of biogeochemical activity when material and/or energy is hydrologically transported between ecosystems. The purpose of this research was to examine the spatiotemporal dynamics of redox conditions across two geomorphically distinct Boreal Precambrian Shield upland–peatland ecotones to determine the spatial and temporal scales at which these ecotones may be important. Pore water chemistry of iron and sulphur species was monitored across two upland–peatland ecotones in northwestern Ontario in conjunction with hydrological measurements under both stormflow and nonstormflow conditions. In addition, one upland–peatland ecotone was instrumented to make continuous measurements of in situ redox potential (Eh) over a 12-day period to determine whether measurements at a high temporal scale could provide additional insights into the transfer of nutrients across the upland–peatland interface. Results indicated that hydrology—specifically, groundwater flowpath and the strength of the hydrological connection between upland and peatland—determined the spatial extent of the ecotone as a biogeochemical hotspot. In situ Eh measurements showed that these ecotones may be most important over a scale of only several hours and are largely affected by lateral hydrological flows from the upland. The role of both hot spots and hot moments in biogeochemistry must be considered to accurately estimate the ability of a single ecosystem to process chemical inputs.  相似文献   

12.
Aim We examined relationships between climate–disturbance gradients and patterns of vegetation zonation and ecotones on a subtropical mountain range. Location The study was conducted on the windward slopes of the Cordillera Central, Dominican Republic, where cloud forest appears to shift in a narrow ecotone to monodominant forest of Pinus occidentalis. Methods Climate, disturbance and vegetation data were collected over the elevation range 1100–3100 m and in 50 paired plots along the ecotone. Aerial photographs were georeferenced to a high‐resolution digital elevation model in order to enable the analysis of landscape‐scale patterns of the ecotone. Results A Shipley–Keddy test detected discrete compositional ecotones at 2200 and 2500 m; the distributions of tree species at lower elevations were continuous. The elevation of the ecotone determined with aerial photographs was fairly consistent, namely ± 164 m (SD) over its 124‐km length, but it exhibited significant landscape variation, occurring at a lower elevation in a partially leeward, western zone. The ecotone also occurred significantly lower on ridges than it did in drainage gullies. Ecotone forest structure and composition differed markedly between paired plots. In pine paired plots, the canopy height was 1.7 times higher and the basal area of non‐pine species was 6 times lower than in the cloud forest directly below. Fire evidence was ubiquitous in the pine forest but rare in the abutting cloud forest. Mesoclimate changed discontinuously around the elevation of the ecotone: humidity and cloud formation decreased markedly, and frost frequency increased exponentially. Main conclusions The discreteness of the ecotone was produced primarily by fire. The elevational consistency of the ecotone, however, resulted from the overarching influence of mesoclimate on the elevational patterns of fire occurrence. Declining temperature and precipitation combine with the trade‐wind inversion to create a narrow zone where high‐elevation fires extinguish, enabling fire‐sensitive and fire‐tolerant taxa to abut. Once established, mesotopography and contrasting vegetation physiognomy probably reinforce this boundary through feedbacks on microenvironment and fire likelihood. The prominence of the pine in this study – and of temperate and fire‐tolerant taxa in subtropical montane forests in general – highlights the importance of climate‐disturbance–biogeography interactions in ecotone formation, particularly where fire mediates a dynamic between climate and vegetation.  相似文献   

13.
Circumpolar expansion of tall shrubs and trees into Arctic tundra is widely thought to be occurring as a result of recent climate warming, but little quantitative evidence exists for northern Siberia, which encompasses the world's largest forest‐tundra ecotonal belt. We quantified changes in tall shrub and tree canopy cover in 11, widely distributed Siberian ecotonal landscapes by comparing very high‐resolution photography from the Cold War‐era ‘Gambit’ and ‘Corona’ satellite surveillance systems (1965–1969) with modern imagery. We also analyzed within‐landscape patterns of vegetation change to evaluate the susceptibility of different landscape components to tall shrub and tree increase. The total cover of tall shrubs and trees increased in nine of 11 ecotones. In northwest Siberia, alder (Alnus) shrubland cover increased 5.3–25.9% in five ecotones. In Taymyr and Yakutia, larch (Larix) cover increased 3.0–6.7% within three ecotones, but declined 16.8% at a fourth ecotone due to thaw of ice‐rich permafrost. In Chukotka, the total cover of alder and dwarf pine (Pinus) increased 6.1% within one ecotone and was little changed at a second ecotone. Within most landscapes, shrub and tree increase was linked to specific geomorphic settings, especially those with active disturbance regimes such as permafrost patterned‐ground, floodplains, and colluvial hillslopes. Mean summer temperatures increased at most ecotones since the mid‐1960s, but rates of shrub and tree canopy cover expansion were not strongly correlated with temperature trends and were better correlated with mean annual precipitation. We conclude that shrub and tree cover is increasing in tundra ecotones across most of northern Siberia, but rates of increase vary widely regionally and at the landscape scale. Our results indicate that extensive changes can occur within decades in moist, shrub‐dominated ecotones, as in northwest Siberia, while changes are likely to occur much more slowly in the highly continental, larch‐dominated ecotones of central and eastern Siberia.  相似文献   

14.
We evaluated whether evolution is faster at ecotones as niche shifts may be needed to persist under unstable environment. We mapped diet evolution along the evolutionary history of 350 sigmodontine species. Mapping was used in three new tip‐based metrics of trait evolution – Transition Rates, Stasis Time, and Last Transition Time – which were spatialized at the assemblage level (aTR, aST, aTL). Assemblages were obtained by superimposing range maps on points located at core and ecotone of the 93 South American ecoregions. Using Linear Mixed Models, we tested whether ecotones have species with more changes from the ancestral diet (higher aTR), have maintained the current diet for a shorter time (lower aST), and have more recent transitions to the current diet (lower aLT) than cores. We found lower aTR, and higher aST and aLT at ecotones than at cores. Although ecotones are more heterogeneous, both environmentally and in relation to selection pressures they exert on organisms, ecotone species change little from the ancestral diet as generalist habits are necessary toward feeding in ephemeral environments. The need to incorporate phylogenetic uncertainty in tip‐based metrics was evident from large uncertainty detected. Our study integrates ecology and evolution by analyzing how fast trait evolution is across space.  相似文献   

15.
Ecotones are gradual transitions between two adjacent ecological systems. Ecotones are characterized by their spatial properties which are reflected in an ecotone width and location and the temporal variation across time during succession or environmental change on both a local and a global scale. If only one main environmental factor drives this gradual change the shape of the ecotone is evident as a sigmoid wave. In this paper we explore a two-dimensional sigmoid wave curve fitting algorithm that describes an ecotone and validate it on classified remote sensing data of a forest-tundra ecotone in the Northwest Territories of Canada. The estimated location and width of the forest-tundra ecotone are validated with digital land cover data. We conclude that the algorithm was able to delineate the forest-tundra ecotone based upon the classified remote sensing image and is robust for various algorithm parameter settings.  相似文献   

16.
Aim  To forecast the responses of alpine flora to the expected upward shift of treeline ecotones due to climatic warming, we investigated species richness patterns of vascular plants at small spatial scales across elevational transects.
Location  Richness patterns were assessed at local scales along the elevational gradient in two undisturbed treeline ecotones and one disturbed treeline ecotone in the Spanish Pyrenees.
Methods  We placed a rectangular plot (0.3–0.4 ha) in each treeline ecotone. We estimated and described the spatial patterns of plant richness using the point method and Moran's I correlograms. We delineated boundaries based on plant richness and tree cover using moving split windows and wavelet analysis. Then, to determine if floristic and tree cover boundaries were spatially related, overlap statistics were used.
Results  Plant richness increased above the forest limit and was negatively related to tree cover in the undisturbed sites. The mean size of richness patches in one of these sites was 10–15 m. Moving split windows and wavelets detected the sharpest changes in plant richness above the forest limit at both undisturbed sites. Most tree cover and plant richness boundaries were not spatially related.
Main conclusions  The upslope decrease of tree cover may explain the increase of plant richness across alpine treeline ecotones. However, the detection of abrupt richness boundaries well above the forest limit indicates the importance of local environmental heterogeneity to explain the patterns of plant richness at smaller scales. We found highly diverse microsites dominated by alpine species above the forest limit, which should be monitored to describe their response to the predicted upward shift of forests.  相似文献   

17.
Rapid changes in species composition, also known as ecotones, can result from various causes including rapid changes in environmental conditions, or physiological thresholds. The possibility that ecotones arise from ecological niche construction by ecosystem engineers has received little attention. In this study, we investigate how the diversity of ecosystem engineers, and their interactions, can give rise to ecotones. We build a spatially explicit dynamical model that couples a multispecies community and its abiotic environment. We use numerical simulations and analytical techniques to determine the biotic and abiotic conditions under which ecotone emergence is expected to occur, and the role of biodiversity therein. We show that the diversity of ecosystem engineers can lead to indirect interactions through the modification of their shared environment. These interactions, which can be either competitive or mutualistic, can lead to the emergence of discrete communities in space, separated by sharp ecotones where a high species turnover is observed. Considering biodiversity is thus critical when studying the influence of species–environment interactions on the emergence of ecotones. This is especially true for the wide range of species that have small to moderate effects on their environment. Our work highlights new mechanisms by which biodiversity loss could cause significant changes in spatial community patterns in changing environments.  相似文献   

18.
Bowersox  Mark A.  Brown  Daniel G. 《Plant Ecology》2001,156(1):89-103
The use of statistics of landscape pattern to infer ecological process at ecotones requires knowledge of the specific sensitivities of statistics to ecotone characteristics. In this study, sets of patch-based and boundary-based statistics were evaluated to assess their suitability as measures of abruptness on simulated ecotone landscapes. We generated 50 realizations each for 25 groups of ecotones that varied systematically in their degree of abruptness and patchiness. Factorial ANOVA was used to evaluate the sensitivity of statistics to the known differences among the simulated groups. Suitability of each index for measuring abruptness was evaluated using the ANOVA results. The statistics were then ranked in order of their suitability as abruptness statistics based on their sensitivity to abruptness, the consistency of the relationship, and their lack of sensitivity to patchiness. The two best statistics for quantifying abruptness were those we developed based on lattice delineation methods, and are called cumulative boundary elements and boundary element dispersion. The results of this research provide support for studies of ecotone process that rely on the interpretation of patch or boundary statistics.  相似文献   

19.
The fundamental niche of many species is shifting with climate change, especially in sub‐arctic ecosystems with pronounced recent warming. Ongoing warming in sub‐arctic regions should lessen environmental constraints on tree growth and reproduction, leading to increased success of trees colonising tundra. Nevertheless, variable responses of treeline ecotones have been documented in association with warming temperatures. One explanation for time lags between increasingly favourable environmental conditions and treeline ecotone movement is reproductive limitations caused by low seed availability. Our objective was to assess the reproductive constraints of the dominant tree species at the treeline ecotone in the circumpolar north. We sampled reproductive structures of trees (cones and catkins) and stand attributes across circumarctic treeline ecotones. We used generalized linear mixed models to estimate the sensitivity of seed production and the availability of viable seed to regional climate, stand structure, and species‐specific characteristics. Both seed production and viability of available seed were strongly driven by specific, sequential seasonal climatic conditions, but in different ways. Seed production was greatest when growing seasons with more growing degree days coincided with years with high precipitation. Two consecutive years with more growing degree days and low precipitation resulted in low seed production. Seasonal climate effects on the viability of available seed depended on the physical characteristics of the reproductive structures. Large‐coned and ‐seeded species take more time to develop mature embryos and were therefore more sensitive to increases in growing degree days in the year of flowering and embryo development. Our findings suggest that both moisture stress and abbreviated growing seasons can have a notable negative influence on the production and viability of available seed at treeline. Our synthesis revealed that constraints on predispersal reproduction within the treeline ecotone might create a considerable time lag for range expansion of tree populations into tundra ecosystems.  相似文献   

20.
Question: Does shrub invasion at ecotones indirectly limit grass establishment by increasing mammalian seedling herbivory? Location: Chihuahuan Desert, New Mexico, USA. Methods: We tested the hypothesis that herbivore‐related mortality of seedlings of the dominant perennial grass Bouteloua eriopoda would be highest in shrub‐dominated portions of grassland‐shrubland ecotones. We tested the hypothesis in two Chihuahuan Desert sites featuring similar shrub encroachment patterns but different shrub species, grass cover, and different abundances of small mammals. Within each site we transplanted B. eriopoda seedlings to grass‐dominated, middle, and shrub‐dominated positions of replicate ecotones during the time of year (mid‐summer) when they would naturally appear and monitored seedling fates. We estimated population size/activity of putative small mammal herbivores. Results: Seedlings were killed by mammals in greater numbers in shrubland than in grassland or middle ecotone positions at the site with large herbivore numbers. At the site with low herbivore numbers, most seedlings were killed in middle ecotone positions. The abundance patterns of herbivores did not parallel patterns of seedling herbivory across the ecotones or between sites. Conclusions: Seedling herbivory is an important process and is related to vegetation composition, but the mechanisms underlying the relationship are not clear. We speculate that variation in small mammal foraging behavior may contribute to seedling herbivory patterns. Restoration strategies in the Chihuahuan Desert need to account for the abundance and/or behavior of native herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号