首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
猪重要胴体性状的遗传定位   总被引:1,自引:0,他引:1  
苏玉虹  马宝钰  熊远著 《遗传》2004,26(2):163-166
为了寻找影响猪重要胴体性状主基因在染色体的位置,我们以大白猪和梅山猪为父母本建立了F2资源家系。随机选留81头F2代个体,经屠宰获得猪胴体性状数据。结合家系个体的48个微卫星标记基因型,用线性模型最小二乘法对各胴体性状进行数量性状基因座(QTL)的区间定位。定位结果表明位于猪染色体(SSC)4号的瘦肉率和瘦肉量QTL达到基因组极显著水平;SSC1、2和4上眼肌面积QTL达到染色体显著水平;位于SSC1和4上的眼肌高度QTL与眼肌面积QTL在同一染色体区域;而眼肌宽度QTL位于SSC6;位于SSC7同一标记区间的皮重、皮率、骨重和骨率QTL表现出很好的一致性,均达到染色体显著水平。SSC6和7的体长QTL达到染色体显著水平。 Abstract: To detect quantitative trait loci (QTL) for body composition traits in pigs, a resource family with three-generation was developed by using Large White grand sires and Meishan grand dams. A total of 81 F2 progenies were phenotyped for body composition. All animals were genotyped for microsatellite markers. The main results are as follows:, the strongest linkages at genome-wise level of lean meat percentage and total meat content were detected on SSC1 and 4. QTLs for loin eye area were located on SSC1, 2 and 4, QTLs for loin eye height on SSC 1 and 4, and QTLs for loin eye width on SSC 6. The best positions estimated for QTLs of skin percentage and of skin weight were in the same marker interval. Two QTLs significant at genome-wise level or highly significant at chromosome-wide level for carcass length were located on SSC6 and 7.  相似文献   

2.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus muscle tissues from Meishan and Large White pigs. One novel mRNA that was differentially expressed was identified through semi-quantitative RT-PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the mRNA is not homologous to any of the known porcine genes. Sequence prediction analysis revealed that the this mRNA is not protein-coding mRNA. Polymorphism analyses revealed that there was a C-T mutation on the position of 669 bp and PCR -Dra I-RFLP analyses revealed that Chinese indigenous pig breeds and exotic pig breeds displayed obvious genotype and allele frequency differences at this locus. Association analyses revealed that this polymorphic locus was significantly associated with the drip loss rate, skin percentage, meat color value (m.Longissimus Dorsi, LD), loin eye width, loin eye area, water holding capacity, carcass length, caul fat weight, intramuscular fat (m.Longissimus Dorsi, LD), lean meat weight, lean meat percentage, backfat thickness at buttock (< 0.05).  相似文献   

3.
4.
An F2 cross between Duroc and Large White pigs was carried out in order to detect quantitative trait loci (QTL) for 11 meat quality traits (L*, a* and b* Minolta coordinates and water-holding capacity (WHC) of two ham muscles, ultimate pH of two ham and one loin muscles), 13 production traits (birth weight, average daily gain during post-weaning and fattening periods, carcass fat depths at three locations, estimated lean meat content, carcass length and weights of five carcass cuts) and three stress hormone-level traits (cortisol, adrenaline and noradrenaline). Animals from the three generations of the experimental design (including 456 F2 pigs) were genotyped for 91 microsatellite markers covering all the autosomes. A total of 56 QTL were detected: 49 reached the chromosome-wide level (suggestive QTL with a maximal probability of 0.05) and seven were significant at the genome-wide level (with a probability varying from 6 × 10(-4) to 3 × 10(-3)). Twenty suggestive QTL were identified for ultimate pH, colour measurements and WHC on chromosome (SSC) 5, 6, 7, 8, 9, 11, 13, 14, 15 and 17. For production traits, 33 QTL were detected on all autosomes except SSC6, 8 and 9. Seven of these QTL, located on SSC2, 3, 10, 13, 16 and 17, exceeded the genome-wide significance threshold. Finally, three QTL were identified for levels of stress hormones: a QTL for cortisol level on SSC7 in the cortisol-binding globulin gene region, a QTL for adrenaline level on SSC10 and a QTL for noradrenaline level on SSC13. Among all the detected QTL, seven are described for the first time: a QTL for ultimate pH measurement on SSC5, two QTL affecting birth weight on SSC2 and 10, two QTL for growth rate on SSC15 (during fattening) and 17 (during post-weaning) and two QTL affecting the adrenaline and noradrenaline levels. For each QTL, only one to five of the six F1 sires were found to be heterozygous. It means that all QTL are segregating in at least one of the founder populations used in this study. These results suggest that both meat quality and production traits can be improved in purebred Duroc and Large White pigs through marker-assisted selection. It is of particular interest for meat quality traits, which are difficult to include in classical selection programmes.  相似文献   

5.
An autosomal scan of the swine genome with 119 polymorphic microsatellite (ms) markers and data from 116 F2 barrows of the University of Illinois Meishan x Yorkshire Swine Resource Families identified genomic regions with effects on variance in carcass composition and meat quality at nominal significance (p-value <0.05). Marker intervals on chromosomes 1, 6, 7, 8 and 12 (SSC1, SSC6, SSC7, SSC8, SSC12) with phenotypic effects on carcass length, 10th rib backfat thickness, average backfat thickness, leaf fat, loin eye area and intramuscular fat content confirm QTL effects identified previously based on genome wide significance (p-value <0.05). Several marker intervals included nominally significant (p-value <0.05) dominance effects on leaf fat, 10th rib backfat thickness, loin eye area, muscle pH and intramuscular fat content.  相似文献   

6.
A quantitative trait locus (QTL) analysis of carcass composition data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. A total of 488 F2 males issued from six F1 boars and 23 F1 sows, the progeny of six LW boars and six MS sows, were slaughtered at approximately 80 kg live weight and were submitted to a standardised cutting of the carcass. Fifteen traits, i.e. dressing percentage, loin, ham, shoulder, belly, backfat, leaf fat, feet and head weights, two backfat thickness and one muscle depth measurements, ham + loin and back + leaf fat percentages and estimated carcass lean content were analysed. Animals were typed for a total of 137 markers covering the entire porcine genome. Analyses were performed using a line-cross (LC) regression method where founder lines were assumed to be fixed for different QTL alleles and a half/full sib (HFS) maximum likelihood method where allele substitution effects were estimated within each half-/full-sib family. Additional analyses were performed to search for multiple linked QTL and imprinting effects. Significant gene effects were evidenced for both leanness and fatness traits in the telomeric regions of SSC 1q and SSC 2p, on SSC 4, SSC 7 and SSC X. Additional significant QTL were identified for ham weight on SSC 5, for head weight on SSC 1 and SSC 7, for feet weight on SSC 7 and for dressing percentage on SSC X. LW alleles were associated with a higher lean content and a lower fat content of the carcass, except for the fatness trait on SSC 7. Suggestive evidence of linked QTL on SSC 7 and of imprinting effects on SSC 6, SSC 7, SSC 9 and SSC 17 were also obtained.  相似文献   

7.
Huang Y  Haley CS  Wu F  Hu S  Hao J  Wu C  Li N 《Animal genetics》2007,38(2):114-119
Quantitative trait loci (QTL) for carcass and meat quality traits were detected in a sample of 224 progeny from four males in line VI and 12 females in line V of Beijing ducks. These lines were selected for high body weight at 42 days of age (line VI) or high egg production at 360 days of age (line V). Traits were weights of the carcass, head, neck, shanks, wings, legs, thighs, breast, heart, liver, crop, gizzard, abdominal fat (AFW) and skin fat, as well as fat thickness in the tail, and pH value, shear force, drip loss (DL) (%) and cooking loss (CL) (%) of the breast. Using a half-sib analysis with a multiple QTL model, linkage between the carcass and meat quality traits and 95 microsatellite markers was investigated. Eight genome-wide significant QTL for weight of crop, skin fat, liver, neck, shanks, wings, DL were detected on linkage groups CAU4 and CAU6. One genome-wide suggestive QTL and one chromosome-wide significant QTL for weight of breast were found on CAU1 and CAU4 respectively. Fifteen chromosome-wide suggestive QTL influencing weight of AFW, breast, crop, heart, carcass, thighs, liver, shanks, gizzard, fat thickness in tail, DL (%) and CL (%) were mapped on CAU2, CAU4, CAU5, CAU6, CAU7, CAU10 and CAU13. In addition, two linked QTL for weight of liver and DL (%) were located on CAU2 and CAU7 respectively. The detection of QTL in ducks is a step towards identification of genes influencing these traits and their use for genetic improvement in this species.  相似文献   

8.
A three-generation full-sib resource family was constructed by crossing two commercial pig lines. Genotypes for 37 molecular markers covering chromosomes SSC1, SSC6, SSC7 and SSC13 were obtained for 315 F2 animals of 49 families and their parents and grandparents. Phenotypic records of traits including carcass characteristics measured by the AutoFOM grading system, dissected carcass cuts and meat quality characteristics were recorded at 140 kg slaughter weight. Furthermore, phenotypic records on live animals were obtained for chemical composition of the empty body, protein and lipid accretion (determined by the deuterium dilution technique), daily gain and feed intake during the course of growth from 30 to 140 kg body weight. Quantitative trait loci (QTL) detection was conducted using least-squares regression interval mapping. Highest significance at the 0.1% chromosome-wise level was obtained for five QTL: AutoFOM belly weight on SSC1; ham lean-meat weight, percentage of fat of primal cuts and daily feed intake between 60 and 90 kg live weight on SSC6; and loin lean-meat weight on SSC13. QTL affecting daily gain and protein accretion were found on SSC1 in the same region. QTL for protein and lipid content of empty body at 60 kg liveweight were located close to the ryanodine receptor 1 (RYR1) locus on SSC6. On SSC13, significant QTL for protein accretion and feed conversion ratio were detected during growth from 60 to 90 kg. In general, additive genetic effects of alleles originating from the Piétrain line were associated with lower fatness and larger muscularity as well as lower daily gain and lower protein accretion rates. Most of the QTL for carcass characteristics were found on SSC6 and were estimated after adjustment for the RYR1 gene. QTL for carcass traits, fatness and growth on SSC7 reported in the literature, mainly detected in crosses of commercial lines x obese breeds, were not obtained in the present study using crosses of only commercial lines, suggesting that these QTL are not segregating in the analysed commercial lines.  相似文献   

9.
Protected designation of origin dry-cured hams are obtained from heavy pigs (slaughtered at about 160 kg of live weight). A specific breeding program designed to improve meat quality for this production has included as key traits the level of intermuscular fat between the leg muscles and ham weight loss during the seasoning period together with a balance between fat and lean cuts. In this study we carried out genome-wide association studies for seven traits used in the genetic merit of Italian Duroc heavy pigs, five related to meat and carcass quality traits (visible intermuscular fat, ham weight loss at first salting, backfat thickness, ham weight and lean cuts), and two related to performance and efficiency traits (average daily gain and feed : gain ratio). A total of 573 performance-tested pigs were genotyped with the Illumina PorcineSNP60 BeadChip and genome-wide association analyses were carried out using the Bayes B approach with the 1 Mb window option of GenSel and random residuals for each of the seven traits. Detected windows were supported by independent single nucleotide polymorphism analyses with a linear mixed model (LMM) approach on the same animals for the same traits. A total of 30 windows identifying different quantitative trait loci (QTL) were detected and among those, 27 were confirmed by LMM in one of these traits. Among the confirmed windows, three QTL were reported for visible intermuscular fat, seven for ham weight loss at first salting and five and four for backfat thickness and lean cut, respectively. A total of eight QTL were detected for the other production traits. No overlapping QTL were reported except for one window on porcine chromosome 10 between lean cuts and ham weight that contained the CACNB2 gene that has been already associated with loin marbling score in other Duroc pigs. Several regions contained genes that have been already associated with production traits in other pig breeds, including Duroc lines, related to fat deposition or muscle structure. This work reports, for the first time, genome-wide association study results for several traits in Italian Duroc heavy pigs. These results will be useful to dissect the genetic basis for dry-cured ham production traits that determine the total genetic merit index of Italian Duroc pigs.  相似文献   

10.
Quantitative trait loci affecting fatness in the chicken   总被引:13,自引:0,他引:13  
An F2 chicken population of 442 individuals from 30 families, obtained by crossing a broiler line with a layer line, was used for detecting and mapping Quantitative Trait Loci (QTL) affecting abdominal fat weight, skin fat weight and fat distribution. Within-family regression analyses using 102 microsatellite markers in 27 linkage groups were carried out with genome-wide significance thresholds. The QTL for abdominal fat weight were found on chromosomes 3, 7, 15 and 28; abdominal fat weight adjusted for carcass weight on chromosomes 1, 5, 7 and 28; skin and subcutaneous fat on chromosomes 3, 7 and 13; skin fat weight adjusted for carcass weight on chromosomes 3 and 28; and skin fat weight adjusted for abdominal fat weight on chromosomes 5, 7 and 15. Interactions of the QTL with sex or family were unimportant and, for each trait, there was no evidence for imprinting or of multiple QTL on any chromosome. Significant dominance effects were obtained for all but one of the significant locations for QTL affecting the weight of abdominal fat, none for skin fat and one of the three QTL affecting fat distribution. The magnitude of each QTL ranged from 3.0 to 5.2% of the residual phenotypic variation or 0.2-0.8 phenotypic standard deviations. The largest additive QTL (on chromosome 7) accounted for more than 20% of the mean weight of abdominal fat. Significant positive and negative QTL were identified from both lines.  相似文献   

11.
MyoG基因的遗传效应分析   总被引:11,自引:1,他引:10  
朱砺  李学伟 《遗传》2005,27(5):710-714
实验采用PCR-RFLP技术分析了不同品种猪MyoG基因3′端MspⅠ位点的多态性,应用单标记回归模型分析了不同基因型与相关性状间的关联性及不同等位基因的遗传效应。结果表明:N等位基因能极显著地增加胴体瘦肉率和眼肌面积,降低皮脂含量(P<0.01),改善胴体产肉量和提高胴体品质;同时,不同基因型对肉质性状的遗传影响作用较大,表现为N等位基因能极显著地降低猪肉品质,使pH值、肉色和肌内脂肪含量降低,并使肌肉的系水力变差(P<0.01)。N等位基因对增加胴体瘦肉率的加性效应值和显性效应值分别为3.929%和-0.602%;对增加眼肌面积的加性效应值和显性效应值分别为2.0985 cm2和-0.5775 cm2;对皮脂率的加性效应值为-3.0245%,显性效应值为-0.4045%。N等位基因对pH1的加性效应值和显性效应值分别为-0.167和0.034;对贮藏损失的加性效应值和显性效应值分别为0.558和-0.347;对肌内脂肪含量的加性效应值和显性效应值分别为-0.963和-0.217。但MyoG基因3′端MspⅠ位点的突变对FOM肉脂仪测定的胴体等级性状的影响不显著(P>0.05)。  相似文献   

12.
The growth performance and carcass traits of two fat-tailed breeds (Chaal and Zandi) and their crosses with rams of a tailed breed (Zel) were compared. After weaning, the growth and feed consumption of male and female lambs fattened for 114 days were recorded. A total of 45 male and female lambs were slaughtered and the left side of the carcasses were cut into six pieces, and the lean meat, bone, subcutaneous and intermuscular fat were determined. Average daily gain and feed conversion ratio in crossbred lambs improved, but the differences with pure lambs were not significant. The average weight of shoulder, brisket and loin were higher in crossbred than pure breed lambs (P < 0.01). The percentage of protein in the carcass of Zel × Zandi lambs was significantly higher than Zandi lambs. The smaller size and lower weight of fat-tail in crossbred lambs were compensated by higher percentage of subcutaneous, intermuscular and internal fat. The fat-tailed breeds provided good quality lean meat in terms of lower percentage of intermuscular fat.  相似文献   

13.
The effects of the mouse monoclonal antibody against 40 kDa adipocyte-specific plasma membrane protein on porcine adipocytes and carcass composition were investigated in vitro and in vivo. Results revealed that the in vitro complement-mediated cytotoxicity of this monoclonal antibody can lead to adipocyte lysis, remarkable reduction of adipocyte lipid accumulation (P〈0.01), and significant decrease of well-differentiated fat cells (P〈0.01). Treatment of adipocytes with this antibody alone in vitro did not induce cell lysis, but could lead to noticeable reduction of well-differentiated cells and lipid accumulation (P〈0.05) at the pre-adipocyte stage. In vivo, pigs injected with 0.5 mg/kg or 1.0 mg/kg of antibody showed smaller adipocyte sizes (P〈0.01) and reduced lipid accumulation of adipocytes (P〈0.01). Our results also indicated that pigs intraperitoneally or subcutaneously immunized with 0.5 mg/kg of monoclonal antibody at 15 kg or 1.0 mg/kg antibody at 60 kg had a higher lean meat percentage (P〈0.05), larger loin eye area (P〈0.05), lower fat meat percentage (P〈0.05), less backfat thickness (P〈0.05) and smaller leaf fat weight (P〈0.05) than the control pigs, but other carcass traits such as caul fat weight, heart weight, liver weight, spleen weight, kidney weight, lung weight, and dressing percentage were not significantly affected. These results suggested that this monoclonal antibody could be applied to restrain excessive fat deposition in porcine production.  相似文献   

14.
Results from a QTL experiment on growth and carcass traits in an experimental F2 cross between Iberian and Landrace pigs are reported. Phenotypic data for growth, length of carcass and muscle mass, fat deposition and carcass composition traits from 321 individuals corresponding to 58 families were recorded. Animals were genotyped for 92 markers covering the 18 porcine autosomes (SSC). The results from the genomic scan show genomewide significant QTL in SSC2 (longissimus muscle area and backfat thickness), SSC4 (length of carcass, backfat thickness, loin, shoulder and belly bacon weights) and SSC6 (longissimus muscle area, backfat thickness, loin, shoulder and belly bacon weights). Suggestive QTL were also found on SSC1, SSC5, SSC7, SSC8, SSC9, SSC13, SCC14, SSC16 and SSC17. A bidimensional genomic scan every 10 cM was performed to detect interaction between QTL. The joint action of two suggestive QTL in SSC2 and SSC17 led to a genome-wide significant effect in live weight. The results of the bidimensional genomic scan showed that the genetic architecture was mainly additive or the experimental set-up did not have enough power to detect epistatic interactions.  相似文献   

15.
Body weight and abdominal fat traits in meat-type chickens are complex and economically important factors. Our objective was to identify quantitative trait loci (QTL) responsible for body weight and abdominal fat traits in broiler chickens. The Northeast Agricultural University Resource Population (NEAURP) is a cross between broiler sires and Baier layer dams. We measured body weight and abdominal fat traits in the F(2) population. A total of 362 F(2) individuals derived from four F(1) families and their parents and F(0) birds were genotyped using 29 fluorescent microsatellite markers located on chromosomes 3, 5 and 7. Linkage maps for the three chromosomes were constructed and interval mapping was performed to identify putative QTLs. Nine QTL for body weight were identified at the 5% genome-wide level, while 15 QTL were identified at the 5% chromosome-wide level. Phenotypic variance explained by these QTL varied from 2.95 to 6.03%. In particular, a QTL region spanning 31 cM, associated with body weight at 1 to 12 weeks of age and carcass weight at 12 weeks of age, was first identified on chromosome 5. Three QTLs for the abdominal fat traits were identified at the 5% chromosome-wide level. These QTLs explained 3.42 to 3.59% of the phenotypic variance. This information will help direct prospective fine mapping studies and can facilitate the identification of underlying genes and causal mutations for body weight and abdominal fat traits.  相似文献   

16.
17.
A multivariate QTL detection was carried out on fatness and carcass composition traits on porcine chromosome 7 (SSC7). Single-trait QTLs have already been detected in the SLA region, and multivariate approaches have been used to exploit the correlations between the traits to obtain more information on their pattern: almost 500 measurements were recorded for backfat thickness (BFT1, BFT2), backfat weight (BFW) and leaf fat weight (LFW) but only about half that number for intramuscular fat content (IMF), affecting the detection. First, groups of traits were selected using a backward selection procedure: traits were selected based on their contribution to the linear combination of traits discriminating the putative QTL haplotypes. Three groups of traits could be distinguished based on successive discriminant analyses: external fat (BFT1, BFT2), internal fat (LFW, IMF) and BFW. At least four regions were distinguished, preferentially affecting one or the other group, with the SLA region always influencing all the traits. Meishan alleles decreased all trait values except IMF, confirming an opportunity for marker-assisted selection to improve meat quality with maintenance of carcass composition based on Meishan alleles.  相似文献   

18.
Genome scans can be employed to identify chromosomal regions and eventually genes (quantitative trait loci or QTL) that control quantitative traits of economic importance. A three-generation resource family was developed by using two Berkshire grand sires and nine Yorkshire grand dams to detect QTL for growth and body composition traits in pigs. A total of 525 F2 progeny were produced from 65 matings. All F2 animals were phenotyped for birth weight, 16-day weight, growth rate, carcass weight, carcass length, back fat thickness, and loin eye area. Animals were genotyped for 125 microsatellite markers covering the genome. Least squares regression interval mapping was used for QTL detection. All carcass traits were adjusted for live weight at slaughter. A total of 16 significant QTL, as determined by a permutation test, were detected at the 5% chromosome-wise level for growth traits on Chromosomes (Chrs) 1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, and X, of which two were significant at the 5% genome-wise level and two at the 1% genome-wise level (on Chrs 1, 2, and 4). For composition traits, 20 QTL were significant at the 5% chromosome-wise level (on Chrs 1, 4, 5, 6, 7, 12, 13, 14, 18), of which one was significant at the 5% genome-wise level and three were significant at the 1% genome-wise level (on Chrs 1, 5, and 7). For several QTL the favorable allele originated from the breed with the lower trait mean. Received: 29 November 2000 / Accepted: 27 March 2001  相似文献   

19.
Texel muscling quantitative trait locus (TM-QTL) is a QTL on chromosome 18, originally identified in purebred UK Texel sheep, which was reported to increase ultrasonically measured muscle depth at the third lumbar vertebra by around 4% to 7%. The objective of the present study was to comprehensively evaluate the TM-QTL and to determine whether it could provide benefits to the UK sheep industry through increased carcass meat yield in crossbred slaughter lambs. Effects of this QTL on a range of carcass traits, including those measured in vivo and by dissection, were evaluated in heterozygous carrier and non-carrier lambs produced by crossing heterozygous carrier Texel rams with non-carrier Mule (Bluefaced Leicester × Scottish Blackface) ewes from a lowland flock. The TM-QTL was found to increase loin muscling in crossbred lambs at a given live weight or carcass weight, as measured by ultrasound, X-ray computed tomography (CT) and carcass dissection. Depth of M. longissimus lumborum (MLL) was greater in TM-QTL carrier lambs compared to non-carriers as measured by both ultrasound at the third lumbar vertebra (+4.5%; P = 0.033) and CT scanning at the fifth lumbar vertebra (+6.7%; P = 0.004). Width and area of MLL measured using CT were also greater in TM-QTL carrier lambs compared to non-carriers (+3.0%; P = 0.013 and +5.1%; P = 0.047, respectively). Loin muscle volume measured using CT was greater in TM-QTL carriers than in non-carriers (+5.9%; P = 0.005) and the dissected weight of the MLL was +7.1% greater in TM-QTL carriers compared to non-carriers (P < 0.001). The proportion of the total carcass lean meat yield (LMY) that was contained within the loin region was slightly higher in TM-QTL carriers than in non-carriers (0.154 v. 0.145; P = 0.006). However, TM-QTL was found to have no significant effect on the total weight or proportion of LMY or of saleable meat yield in the carcass measured by dissection, or on muscling in the hind leg measured by CT or dissection. This work has verified that the inheritance of TM-QTL is associated with increased loin muscling in crossbred lambs, as has previously been reported for purebred Texel lambs.  相似文献   

20.
The present study was aimed to compare the developmental changes of carcass composition, meat quality characteristics and organ weight in pigs of different breeds. Six pigs (sex balance) of each breed were slaughtered at 35, 80 and 125 days of age, respectively. The carcass was chilled and the left carcass side was dissected into bone, lean meat, fat and skin; additionally, organ weight and meat quality parameters were observed. Carcasses of the Jinhua pig were lighter (P < 0.001), contained less lean meat percentage (P < 0.01) and more carcass fat percentage (P < 0.05) than did carcasses of the Landrace. L*-values were lower in Jinhua pigs than in Landrace at 125 days of age (P < 0.05), but the Jinhua pig had higher a*-values compared with Landrace at the age of 80 days (P < 0.01) and 125 days (P < 0.01), respectively. In addition, Jinhua pigs showed lower colour scores (P < 0.05), higher intramuscular fat (IMF) percentage (P < 0.05), less marbling scores (P < 0.05) and lower drip loss (P < 0.05) than Landrace. For organ weight, Jinhua pigs had higher relative heart weight at the age of 80 days (P < 0.05) and 125 days (P < 0.001), and higher relative liver weight at 125 days of age (P < 0.01) than that of Landrace. In addition, the relative kidney weight was heavier (P < 0.001) in the Jinhua pig than in the Landrace during the whole experiment. These results indicated that developmental changes of carcass composition, meat quality parameters and organ weight displayed breed differences. Jinhua pigs were fatter than Landrace but the former had better quality characteristics in the meat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号