首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3-h exposure to NO donors (spermine-NO, DETA-NO, or SNAP), or to NOS II-expressing cells (activated macrophages or EMT6 cells) reversibly inhibited DNA synthesis in K562 tumor cells. In GSH-depleted K562 cells, cytostasis remained reversible when induced by DETA-NO or NOS II activity, but became irreversible after exposure to spermine-NO or SNAP. Only SNAP and spermine-NO efficiently inhibited GAPDH, an enzyme with a critical thiol, in GSH-depleted cells. Thus, the irreversible cytostasis induced in GSH-depleted cells by spermine-NO or SNAP can be tentatively attributed to S-nitrosating or oxidizing species derived from NO. However, these species did not contribute significantly to the early antiproliferative effects of macrophages. Ribonucleotide reductase, a key enzyme in DNA synthesis. has been shown to be inhibited by NO. Supplementation of the medium with deoxyribonucleosides to bypass RNR inhibition restored DNA synthesis in target cells exposed to DETA-NO and NO-producing cells, but was inefficient for GSH-depleted cells previously submitted to spermine-NO or SNAP. These cells also exhibited a persistent depletion of the dATP pool. In conclusion, GSH depletion reveals striking qualitative differences in the nature of the toxic effectors released by various NO sources, questioning the significance of S-nitrosating or oxidizing nitrogen oxides in NOS II-dependent cytostasis.  相似文献   

2.
Nitric oxide (NO) can trigger either necrotic or apoptotic cell death. We have used PC12 cells to investigate the extent to which NO-induced cell death is mediated by mitochondria. Addition of NO donors, 1 mM S-nitroso-N-acetyl-DL-penicillamine (SNAP) or 1 mM diethylenetriamine-NO adduct (NOC-18), to PC12 cells resulted in a steady-state level of 1-3 microM: NO, rapid and almost complete inhibition of cellular respiration (within 1 min), and a rapid decrease in mitochondrial membrane potential within the cells. A 24-h incubation of PC12 cells with NO donors (SNAP or NOC-18) or specific inhibitors of mitochondrial respiration (myxothiazol, rotenone, or azide), in the absence of glucose, caused total ATP depletion and resulted in 80-100% necrosis. The presence of glucose almost completely prevented the decrease in ATP level and the increase in necrosis induced by the NO donors or mitochondrial inhibitors, suggesting that the NO-induced necrosis in the absence of glucose was due to the inhibition of mitochondrial respiration and subsequent ATP depletion. However, in the presence of glucose, NO donors and mitochondrial inhibitors induced apoptosis of PC12 cells as determined by nuclear morphology. The presence of apoptotic cells was prevented completely by benzyloxycarbonyl-Val-Ala-fluoromethyl ketone (a nonspecific caspase inhibitor), indicating that apoptosis was mediated by caspase activation. Indeed, both NO donors and mitochondrial inhibitors in PC12 cells caused the activation of caspase-3- and caspase-3-processing-like proteases. Caspase-1 activity was not activated. Cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) decreased the activity of caspase-3- and caspase-3-processing-like proteases after treatment with NO donors, but was not effective in the case of the mitochondrial inhibitors. The activation of caspases was accompanied by the release of cytochrome c from mitochondria into the cytosol, which was partially prevented by cyclosporin A in the case of NO donors. These results indicate that NO donors (SNAP or NOC-18) may trigger apoptosis in PC12 cells partially mediated by opening the mitochondrial permeability transition pores, release of cytochrome c, and subsequent caspase activation. NO-induced apoptosis is blocked completely in the absence of glucose, probably due to the lack of ATP. Our findings suggest that mitochondria may be involved in both types of cell death induced by NO donors: necrosis by respiratory inhibition and apoptosis by opening the permeability transition pore. Further, our results indicate that the mode of cell death (necrosis versus apoptosis) induced by either NO or mitochondrial inhibitors depends critically on the glycolytic capacity of the cell.  相似文献   

3.
An excessive production of nitric oxide (NO) in response to cytokines has been shown to be the major cause of the destruction of islet beta-cells associated with type 1 (insulin-dependent) diabetes mellitus. The NO-induced beta-cell death is the typical apoptosis. In the present study, we show evidence that supports a tight link between NO, Ca2+, protease and apoptosis in beta-cells. Three different NO donors, SNAP, NOR3 and NOC7, induced apoptosis in a beta-cell line, MIN6 cells, in a concentration-dependent manner. SNAP at 200 microM increased cytosolic Ca2+ concentration ([Ca2+]i) and induced apoptosis. The SNAP-induced apoptosis was blocked by a Ca2+ chelator, BAPTA-AM, and by an inhibitor of a Ca2+-dependent protease, calpain. In conclusion, an excessive NO production induces apoptosis, wherein an increase in [Ca2+]i and resultant activation of calpain play a key role.  相似文献   

4.
Nitric oxide induces oxidative stress and apoptosis in neuronal cells   总被引:9,自引:0,他引:9  
Within the central nervous system and under normal conditions, nitric oxide (NO) is an important physiological signaling molecule. When produced in large excess, NO also displays neurotoxicity. In our previous report, we have demonstrated that the exposure of neuronal cells to NO donors induced apoptotic cell death, while pretreatment with free radical scavengers L-ascorbic acid 2-[3, 4-dihydro-2,5,7,8-tetramethyl-2-(4,8, 12-trimethyltridecyl)-2H-1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K1) or superoxide dismutase attenuated apoptosis effectively, suggesting that reactive oxygen species (ROS) may be involved in the cascade of events leading to apoptosis. In the present investigation, we directly studied the kinetic generation of ROS in NO-treated neuronal cells by flow cytometry using 2', 7'-dichloro-fluorescein diacetate and dihydrorhodamine 123 as redox-sensitive fluorescence probes. The results indicated that exposure of cerebellar granule cells to the NO donor S-nitroso-N-acetylpenicillamine (SNAP) induced oxidative stress, which was characterized by the accumulation of cytosolic and mitochondrial ROS, the increase in the extracellular hydrogen peroxide level, and the formation of lipid peroxidation products. SNAP treatment also induced apoptotic cell death as confirmed by the formation of cytosolic mono- and oligonucleosomes. Pretreating cells with the novel antioxidant EPC-K1 effectively prevented oxidative stress induced by SNAP, and attenuated cells from apoptosis.  相似文献   

5.
Nitric oxide (NO), a multifaceted signaling molecule, regulates a wide array of cell functions, including proliferation, differentiation, cytostasis, and apoptosis, which depend on the cell type and redox status. This study systematically explores the effects of NO donors on promyelocytic HL-60 cell proliferation and apoptosis. The NO donor DETA-NO modulated the HL-60 cell cycle in a biphasic manner. DETA-NO in lower concentrations (1–100 μM) had a proliferative effect as investigated by [3H]thymidine incorporation, BrdU labeling, and cell cycle analysis, whereas cells treated with higher concentrations (250 μM–1 mM) showed cytostasis, apoptosis, mitochondrial membrane potential loss, caspase-3 activity, and dUTP nick-end labeling. The proliferative effect of DETA-NO was NO dependent and redox sensitive, as the effect was abolished by cPTIO and DTT pretreatment, respectively. Expression of various cell cycle regulators such as Cdk2, cyclin B, and cyclin E was significantly augmented in cells treated with 10–50 μM DETA-NO. The proliferative effect of NO was blocked by roscovitine, a Cdk2 inhibitor. S-nitrosylation of Cdk2 and an increase in the Cdk2-associated kinase activity was observed for the first time in DETA-NO-treated cells. This study demonstrates that the DETA-NO-mediated biphasic effect was dependent on Cdk2 nitrosylation/activation and the loss of mitochondrial potential at low and high concentrations, respectively.  相似文献   

6.
The objective of this study was to elucidate the mechanisms by which nebivolol, a cardio-selective beta-adrenergic receptor antagonist, inhibits rat aortic smooth muscle cell (RASMC) proliferation. Nebivolol was compared with DETA-NO and S-nitroso-N-acetylpenicillamine (SNAP), two nitric oxide (NO) donor agents, and alpha-difluoromethylornithine (DFMO), a known inhibitor of ornithine decarboxylase (ODC). All four test agents inhibited RASMC proliferation in a concentration-dependent manner, with nebivolol being the most potent (IC(50) = 4.5 microM), whereas atenolol, another relatively selective beta(1)-blocker, was inactive. DFMO, nebivolol, and DETA-NO interfered with cell proliferation in a cell-density-dependent manner, the lower the cell density the greater the inhibition of cell proliferation. The cytostatic effects of nebivolol and DETA-NO were completely independent of cyclic GMP, as neither ODQ (cytosolic guanylyl cyclase inhibitor) nor zaprinast (cyclic GMP phosphodiesterase inhibitor) affected the antiproliferative action of nebivolol or DETA-NO. The cytostatic effects of nebivolol, SNAP, and DFMO were largely prevented by the addition of excess putrescine, but not ornithine, to cell cultures. Moreover, nebivolol caused a marked reduction in the intracellular levels of putrescine, spermidine, and spermine. Like DFMO, nebivolol and DETA-NO interfered with the G(1)-phase to S-phase cell cycle transition in RASMC. These observations confirm previous findings that DFMO and NO interfere with RASMC proliferation by inhibiting ODC and polyamine production and provide evidence that nebivolol works by the same mechanism.  相似文献   

7.
Exposure of insulin-secreting RINm5F cells to the chemical nitric oxide donor sodium nitroprusside (SNP) resulted in apoptotic cell death, as detected by cytochrome c release from mitochondria and caspase 3 activation. SNP exposure also leads to phosphorylation and activation of enzymes involved in cellular response to stress such as signal-regulated kinase 2 (ERK2) and c-Jun NH(2)-terminal kinase 46 (JNK46). Both cytochrome c release and caspase 3 activation were abrogated in cells exposed to MEK and p38 inhibitors. Treatment of cells with the NO donors SNP, DETA-NO, GEA 5024, and SNAP resulted in phosphorylation of the antiapoptotic protein Bcl-2, which was resistant to blockade of MEK, p38, and JNK pathways and sensitive to phosphoinositide 3-kinase (PI3K) inhibition. In addition, transient transfection of cells with the wild-type PI3K gamma gene mimics the increased rate of Bcl-2 phosphorylation detected in NO-treated cells. The generation of phosphoinositides seems to participate in the process since Bcl-2 phosphorylation was not observed in cells overexpressing lipid-kinase-deficient PI3Kgamma. The potential of SNP toxicity directly from NO was supported by our finding that the NO scavenger carboxy-PTIO prevented cell death. We found no evidence to support the contention that oxygen radicals generated during cellular SNP metabolism mediate cell toxicity in RINm5F cells, since neither addition of catalase/superoxide dismutase nor transfection with superoxide dismutase prevented SNP-induced cell death. Thus, we propose that exposure to apoptotic concentrations of NO triggers ERK- and p38-dependent cytochrome c release, caspase 3 activation, and PI3K-dependent Bcl-2 phosphorylation.  相似文献   

8.
Nitric oxide (NO) produced in inflammatory lesions may play a major role in the destruction of oligodendrocytes in multiple sclerosis and experimental allergic encephalomyelitis. The transformed murine oligodendroglial line N20.1 is much more resistant than primary oligodendrocytes to killing by the NO generator S-nitroso-N-acetyl-DL-penicillamine (SNAP). This observation prompted investigation of the mechanisms leading to cell death in the N20.1 cells and comparison of SNAP with another NO donor, sodium nitroprusside (SNP). We observed that N20.1 cells were 30 times more sensitive to SNP than to SNAP. The specific NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) protected against SNP only, not against SNAP. However, dithiothreitol protected against both SNAP and SNP, indicating that S-nitrosylation of cysteines plays a major role in the cytotoxicity of both NO donors. We did not observe any formation of peroxynitrite or increase of Ca2+ concentration with either SNAP or SNP, thus excluding their involvement in the mechanisms leading to N20.1 cell death. Based on two observations, (a) potentiation of the cytotoxic effect of SNP when coincubated with ferricyanide or ferrocyanide, but not sodium cyanide, and (b) protection by deferoxamine, an iron cyanide chelator, we conclude that the greater sensitivity of N20.1 cells to SNP compared with SNAP is due to synergism between NO released and the iron cyanide portion of SNP, with the cyanide accounting for very little of the cytotoxicity. Finally, SNP but not SNAP induces some apoptosis, as shown by DNA laddering and protection by a caspase-3 inhibitor. These results suggest that low levels of NO in combination with increased iron content lead to apoptotic cell death rather than the necrotic cell death seen with higher levels of NO generated by SNAP.  相似文献   

9.
The course of inflammatory glomerular diseases is accompanied by changes in the expression of matrix-associated proteins, growth factors, and mediators in renal mesangial cells. Furthermore, the production of nitric oxide (NO) by the inducible isoform of nitric oxide synthase (iNOS) is enhanced after stimulation with pro-inflammatory cytokines. NO has been demonstrated to be a potent modulator of gene expression. To identify NO-regulated genes, we compared the expression patterns of mesangial cells treated for 24h with 500 microM (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) with those of un-stimulated controls by applying a proteomics approach. One protein found to be NO-modulated by 2D gel electrophoresis is the manganese superoxide dismutase (Mn-SOD). Immunoblot and Northern blot analysis demonstrated a dose- and time-dependent induction of Mn-SOD expression by S-nitroso-N-acetyl-D, L-penicillamine (SNAP) and DETA-NO on both the protein and the mRNA levels. An upregulation of Mn-SOD expression by NO was accompanied by an increased Mn-SOD activity. Immunoblots of extracts of IL-1beta-treated cells cultivated with or without the iNOS inhibitor N(G)-monomethyl-L-arginine and the inhibitor of soluble guanylyl cyclase (sGC) 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) demonstrated that the upregulation of the Mn-SOD by NO is due to a NO-dependent activation of sGC. The upregulation of Mn-SOD mRNA expression by NO was confirmed in vivo by Northern blot analysis in kidneys from rats treated with lipopolysaccharide (LPS) either in presence or absence of the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (l-NIL).  相似文献   

10.
This study examined the notion that exogenous generation of nitric oxide (NO) modulates NOS gene expression and activity. Bovine pulmonary artery endothelial cells (BPAEC) were treated with the NO donors, 1 mM SNAP (S-nitroso-N-acetylpenicillamine), 0.5 mM SNP (sodium nitroprusside) or 0.2 microM NONOate (spermine NONOate) in medium 199 containing 2% FBS. Controls included untreated cells and cells exposed to 1 mM NAP (N-acetyl-D-penicillamine). NOS activity was assessed using a fibroblast-reporter cell assay; intracellular Ca2+ concentrations were assessed by Fura-2 microfluorometry; and NO release was measured by chemiluminescence. Constitutive endothelial (e) and inducible (i) NOS gene and protein expression were examined by northern and western blot analysis, respectively. Two hours exposure to either SNAP or NONOate caused a significant elevation in NO release from the endothelial cells (SNAP = 51.4 +/- 5.9; NONOate = 23.8 +/- 4.2; control = 14.5 +/- 2.8 microM); but A23187 (3 microM)-stimulated NO release was attenuated when compared to controls. Treatment with either SNAP or NONOate for 2 h also resulted in a significant increase in NOS activity in endothelial homogenates (SNAP = 23.6 +/- 2.5; NONOate= 29.8 +/- 7.7; control = 14.5 +/- 2.5fmol cGMP/microg per 10(6) cells). Exposure to SNAP and SNP, but not NONOate, for 1 h caused an increase in intracellular calcium. Between 4 and 8 h, SNAP and NONOate caused a 2- to 3-fold increase in eNOS, but not iNOS, gene (P < 0.05) and protein expression. NAP had little effect on either eNOS gene expression, activity or NO production. Our data indicate that exogenous generation of NO leads to a biphasic response in BPAEC, an early increase in intracellular Ca2+, and increases in NOS activity and NO release followed by increased expression of the eNOS gene, but not the iNOS gene. We conclude that eNOS gene expression and activity are regulated by a positive-feedback regulatory action of exogenous NO.  相似文献   

11.
Nitric oxide and platelet energy metabolism   总被引:3,自引:0,他引:3  
This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 microM) and sodium nitroprusside, SNP, (5-100 microM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 microM and from 9 to 75 microM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 microM) and by SNP (IC50 = 100 microM). SNAP (20-100 microM), SNP (10-200 microM) and collagen (20 microg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 microM) and SNP (50-200 microM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 microM) and SNP (10-300 microM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production.  相似文献   

12.
Summary Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1–10 μM) of donor concentrations. However, 50 μM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 μM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.  相似文献   

13.
Recently, we have reported that excess amounts of nitric oxide (NO) produced by inducible NO synthase are involved in the development of myocardial damage in rats with induced myocarditis. However, there remain many problems to be solved concerning its mechanism of action. In this study, we examined whether NO induces apoptotic cell death in cardiomyocytes. Cultured neonatal rat cardiomyocytes were exposed to S-nitroso-N-acetylpenicillamine (SNAP) and (+/-)-E-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamine (NOR 3), as NO donors, or 8-bromo-cyclic GMP (cGMP), an analog of cGMP which functions as a second messenger in cells stimulated by NO. DNA fragmentation was confirmed by electron microscopy, by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) method, and by agarose gel electrophoresis. Exogenously supplied SNAP or NOR 3 induced cardiomyocyte apoptosis in a dose- and time-dependent manner. Cardiomyocytes exposed to SNAP displayed typical features of apoptosis as demonstrated by electron microscopy. Treatment of the cells with 8-bromo-cGMP also induced apoptosis. In cardiomyocytes, SNAP-induced apoptosis was completely blocked by a PKG inhibitor (KT5823) and by a soluble guanylate cyclase inhibitor (ODQ) and was suppressed by hemoglobin and was completely blocked by ZVAD-FMK, a caspase inhibitor. These results show that NO-mediated apoptosis of cardiomyocytes is cGMP dependent and that caspases are involved in this process.  相似文献   

14.
We exposed adherent neutrophils to the nitric oxide (NO)-radical donors S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO), and sodium nitroprusside (SNP) to study the role of NO in morphology and Ca(2+) signaling. Parallel to video imaging of cell morphology and migration in neutrophils, changes in intracellular free Ca(2+) ([Ca(2+)](i)) were assessed by ratio imaging of Fura-2. NO induced a rapid and persistent morphological hyperpolarization followed by migrational arrest that usually lasted throughout the 10-min experiments. Addition of 0.5-800 microM SNAP caused concentration-dependent elevation of [Ca(2+)](i) with an optimal effect at 50 microM. This was probably induced by NO itself, because no change in [Ca(2+)](i) was observed after treatment with NO donor byproducts, i.e. D-penicillamine, glutathione, or potassium cyanide. Increasing doses of SNAP (>/=200 microM) attenuated the Ca(2+) response to the soluble chemotactic stimulus formyl-methionyl-leucyl-phenylalanine (fMLP), and both NO- and fMLP-induced Ca(2+) transients were abolished at 800 microM SNAP or more. In kinetic studies of fluorescently labeled actin cytoskeleton, NO markedly reduced the F-actin content and profoundly increased cell area. Immunoblotting to investigate the formation of nitrotyrosine residues in cells exposed to NO donors did not imply nitrosylation, nor could we mimic the effects of NO with the cell permeant form of cGMP, i.e., 8-Br-cGMP. Hence these processes were probably not the principal NO targets. In summary, NO donors initially increased neutrophil morphological alterations, presumably due to an increase in [Ca(2+)](i), and thereafter inhibited such shape changes. Our observations demonstrate that the effects of NO donors are important for regulation of cellular signaling, i.e., Ca(2+) homeostasis, and also affect cell migration, e.g., through effects on F-actin turnover. Our results are discussed in relation to the complex mechanisms that govern basic cell shape changes, required for migration.  相似文献   

15.
Abstract: We have recently demonstrated that nitric oxide (NO) donors can trigger either apoptosis or necrosis of neurons as a function of the intensity of the exposure. Here, we show that the apoptosis induced by the NO donors S -nitrosocysteine (SNOC) or S -nitroso- N -acetylpenicillamine (SNAP) in cultured cerebellar granule cells (CGCs) depends on NMDA receptor (NMDA-R) activation leading to intracellular Ca2+ overload. Early dissolution of actin filaments followed by breakdown of microtubules and nuclear lamins preceded the appearance of typical apoptotic features. NO donors induced tyrosine nitration in neurons, in a small population of contaminating astrocytes, and in cultures of cerebellar astroglial cells. However, astrocytes neither displayed cytoskeletal alterations nor underwent apoptosis. Competitive and uncompetitive NMDA receptor antagonists, such as d -aminophosphonovaleric acid and MK-801, did not influence tyrosine nitration but prevented the accumulation of intracellular Ca2+, cytoskeletal breakdown, and apoptosis induced by either SNOC or SNAP in CGCs. Taken together, these data strongly suggest that Ca2+ influx through NMDA-R-gated ion channels is a critical event in CGC apoptosis induced by NO donors.  相似文献   

16.
Several nitric oxide (NO) effects in the cardiovascular system are mediated by soluble guanylate cyclase (sGC) activation but potassium channels (KC) are also emerging as important effectors of NO actions. We investigated the relationship among vascular smooth muscle cell proliferation, NO, cyclic GMP, and KC using the A7r5 smooth muscle cell line derived from rat aorta. NO donors (two nitrosothiols, S-nitroso-acetyl-d,l-penicillamine, SNAP, and S-nitroso-glutathione, GSNO, and an organic nitrate, glyceryl trinitrate, GTN; 1-1000 microM) dose-dependently inhibited cell proliferation. ODQ (a selective inhibitor of sGC; 0.1 and 1 microM) and KT5823 (a selective inhibitor of cGMP-dependent protein kinase, 1 microM) prevented NO effects, confirming that sGC is a key target. In this report, we show that tetraethylammonium (TEA, a non-selective blocker of KC, 300 microM), and 4-aminopyridine (a selective blocker of voltage-dependent KC, 100 microM) prevented SNAP inhibitory effects on cell proliferation, whereas glibenclamide (a selective blocker of ATP-dependent KC, 1 microM) was ineffective. Iberiotoxin (a selective blocker of high conductance calcium-activated KC, 100 nM), as well charybdotoxin (a blocker of high and intermediate conductance calcium-activated KC, 100 nM) and apamine (a selective blocker of small conductance calcium-activated KC, 100 nM), blocked the antiproliferative effect induced by SNAP. NS1619 (an opener of high conductance calcium-activated KC, 1-100 microM), inhibited cell proliferation. In addition, sub-effective concentrations of ODQ (100 nM) and TEA (10 microM) synergized in blocking SNAP antiproliferative effects. Thus, voltage-dependent and calcium-activated but not ATP-dependent KC appear to have a prominent role, besides sGC activation, in NO-induced inhibition of vascular smooth muscle cell proliferation.  相似文献   

17.
Multiple data indicates that nitric oxide (NO) donors retain immediate protective effects against different disturbances in cardiovascular system. The aim of the present study was to investigate delayed effects of nitric oxide donor S-nitroso-N-acetyl-l,l-penicillamine (SNAP) application in cardiac H9c2 cell line. Cardiomyocytes were treated with SNAP for 2h followed by 24h wash with fresh growth medium. The concentration curve was constructed in range from 0.5 to 2mM, toxicity was observed at 2mM concentration of SNAP. For the study of SNAP-induced protection against t-butyl hydroperoxide-induced oxidative injury 1mM concentration was used. Cell viability was assessed by MTT reductase activity assay; mitochondrial transmembrane potential (mdeltapsi) was measured by flow cytometry with fluorescent dye DiOC(6). Synthesis of heat-shock proteins (hsps) was analyzed by Western blot. Analysis of the cell viability and mdeltapsi reflected delayed protective effect of 1mM SNAP application against oxidative injury. SNAP in 1mM concentration caused 70% induction of hsp75 synthesis in cardiomyocytes. However, the other analyzed hsps (hsp70, hsp27, hsp60, hsp10, and CyP A) did not display any significant induction after incubation with SNAP. Present work demonstrates that the NO donor SNAP causes delayed protection against oxidative stress in H9c2 cardiomyocyte cell line, reflected in cell viability increase and preservation of the mdeltapsi. We suppose the major pathway for the development of SNAP-induced protection is through mitochondria. Induction of hsp75 expression following SNAP pretreatment is one possible way to explanation the mechanisms of this protection.  相似文献   

18.
We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.  相似文献   

19.
20.
Severe injury induces immune dysfunction resulting in increased susceptibility to opportunistic infections. Previous studies from our laboratory have demonstrated that post-burn immunosuppression is mediated by nitric oxide (NO) due to the increased expression of macrophage inducible nitric oxide synthase (iNOS). In contrast, others suggest that injury causes a phenotypic imbalance in the regulation of Th1- and Th2 immune responses. It is unclear whether or not these apparently divergent mediators of immunosuppression are interrelated. To study this, C57BL/6 mice were subjected to major burn injury and splenocytes were isolated 7 days later and stimulated with antiCD3. Burn injury induced NO-mediated suppression of proliferative responses that was reversed in the presence of the NOS inhibitor L-monomethyl-L-arginine and subsequently mimicked by the addition of the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). SNAP also dose-dependently suppressed IFN-gamma and IL-2 (Th1), but not IL-4 and IL-10 (Th2) production. Delaying the addition of SNAP to the cultures by 24 h prevented the suppression of IFN-gamma production. The Th2 shift in immune phenotype was independent of cGMP and apoptosis. The addition of SNAP to cell cultures also induced apoptosis, attenuated mitochondrial oxidative metabolism and induced mitochondrial membrane depolarization. However, these detrimental cellular effects of NO were observed only at supra-physiologic concentrations (>250 microM). In conclusion, these findings support the concept that NO induces suppression of cell-mediated immune responses by selective action on Th1 T cells, thereby promoting a Th2 response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号