首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Pérez A  Ojeda P  Ojeda L  Salas M  Rivas CI  Vera JC  Reyes AM 《Biochemistry》2011,50(41):8834-8845
The facilitative hexose transporter GLUT1 activity is blocked by tyrosine kinase inhibitors that include natural products such as flavones and isoflavones and synthetic compounds such as tyrphostins, molecules that are structurally unrelated to the transported substrates [Vera, et al. (2001) Biochemistry, 40, 777-790]. Here we analyzed the interaction of GLUT1 with quercetin (a flavone), genistein (an isoflavone), and tyrphostin A47 and B46 to evaluate if they share one common or have several binding sites on the protein. Kinetic assays showed that genistein, quercetin, and tyrphostin B46 behave as competitive inhibitors of equilibrium exchange and zero-trans uptake transport and noncompetitive inhibitors of net sugar exit out of human red cells, suggesting that they interact with the external surface of the GLUT1 molecule. In contrast, tyrphostin A47 was a competitive inhibitor of equilibrium exchange and zero-trans exit transport and a noncompetitive inhibitor of net sugar entry into red cells, suggesting that it interacts with the cytoplasmic surface of the transporter. Genistein protected GLUT1 against iodide-elicited fluorescence quenching and also decreased the affinity of d-glucose for its external binding site, while quercetin and tyrphostins B46 and A47 promoted fluorescence quenching and did not affect the external d-glucose binding site. These findings are explained by a carrier that presents at least three binding sites for tyrosine kinase inhibitors, in which (i) genistein interacts with the transporter in a conformation that binds glucose on the external surface (outward-facing conformation), in a site which overlaps with the external binding site for d-glucose, (ii) quercetin and tyrphostin B46 interact with the GLUT1 conformation which binds glucose by the internal side of the membrane (inward-facing conformation), but to a site accessible from the external surface of the protein, and (iii) the binding site for tyrphostin A47 is accessible from the inner surface of GLUT1 by binding to the inward-facing conformation of the transporter. These data provide groundwork for a molecular understanding of how the tyrosine kinase inhibitors directly affect glucose transport in animal cells.  相似文献   

2.
The intracellular C-terminal domain is diverse in size and amino acid sequence among facilitative glucose transporter isoforms. The characteristics of glucose transport are also divergent, and GLUT2 has far higher Km and Vmax values compared with GLUT1. To investigate the role of the intracellular C-terminal domain in glucose transport, we expressed in Chinese hamster ovary cells the mutated GLUT1 protein whose intracellular C-terminal domain was replaced with that of GLUT2 by means of engineering the chimeric cDNA. Cytochalasin B, for which GLUT2 protein has much lower affinity, bound to this chimeric protein in a fashion similar to GLUT1. In contrast, greater transport activity was observed in this chimeric glucose transporter compared with the wild-type GLUT1 at 10 mM 2-deoxy-D-glucose concentration. The kinetic studies on 2-deoxy-D-glucose uptake revealed a 3.8-fold increase in Km and a 4.3-fold increase in Vmax in this chimeric glucose transporter compared with the wild-type GLUT1. Thus, replacement of the intracellular C-terminal domain confers the GLUT2-like property on the glucose transporter. These results strongly suggest that the diversity of intracellular C-terminal domain contributes to the diversity of glucose transport characteristics among isoforms.  相似文献   

3.
Glucose transporter (GLUT)1 has become an attractive target to block glucose uptake in malignant cells since most cancer cells overexpress GLUT1 and are sensitive to glucose deprivation. Methylxanthines are natural compounds that inhibit glucose uptake; however, the mechanism of inhibition remains unknown. Here, we used a combination of binding and glucose transport kinetic assays to analyze in detail the effects of caffeine, pentoxifylline, and theophylline on hexose transport in human erythrocytes. The displacement of previously bound cytochalasin B revealed a direct interaction between the methylxanthines and GLUT1. Methylxanthines behave as noncompetitive blockers (inhibition constant values of 2-3 mM) in exchange and zero-trans efflux assays, whereas mixed inhibition with a notable uncompetitive component is observed in zero-trans influx assays (inhibition constant values of 5-12 mM). These results indicate that methylxanthines do not bind to either exofacial or endofacial d-glucose-binding sites but instead interact at a different site accessible by the external face of the transporter. Additionally, infinite-cis exit assays (Sen-Widdas assays) showed that only pentoxifylline disturbed d-glucose for binding to the exofacial substrate site. Interestingly, coinhibition assays showed that methylxanthines bind to a common site on the transporter. We concluded that there is a methylxanthine regulatory site on the external surface of the transporter, which is close but distinguishable from the d-glucose external site. Therefore, the methylxanthine moiety may become an attractive framework for the design of novel specific noncompetitive facilitative GLUT inhibitors.  相似文献   

4.
The initial rate of [14C]uridine transport by guinea pig erythrocytes was investigated at different temperatures. At 37, 22, and 10 degrees C the concentration dependence of uridine zero-trans influx and equilibrium exchange influx was resolved into two components; (a) a saturable component which followed simple Michaelis-Menten kinetics and which was inhibited by nitrobenzylthioinosine, and (b) a linear component of low magnitude and insensitive to nitrobenzylthioinosine inhibition. The maximum velocity, Vmax, of zero-trans uridine influx for the saturable transport system was 70-fold higher at 37 than 10 degrees C (1.24, 0.20, and 0.018 mmol/L of cells per hour at 37, 22, and 10 degrees C, respectively). Similarly, the apparent affinity, Km, for zero-trans influx decreased as the temperature was lowered (0.27, 0.066, and 0.038 mM at 37, 22, and 10 degrees C, respectively). In contrast, uridine equilibrium exchange influx was less temperature dependent (Vmax, 2.80, 0.89, and 0.14 mmol/L of cells per hour; apparent Km 0.61, 0.36, and 0.24 mM at 37, 22, and 10 degrees C, respectively). These results demonstrate that the mobility of the empty carrier is impaired to a greater extent than the mobility of the loaded carrier temperature decreased. However, the kinetic constants for zero-trans uridine influx and efflux at 37 degrees C were similar, indicating that the nucleoside transporter exhibited directional symmetry at 37 degrees C. Arrhenius plots of the maximum velocity for equilibrium exchange and zero-trans uridine influx were discontinuous above 25 degrees C, but between 20 and 5 degrees C the plots were linear (Ea = 22 and 30 kcal/mol for equilibrium exchange and zero-trans influx, respectively.  相似文献   

5.
To test the role of cysteines in the function of GLUT1 glucose transporter, site-directed mutagenesis was used to replace all six GLUT1 cysteines with serine residues. When the individual and combined Cys →Ser mutants were expressed in Xenopus laevis oocytes, zero-trans uptake of 3-O-methylglucose was comparable to that seen in native GLUT1. The "cysteineless" construct also retained the kinetic features of GLUT1, including an asymmetric transport mechanism and similar substrate and inhibitor affinities. Whereas GLUT1 transport was inhibited by sulfhydryl reagents, that of the "cysteineless" construct was not. These results show that cysteines are not required for GLUT1 function or oligomer formation. The "cysteineless" construct may therefore serve as a template for reintroducing cysteines back into GLUT1 at sites useful for testing transporter structure and function.  相似文献   

6.
Glucose transport across the plasma membrane is mediated by a family of glucose transporter proteins (GLUTs), several of which have been identified in mammalian, avian, and, more recently, in fish species. Here, we report on the cloning of a salmon GLUT from adipose tissue with a high sequence homology to mammalian GLUT4 that has been named okGLUT4. Kinetic analysis of glucose transport following expression in Xenopus laevis oocytes demonstrated a 7.6 +/- 1.4 mM K(m) for 2-deoxyglucose (2-DG) transport measured under zero-trans conditions and 14.4 +/- 1.5 mM by equilibrium exchange of 3-O-methylglucose. Transport of 2-DG by okGLUT4-injected oocytes was stereospecific and was competed by D-glucose, D-mannose, and, to a lesser extent, D-galactose and D-fructose. In addition, 2-DG uptake was inhibited by cytochalasin B and ethylidene glucose. Moreover, insulin stimulated glucose uptake in Xenopus oocytes expressing okGLUT4 and in isolated trout adipocytes, which contain the native form of okGLUT4. Despite differences in protein motifs important for insulin-stimulated translocation of mammalian GLUT4, okGLUT4 was able to translocate to the plasma membrane from intracellular localization sites in response to insulin when expressed in 3T3-L1 adipocytes. These data demonstrate that okGLUT4 is a structural and functional fish homolog of mammalian GLUT4 but with a lower affinity for glucose, which could in part explain the lower ability of fish to clear a glucose load.  相似文献   

7.
The effects of hydrostatic pressure (0.1-50 MPa) on uridine transport mediated by the 'simple' facilitated nucleoside transporter of guinea-pig and human erythrocytes have been studied in an attempt to identify the volume changes which occur during transport. Pressure inhibited the zero-trans (influx or efflux) mode of uridine transport in guinea-pig cells significantly more (about 2.2- x) than equilibrium exchange. The equilibrium binding of 3H-nitrobenzylthioinosine, a potent specific inhibitor of nucleoside transport, to human red cells and ghosts, was not significantly altered by pressure suggesting that the permeation site was unperturbed. Thus pressure inhibited the transporter primarily by preventing the volume increase associated with the translocation step. Furthermore, the return of the 'empty' transporter was found to be rate-limiting because it required a larger increase in volume than when the transporter was loaded with substrate.  相似文献   

8.
We have previously reported on a patient with the Glut1 deficiency syndrome (Online Mendelian Inheritance in Man number 606777) carrying a heterozygous T310I missense mutation in the GLUT1 gene (Klepper, J., Wang, D., Fischbarg, J., Vera, J. C., Jarjour, I. T., O'Driscoll, K. R., and De Vivo, D. C. (1999) Neurochem. Res. 24, 587-594). To investigate the molecular basis for the associated functional deficit, we constructed T310A, T310S, and T310I human GLUT1 mutants for expression in Xenopus laevis oocytes via cRNA injection. For all mutants, glucose transport was decreased, and osmotic water permeability (Pf) was increased. Km values for 3-O-methylglucose (3-OMG) uptake under zero-trans influx and equilibrium exchange influx conditions were, respectively, 13 +/- 1 and 68 +/- 5 mm for wild-type Glut1, 5 +/- 1 and 25 +/- 6 mm for T310A, 6 +/- 3 and 30 +/- 6 mm for T310I, and 5 +/- 1 and 48 +/- 5 mm for T310S. Compared with wild-type Glut1, we determined the following. (a). Zero-trans and equilibrium exchange influx values of 3-OMG were significantly decreased, respectively, 15 and 5% in T310A, 8 and 3% in T310I, and 40 and 34% in T310S mutants. (b). Zero-trans efflux of 3-OMG and dehydroascorbic acid uptake were significantly decreased in mutants. (c). The relative Pf values for T310A, T310I, and T310S were increased 3-, 4.8-, and 3.5-fold compared with wild-type values. We found a very high negative correlation between the rate of glucose uptake and Pf (-0.93), and between hydropathy and uptake (-0.92), a moderate correlation between hydropathy and Pf (0.73), and a minimal correlation between uptake, Pf, and molecular weight. These findings are consistent with a central role for hydropathy rather than size at position 310 of this mutation.  相似文献   

9.
Gly263 of the rat kidney Na(+),K(+)-ATPase is highly conserved within the family of P-type ATPases. Mutants in which Gly263 or the juxtaposed Arg264 had been replaced by alanine were expressed at high levels in COS-1 cells and characterized functionally. Titrations of Na(+),K(+), ATP, and vanadate dependencies of Na(+),K(+)-ATPase activity showed changes in the apparent affinities relative to wild-type compatible with a displacement of the E(1)-E(2) conformational equilibrium in favor of E(1). The level of the K(+)-occluded form was reduced in the Gly263-->Ala and Arg264-->Ala mutants, and the rate constant characterizing deocclusion of K(+) or Rb(+) was increased as much as 20-fold in the Gly263-->Ala mutant. Studies of the sensitivity of the phosphoenzyme to K(+) and ADP showed a displacement of the E(1)P-E(2)P equilibrium of the phosphoenzyme in favor of E(1)P, and dephosphorylation experiments carried out at 25 degrees C on a millisecond time scale using a quenched-flow technique demonstrated a reduction of the E(1)P to E(2)P conversion rate in the mutants. Hence, the mutations displaced the conformational equilibria of dephosphoenzyme and phosphoenzyme in parallel in favor of the E(1) and E(1)P forms. The observed effects were more pronounced in the Gly263-->Ala mutant compared with the Arg264-->Ala mutant. Leu332 mutations that likewise displaced the conformational equilibria in favor of E(1) and E(1)P were also studied. Unlike the Gly263-->Ala mutant the Leu332 mutants displayed a wild-type like rate of K(+) deocclusion. Thus, the effect of the Gly263 mutation on the E(1)-E(2) conformational equilibrium seems to be caused mainly by an acceleration of the K(+)-deoccluding step, whereas in the Leu332 mutants the rate of the reverse reaction seems to be reduced.  相似文献   

10.
C F Burant  G I Bell 《Biochemistry》1992,31(42):10414-10420
Four facilitative glucose transporters isoforms, GLUT1/erythrocyte, GLUT2/liver, GLUT3/brain, and GLUT4/muscle-fat, as well as chimeric transporter proteins were expressed in Xenopus oocytes, and their properties were studied. The relative Km's of the transporters for 2-deoxyglucose were GLUT3 (Km = 1.8 mM) > GLUT4 (Km = 4.6 mM) > GLUT1 (Km = 6.9 mM) > GLUT2 (Km = 17.1 mM). In a similar fashion, the uptake of 2-deoxyglucose by GLUT1-, GLUT2-, and GLUT3-expressing oocytes was inhibited by a series of unlabeled hexoses and pentoses and by cytochalasin B in a similar hierarchical order. To determine if the functional unit of the glucose transporter was a monomer or higher-order multimer, the high-affinity transporter GLUT3 was coexpressed with either the low-affinity GLUT2 or a GLUT3 mutant which contained a transport inactivating Trp410-->Leu substitution. In oocytes expressing both GLUT2 and GLUT3, the transport activity associated with each transporter isoform could be distinguished kinetically. Similarly, there was no alteration in the kinetic parameters of GLUT3, or the ability of glucose or cytochalasin B to inhibit 2-deoxyglucose uptake, when coexpressed with up to a 3-fold greater amount of functionally inactive mutant of GLUT3. These studies suggest that the family of glucose transporters have similar binding sites which may be in the form of a functional monomeric unit when expressed in Xenopus oocytes.  相似文献   

11.
S D Thorne  A C Hall  A G Lowe 《FEBS letters》1992,301(3):299-302
The operation of the human red cell glucose transporter has been studied at normal and high hydrostatic pressure to identify the step(s) which involve a volume change. Pressure inhibited zero-trans and equilibrium exchange influx to similar extents, by decreasing the Vmax but not significantly changing the Km. The Bmax and Kd of specific [3H]cytochalasin B binding were unaffected by pressure indicating no change to the number or affinity of functional transporters at pressure. Passive glucose transport was inhibited by pressure in a manner consistent with permeation across the lipid bilayer. These data indicate that there is a major change in volume during the translocation step of the glucose transporter which is rate-limiting for transport.  相似文献   

12.
A mechanism proposed for lactose/H(+) symport by the lactose permease of Escherichia coli indicates that lactose permease is protonated prior to ligand binding. Moreover, in the ground state, the symported H(+) is shared between His322 (helix X) and Glu269 (helix VIII), while Glu325 (helix X) is charge-paired with Arg302 (helix IX). Substrate binding at the outer surface between helices IV (Glu126) and V (Arg144, Cys148) induces a conformational change that leads to transfer of the H(+) to Glu325 and reorientation of the binding site to the inner surface. After release of substrate, Glu325 is deprotonated on the inside due to re-juxtapositioning with Arg302. The conservative mutation Glu269-->Asp causes a 50-100-fold decrease in substrate binding affinity and markedly reduced active lactose transport, as well as decreased rates of equilibrium exchange and efflux. Gly-scanning mutagenesis of helix VIII was employed systematically with mutant Glu269-->Asp in an attempt to rescue function, and two mutants with increased activity are identified and characterized. Mutant Thr266-->Gly/Met267-->Gly/Glu269-->Asp binds ligand with increased affinity and catalyzes active lactose transport with a marked increase in rate; however, little improvement in efflux or equilibrium exchange is observed. In contrast, mutant Gly262-->Ala/Glu269-->Asp exhibits no improvement in ligand binding but a small increase in the rate of active transport; however, an increase in the steady-state level of accumulation, as well as efflux and equilibrium exchange is observed. Remarkably, when the two sets of mutations are combined, all translocation reactions are rescued to levels approximating those of wild-type permease. The findings support the contention that Glu269 plays a pivotal role in the mechanism of lactose/H(+) symport. Moreover, the results suggest that the two classes of mutants rescue activity by altering the equilibrium between outwardly and inwardly facing conformations of the permease such that impaired protonation and/or H(+) transfer is enhanced from one side of the membrane or the other. When the two sets of mutants are combined, the equilibrium between outwardly and inwardly facing conformations and thus protonation and H(+) transfer are restored.  相似文献   

13.
The central role of human pancreatic glucokinase in insulin secretion and, consequently, in maintenance of blood glucose levels has prompted investigation into identification of ATP-binding site residues and examination of ATP- and glucose-binding interactions. Because glucokinase has been resistant to crystallization, computer generated homology models were developed based on the X-ray crystal structure of the COOH-terminal domain of human brain hexokinase 1 bound to glucose and ADP or glucose and glucose-6-phosphate. Human pancreatic glucokinase mutants were designed based upon these models and on ATPase domain sequence conservation to identify and characterize potential glucose and ATP-binding sites. Specifically, mutants Asp78Ala, Thr82Ala, Lys90Ala, Lys102Ala, Gly227Ala, Thr228Ala, Ser336Leu, Ser411Ala, and Ser411Leu were constructed, expressed, purified, and kinetically characterized under steady-state conditions. Compared to their respective wild type controls, several mutants demonstrated dramatic changes in V(max), cooperativity of glucose binding and S(0.5) for ATP and glucose. Results suggest a role for Asp78, Thr82, Gly227, Thr228, and Ser336 in ATP binding and indicate these residues are essential for glucose phosphorylation by human pancreatic glucokinase.  相似文献   

14.
Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated transition state for phosphoryl transfer. In the absence of Mg(2+), mutations removing the charges of domain P residues Asp(627), Lys(684), Asp(703), and Asp(707) increased the affinity for ATP and 2',3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine 5'-triphosphate. These mutations, as well as Gly(626)--> Ala, were inhibitory for ATP binding in the presence of Mg(2+) and for tight binding of the beta,gamma-bidentate chromium(III) complex of ATP. The hinge mutations had pronounced, but variable, effects on ATP binding only in the presence of Mg(2+). The data demonstrate an unfavorable electrostatic environment for binding of negatively charged nucleotide in domain P and show that Mg(2+) is required to anchor the phosphoryl group of ATP at the phosphorylation site. Mutants Gly(626) --> Ala, Lys(684) --> Met, Asp(703) --> Ala/Ser/Cys, and mutants with alteration to Asp(707) exhibited very slow or negligible phosphorylation, making it possible to measure ATP binding in the pseudo-transition state attained in the presence of both Mg(2+) and Ca(2+). Under these conditions, ATP binding was almost completely blocked in Gly(626) --> Ala and occurred with 12- and 7-fold reduced affinities in Asp(703) --> Ala and Asp(707) --> Cys, respectively, relative to the situation in the presence of Mg(2+) without Ca(2+), whereas in Lys(684) --> Met and Asp(707) --> Ser/Asn the affinity was enhanced 14- and 3-5-fold, respectively. Hence, Gly(626) and Asp(703) seem particularly critical for mediating entry into the transition state for phosphoryl transfer upon Ca(2+) binding at the transport sites.  相似文献   

15.
Effects of insulin on the kinetic parameters of hexose transport in rat epididymal adipocytes were re-examined. The transport activity was assessed by measuring the rate of uptake of 3-O-[3H]methyl-D-glucose (MeGlc) under equilibrium exchange and zero-trans conditions. The incubation was carried out at 37 degrees C in an infant incubator. During the incubation, the cell suspension (25%, v/v, in a total volume of 48 microliter) was mechanically swirled at a rate of 600 rpm (r = 2 mm). The swirling facilitated the rapid uptake of MeGlc without stimulating the basal transport activity by "mechanical agitation". The basal and insulin-treated cells were incubated under identical conditions, except for the length of the incubation period. The incubation was terminated by the addition of 350 microliters of 1 mM phloretin, which inhibited transport in approximately 0.06 s. The time course of MeGlc uptake was consistent with the view that the process was a multiple-phase reaction. The initial phase of the reaction was completed when the intracellular distribution space of MeGlc was approximately 1% of the total cell volume. Insulin (10 nM) increased the Vmax value of MeGlc uptake 16-fold in equilibrium exchange experiments and 18-fold in zero-trans experiments. At the same time, the hormone decreased the Km value of MeGlc uptake from 11.7 to 5.4 mM in equilibrium exchange experiments and from 9.7 to 4.8 mM in zero-trans experiments. It is concluded that the major effect of insulin on MeGlc uptake is to increase the Vmax value, but the hormone has the additional effect of lowering the apparent Km value.  相似文献   

16.
Bhate M  Wang X  Baum J  Brodsky B 《Biochemistry》2002,41(20):6539-6547
The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.  相似文献   

17.
Sixteen residues in stalk segment S5 of the Ca(2+)-ATPase of sarcoplasmic reticulum were studied by site-directed mutagenesis. The rate of the Ca(2+) binding transition, determined at 0 degrees C, was enhanced relative to wild type in mutants Ile(743) --> Ala, Val(747) --> Ala, Glu(748) --> Ala, Glu(749) --> Ala, Met(757) --> Gly, and Gln(759) --> Ala and reduced in mutants Asp(737) --> Ala, Asp(738) --> Ala, Ala(752) --> Leu, and Tyr(754) --> Ala. In mutant Arg(762) --> Ile, the rate of the Ca(2+) binding transition was wild type like at 0 degrees C, whereas it was 3.5-fold reduced relative to wild type at 25 degrees C. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was increased conspicuously in mutants Ile(743) --> Ala and Tyr(754) --> Ala (close to 20-fold in the absence of K(+)) and increased to a lesser extent in Asn(739) --> Ala, Glu(749) --> Ala, Gly(750) --> Ala, Ala(752) --> Gly, Met(757) --> Gly, and Arg(762) --> Ile, whereas it was reduced in mutants Asp(737) --> Ala, Val(744) --> Gly, Val(744) --> Ala, Val(747) --> Ala, and Ala(752) --> Leu. In mutants Ile(743) --> Ala, Tyr(754) --> Ala, and Arg(762) --> Ile, the apparent affinities for vanadate were enhanced 23-, 30-, and 18-fold, respectively, relative to wild type. The rate of Ca(2+) dissociation was 11-fold increased in Gly(750) --> Ala and 2-fold reduced in Val(747) --> Ala. Mutants with alterations to Arg(751) either were not expressed at a significant level or were completely nonfunctional. The findings show that S5 plays a crucial role in mediating communication between the Ca(2+) binding pocket and the catalytic domain and that Arg(751) is important for both structural and functional integrity of the enzyme.  相似文献   

18.
Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.  相似文献   

19.
Fructose transporter in human spermatozoa and small intestine is GLUT5.   总被引:15,自引:0,他引:15  
We recently reported that the glucose transporter isoform, GLUT5, is expressed on the brush border membrane of human small intestinal enterocytes (Davidson, N. O., Hausman, A. M. L., Ifkovits, C. A., Buse, J. B., Gould, G. W., Burant, C. F., and Bell, G. I. (1992) Am. J. Physiol. 262, C795-C800). To define its role in sugar transport, human GLUT5 was expressed in Xenopus oocytes and its substrate specificity and kinetic properties determined. GLUT5 exhibits selectivity for fructose transport, as determined by inhibition studies, with a Km of 6 mM. In addition, fructose transport by GLUT5 is not inhibited by cytochalasin B, a competitive inhibitor of facilitative glucose transporters. RNA and protein blotting studies showed the presence of high levels of GLUT5 mRNA and protein in human testis and spermatozoa, and immunocytochemical studies localize GLUT5 to the plasma membrane of mature spermatids and spermatozoa. The biochemical properties and tissue distribution of GLUT5 are consistent with a physiological role for this protein as a fructose transporter.  相似文献   

20.
GLUT1 glucose transporter cDNA was modified to introduce a single amino acid substitution of leucine for tryptophan 412, a putative cytochalasin B photo-affinity labeling site. Although the mutated transporter was expressed into plasma membranes of Chinese hamster ovary cells, glucose transport activity of the mutated transporter was observed to be only 15-30% of that of the wild-type GLUT1 when glucose transport activity was assessed by 2-deoxyglucose uptake at 0.1-10 mM concentrations. Analysis of glucose uptake kinetics depict that a mutation induced a 3-fold decrease in turnover number and a 2.5-fold increase in Km compared with the wild-type GLUT1. Importantly, cytochalasin B labeling was not abolished but decreased by 40%, and cytochalasin B binding was also decreased. In addition, the results obtained with side-specific glucose analogs suggested that the outer glucose binding site of the mutant appeared intact but the inner binding site was modulated. These results indicate 1) tryptophan 412 is not a cytochalasin B labeling site(s), although this residue is located in or close to the inner glucose binding site of the GLUT1 glucose transporter, 2) substitution of leucine for tryptophan 412 decreases the intrinsic activity of GLUT1 glucose transporter, which is definable as the turnover number/Km, to approximately 15% of that of the wild-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号