首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
Birds are unique among living tetrapods in possessing pneumaticity of the postcranial skeleton, with invasion of bone by the lung and air-sac system. Postcranial skeletal pneumaticity (PSP) has been reported in numerous extinct archosaurs including pterosaurs and non-avian dinosaurs. Here we report a case of extreme PSP in a group of small-bodied, armored sauropod dinosaurs from the Upper Cretaceous of South America. Based on osteological data, we report an extensive invasion of pneumatic diverticula along the vertebral column, reaching the distal portion of the tail. Also, we provide evidence of pneumaticity in both pectoral and pelvic girdles. Our study reveals that the extreme PSP in archosaurs is not restricted to pterosaurs and theropod dinosaurs.  相似文献   

2.
Postcranial skeletal pneumaticity (PSP) is a condition most notably found in birds, but that is also present in other saurischian dinosaurs and pterosaurs. In birds, skeletal pneumatization occurs where bones are penetrated by pneumatic diverticula, membranous extensions that originate from air sacs that serve in the ventilation of the lung. Key questions that remain to be addressed include further characterizing (1) the skeletal features that can be used to infer the presence/absence and extent of PSP in birds and non-avian dinosaurs, and (2) the association between vertebral laminae and specific components of the avian respiratory system. Previous work has used vertebral features such as pneumatic foramina, fossae, and laminae to identify/infer the presence of air sacs and diverticula, and to discuss the range of possible functions of such features. Here, we tabulate pneumatic features in the vertebral column of 11 avian taxa, including the flightless ratites and selected members of semi-volant and semi-aquatic Neornithes. We investigate the associations of these osteological features with each other and, in the case of Struthio camelus, with the specific presence of pneumatic diverticula. We find that the mere presence of vertebral laminae does not indicate the presence of skeletal pneumaticity, since laminae are not always associated with pneumatic foramina or fossae. Nevertheless, laminae are more strongly developed when adjacent to foramina or fossae. In addition, membranous air sac extensions and adjacent musculature share the same attachment points on the vertebrae, rendering the use of such features for reconstructing respiratory soft tissue features ambiguous. Finally, pneumatic diverticula attach to the margins of laminae, foramina, and/or fossae prior to their intraosseous course. Similarities in PSP distribution among the examined taxa are concordant with their phylogenetic interrelationships. The possible functions of PSP are discussed in brief, based upon variation in the extent of PSP between taxa with differing ecologies.  相似文献   

3.
Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use μCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present in these taxa (and secondarily lost in extant crocodilians) and was potentially primitive for Archosauria as a whole.  相似文献   

4.
Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.  相似文献   

5.
Abstract Although pterosaurs are a well‐known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon‐specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased – this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.  相似文献   

6.
David Peters 《Ichnos》2013,20(2):114-141
The matching of ichnites to extinct trackmakers has been done successfully with a variety of taxa, from basal hominids to basal tetrapods. Traces attributed to pterosaurs have been studied for more than 50 years, but little interest has been shown in the pedes themselves. While ichnites can vary greatly in their correspondence to their trackmaker, most pterosaur tracks appear to preserve sufficient detail to assess their origins. This report presents a catalog of pterosaur pedal skeletons that can be matched to a wider spectrum of ichnites, including digitigrade and bipedal ichnites previously not associated with pterosaurs. A variety of pedal characters separate several putative genera into distinct clades, some only distantly related to one another. Distinct pedal characters indicate certain tiny pterosaurs were not juveniles of dissimilar adults, but were separate taxa and likely adults themselves. A squamate and fenestrasaur origin for pterosaurs is supported. These new insights overturn long-standing paradigms. The pterosaur pes contains a wealth of data that should not be ignored. Application of this data enables a more precise identification of both skeletal taxa and ichnotaxa.  相似文献   

7.
Total body mass (TBM) is known to be related to a number of different osteological features in vertebrates, including limb element measurements and total skeletal mass. The relationship between skeletal mass and TBM in birds has been suggested as a way of estimating the latter in cases where only the skeleton is known (e.g., fossils). This relationship has thus also been applied to other extinct vertebrates, including the non-avian pterosaurs, while other studies have used additional skeletal correlates found in modern birds to estimate TBM. However, most previous studies have used TBM compiled from the literature rather than from direct measurements, producing values from population averages rather than from individuals. Here, we report a new dataset of 487 extant birds encompassing 79 species that have skeletal mass and TBM recorded at the time of collection or preparation. We combine both historical and new data for analyses with phylogenetic control and find a similar and well-correlated relationship between skeletal mass and TBM. Thus, we confirm that TBM and skeletal mass are accurate proxies for estimating one another. We also look at other factors that may have an effect on avian body mass, including sex, ontogenetic stage, and flight mode. While data are well-correlated in all cases, phylogeny is a major control on TBM in birds strongly suggesting that this relationship is not appropriate for estimating the total mass of taxa outside of crown birds, Neornithes (e.g., non-avian dinosaurs, pterosaurs). Data also reveal large variability in both bird skeletal and TBM within single species; caution should thus be applied when using published mass to test direct correlations with skeletal mass and bone lengths.  相似文献   

8.
A detailed morphometric study has been made of the air-sacs of this air-breathing catfish using whole mounts, light and electron microscopy, of six specimens, body weight 40±2 g. Measurements of surface areas of the gas exchange and non-respiratory surfaces have taken into account foldings of the surface at macro and ultramicroscopic levels. Area of the gas exchange surface was estimated as 23.915cm2 (=0.598cm2/g) which is 67%of the total surface area of the two air-sacs. Significant differences were found in some morphometric parameters which were related to the three antero-posterior regions into which air-sacs were divided. Harmonic mean thickness of the tissue component of the air/blood barrier was estimated for the whole air-sac as 0.342 μ m. These and other measurements enabled the diffusing capacity for the air-sacs to be calculated as 0.0638 m1O2/min/mmHg/kg.
These results show that Heteropneustes has an air-breathing organ which is superior to that of Amphipnous cuchia , similar to that of Lepidosiren , but less well developed than that of Protopterus . In addition, Heteropneustes is well adapted to obtain oxygen directly from water by means of its gills and skin as indicated by both morphometric and physiological measurements which also correlate with its life in ponds and streams which are Iiable to dry up.  相似文献   

9.
New discoveries on the ichnological site known as “the Pterosaur Beach of Crayssac” (lower Tithonian, Upper Jurassic; south-western France) answer the question of terrestrial capabilities of non-pterodactyloid pterosaurs. If the terrestrial type of locomotion of pterodactyloid pterosaurs has been solved from ichnological evidence for more than twenty years, no tracks and trackways referable to non-pterodactyloid pterosaurs have ever been described. Thus, the debate on terrestrial capabilities of these non-pterodactyloids was based on morpho-functional studies, with the main conclusion that those pterosaurs were arboreal dwellers and bad walkers. Six trackways referable to three non-pterodactyloid new ichnotaxa, maybe closely related to Rhamphorhynchidae, are described in this work. Their study leads to the conclusion that grounded non-pterodatyloids, at least during the Late Jurassic, were quadrupedal with digitigrade manus and plantigrade to digitigrade pes. They were clearly good walkers, even if hindlimbs are supposed to be hampered by the uropatagium, what could have constrained the terrestrial agility of these animals. Thus, from ichnological evidence and contrary to the current hypotheses, non-pterodactyloid pterosaurs seem to have been good walkers even though their trackways are very rare or unidentified to date. This rarity could be due to behaviour rather than to functional capacities, many non-pterodactyloids being considered both littoral fishers and arboreal or cliff dwellers. However, the concept of non-pterodactyloid “good climbers and bad walkers” has to be modified to “good climbers and rare walkers”, unless many non-pterodactyloid ichnites have yet to be discovered.  相似文献   

10.
The two living groups of flying vertebrates, birds and bats, both have constricted genome sizes compared with their close relatives. But nothing is known about the genomic characteristics of pterosaurs, which took to the air over 70 Myr before birds and were the first group of vertebrates to evolve powered flight. Here, we estimate genome size for four species of pterosaurs and seven species of basal archosauromorphs using a Bayesian comparative approach. Our results suggest that small genomes commonly associated with flight in bats and birds also evolved in pterosaurs, and that the rate of genome-size evolution is proportional to genome size within amniotes, with the fastest rates occurring in lineages with the largest genomes. We examine the role that drift may have played in the evolution of genome size within tetrapods by testing for correlated evolution between genome size and body size, but find no support for this hypothesis. By contrast, we find evidence suggesting that a combination of adaptation and phylogenetic inertia best explains the correlated evolution of flight and genome-size contraction. These results suggest that small genome/cell size evolved prior to or concurrently with flight in pterosaurs. We predict that, similar to the pattern seen in theropod dinosaurs, genome-size contraction preceded flight in pterosaurs and bats.  相似文献   

11.
The clade Tapejaridae is composed by pterosaurs commonly found in fossiliferous deposits in northeastern Brazil. It is constituted by two less inclusive clades: the smaller-bodied Tapejarinae and the larger Thalassodrominae. Here we describe the specimen MN 6566-V, from the Lower Cretaceous Romualdo Formation of the Araripe Basin, Brazil. The specimen is overall well preserved tridimensionally, and consists of three posterior cervical vertebrae, incomplete right and left scapulocoracoids, and the proximal portion of a right humerus. Comparisons to specimens described in the literature enable its identification as a thalassodromine, whose postcranial material is still poorly known despite the large amount of pterosaurs known from this unit.  相似文献   

12.
Mitochondrial dysfunction in progressive supranuclear palsy   总被引:5,自引:0,他引:5  
A progressive impairment of mitochondrial function has been suggested to play a critical role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. Mitochondrial dysfunction can lead to number of deleterious consequences including impaired calcium buffering, generation of free radicals, activation of the mitochondrial permeability transition pore and secondary excitotoxicity. Progressive supranuclear palsy (PSP) is a rare neurological disorder characterized by the appearance of supranuclear gaze palsy and extrapyramidal symptoms [Arch. Neurol. 10 (1964) 333]. Although the etiological basis of PSP is unknown, compelling evidence from spectroscopy studies in PSP patients, biochemical studies in post-mortem PSP brain tissue and PSP cybrids has emerged that supports a contributory role of bio-energetic defects in the pathogenesis of PSP.  相似文献   

13.
Witton MP  Habib MB 《PloS one》2010,5(11):e13982
The size and flight mechanics of giant pterosaurs have received considerable research interest for the last century but are confused by conflicting interpretations of pterosaur biology and flight capabilities. Avian biomechanical parameters have often been applied to pterosaurs in such research but, due to considerable differences in avian and pterosaur anatomy, have lead to systematic errors interpreting pterosaur flight mechanics. Such assumptions have lead to assertions that giant pterosaurs were extremely lightweight to facilitate flight or, if more realistic masses are assumed, were flightless. Reappraisal of the proportions, scaling and morphology of giant pterosaur fossils suggests that bird and pterosaur wing structure, gross anatomy and launch kinematics are too different to be considered mechanically interchangeable. Conclusions assuming such interchangeability--including those indicating that giant pterosaurs were flightless--are found to be based on inaccurate and poorly supported assumptions of structural scaling and launch kinematics. Pterosaur bone strength and flap-gliding performance demonstrate that giant pterosaur anatomy was capable of generating sufficient lift and thrust for powered flight as well as resisting flight loading stresses. The retention of flight characteristics across giant pterosaur skeletons and their considerable robustness compared to similarly-massed terrestrial animals suggest that giant pterosaurs were not flightless. Moreover, the term 'giant pterosaur' includes at least two radically different forms with very distinct palaeoecological signatures and, accordingly, all but the most basic sweeping conclusions about giant pterosaur flight should be treated with caution. Reappraisal of giant pterosaur material also reveals that the size of the largest pterosaurs, previously suggested to have wingspans up to 13 m and masses up to 544 kg, have been overestimated. Scaling of fragmentary giant pterosaur remains have been misled by distorted fossils or used inappropriate scaling techniques, indicating that 10-11 m wingspans and masses of 200-250 kg are the most reliable upper estimates of known pterosaur size.  相似文献   

14.
Cacibupteryx caribensis gen. et sp. nov. is a new pterosaur of the family Rhamphorhynchidae found in western Cuba, in rocks of the Jagua Formation (Middle–Upper Oxfordian). The holotype, a skull and part of the left wing, is one of the few Jurassic pterosaurs that is well preserved in three dimensions. The new taxon shares characters with early and late Jurassic pterosaurs, and is one of the few late Jurassic taxa from western Laurasia and Gondwana. Furthermore, Cacibupteryx joins Nesodactylus hesperius Colbert from Cuba, and Sordes pilosus Sharov, from Kazakhstan as the most complete pterosaur recorded from the Middle–Upper Oxfordian. Cacibupteryx caribensis is one of the largest Jurassic pterosaurs known, and its skull possesses several distinct characters, including relatively broad roof elements (mainly frontal and parietal bones), a jugal with a prominent recess, occipital table trapezoidal in shape with the maximum width between the quadrate bones, and a small fenestra located in the posterior part of the pterygoid bones. In the Oxfordian, the Caribbean Corridor separated Laurasia and western Gondwana. The diversity of the marine herpetofauna found in the Jagua Vieja Member (Jagua Formation), and of teleostean fish, confirms that the corridor was an effective seaway over which flew at least Nesodactylus and Cacibupteryx .  相似文献   

15.
16.
辽西早白垩世九佛堂组两种新的翼手龙类化石(英文)   总被引:19,自引:1,他引:18  
简要报道了辽西热河群上部九佛堂组两件新的翼手龙类化石 ,即夜翼龙科(Nyctosauridae)的张氏朝阳翼龙 (新属、新种 )Chaoyangopteruszhangigen .etsp .nov.和古魔翼龙科 (Anhangueridae)的顾氏辽宁翼龙 (新属、新种 )Liaoningopterusguigen .et.sp .nov.。前者为保存较完整的化石骨架 ,后者为一大型翼龙的头骨和部分头后骨骼化石。朝阳翼龙是夜翼龙科在亚洲大陆的首次确切的化石记录 ,也是层位最低和保存最完整的化石骨架。朝阳翼龙具有4节翼指骨 ,手指爪粗大弯曲 ,这些发现补充和修正了前人认为的夜翼龙科只有 3节翼指骨 ,手指爪退化缺失等一些重要的形态学特征。朝阳翼龙与该科的Nyctosaurusgracilis头后骨骼相比 ,具有许多不同的特征 ,如胫骨特长 ,远长于股骨 ,翼掌骨和第 1翼指骨相对较短 ,肩胛骨短于乌喙骨等。辽宁翼龙是我国已发现的个体最大的翼龙化石 ,发育前上颌骨和齿骨弧形脊突这一古魔翼龙科的重要鉴别特征。与该科的其他成员相比 ,辽宁翼龙上、下颌的牙齿较少 ,仅分布在其前部 ,齿列约占上、下颌长度的 1 / 2。上颌第 1、3齿小 ,第 2、4齿巨大 ,其中第 4齿最大 ,为已知翼龙中最大的牙齿。牙齿具有明显的替换现象。夜翼龙科的成员仅分布于美洲大陆的晚白垩世地层中 ,而古魔翼龙科的成员则是  相似文献   

17.
In recent years the hypothesis that pterosaurs were the major sister-group of dinosaurs and a closely-linked hypothesis that pterosaurs evolved flight from the ground up have gained general acceptance. A cladistic analysis of the Archosauromorpha using characters presented by previous workers results in a single most parsimonious tree with the Pterosauria as the major sister-group of the Dinosauria. However, that sister-group relationship is supported only by a suite of hindlimb characters that are correlated with bipedal digitigrade locomotion in dinosaurs. In pterosaurs the characters have been interpreted as correlates of bipedal cursorial locomotion, arboreal leaping, or involvement of the hindlimb in the wing. The homology of those characters in dinosaurs and pterosaurs cannot be supported. Reanalysis of the data after exclusion of those hindlimb characters results in most parsimonious trees with the Pterosauria as the sister-group of the Erythrosuchidae + Proterochampsidae + Euparkeria + Archosauria, in that order. This sister-group relationship is supported by a diverse assemblage of functionally independent skeletal characters from all regions of the skeleton. The results of the analysis cast doubt on the hypothesis that pterosaurs evolved flight from the ground up.  相似文献   

18.
Little is known about how changes in DNA methylation mediate risk for human diseases including dementia. Analysis of genome-wide methylation patterns in patients with two forms of tau-related dementia – progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD) – revealed significant differentially methylated probes (DMPs) in patients versus unaffected controls. Remarkably, DMPs in PSP were clustered within the 17q21.31 region, previously known to harbor the major genetic risk factor for PSP. We identified and replicated a dose-dependent effect of the risk-associated H1 haplotype on methylation levels within the region in blood and brain. These data reveal that the H1 haplotype increases risk for tauopathy via differential methylation at that locus, indicating a mediating role for methylation in dementia pathophysiology.  相似文献   

19.
Secretory stress proteins (SSP) are a family of proteins including isoforms of pancreatitis-associated protein (PAP) and pancreatic stone protein (PSP/reg). In vitro exposure to trypsin results in the formation of insoluble fibrillar structures. SSP are constitutively secreted into pancreatic juice at low levels. The WBN/Kob rat is a model for chronic pancreatitis, displaying focal inflammation, destruction of the parenchyma and changes in the architecture of the acinar cell; the synthesis and secretion of SSP are also increased. We have investigated the secretory apparatus by SSP immunohistochemistry at the light- and electron-microscopical (EM) levels. Immunocytochemistry of PSP/reg in Wistar control rats reveals low levels, with individual acinar cells exhibiting high immunoreactivity in zymogen granules. PAP is not detectable. In the WBN/Kob rat, PSP/reg and PAP immunoreactivity is markedly increased. Double immunofluorescence for PSP/reg and PAP I or II demonstrates that these proteins colocalize to the same cell. Acinar cells change their secretory architecture by fusion of zymogen granules and elongation of the fused organelles. The immunogold technique has demonstrated an increase of SSP in zymogen granules in WBN/Kob rats. PSP/reg-positive zymogen granules fuse to form elongated structures with fibrillar contents. An extensive PSP/reg-positive fibrillar network is established in the cytosol. Extracellular fibrils have been observed in several ductules. Thus, SSP-derived fibrils form concomitantly with acinar damage in the WBN/Kob rat. Based on the known tryptic cleavage site of SSP, the in vivo generation of fibrils is presumably the result of premature trypsin activation.  相似文献   

20.
人PSP94全长cDNA的获得及PSP94-TNF~Δ融合蛋白的构建   总被引:2,自引:0,他引:2  
利用RT-PCR从人肥大前列腺组织钓取94个氨基酸的人前列腺分泌蛋白(PSP94)全长cDNA,序列分析结果与文献报道的完全一致.将PSP94成熟肽与人TNFα衍生物(TNFΔ)通过Linker-SAPGTP在基因水平上融合成5′PSP94-TNFΔ,融合基因DNA序列分析结果与设计的相符合.5′PSP94-TNFΔ在大肠杆菌中表达产物分子量约为31kD,表达量约占菌体总蛋白量的35%.以L929细胞和人前列腺癌细胞株PC-3为靶细胞进行细胞毒分析结果表明,5′PSP94-TNFΔ融合蛋白既具有TNF的细胞毒活性,又具有对前列腺癌细胞PC-3的杀伤作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号