首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have compared the reactions of trypsin with human alpha 2-macroglobulin (alpha 2M), and three rat plasma protease inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2M. All four of these proteins appear to contain reactive thiol esters. The electrophoretic mobility in agarose gels of human and rat alpha 2M is increased by 1 mol of trypsin, while the mobility of alpha 1M and alpha 1I3 is decreased. Treatment with methylamine causes similar mobility changes, except in the case of rat alpha 2M. Titration of human and rat macroglobulins by repeated small additions of trypsin and by assay of liberated SH groups or enhanced ligand fluorescence revealed a stoichiometry of about 1 mol of trypsin/mol of inhibitor. In contrast, addition of macroglobulin to a fixed amount of trypsin and detection of residual amidase or protease activity revealed a stoichiometry of about 2 mol of trypsin for 1 mol of human alpha 2M, about 1.4 mol for rat alpha 1M, and about 1 mol for rat alpha 2M. One mol of trypsin reacted with 2 or more mol of alpha 1I3 by the criteria of SH groups liberated or protease inhibition. Methylamine-treated rat alpha 2M binds a significant amount of trypsin releasing about 2 mol of SH. Radioactive beta-trypsin was covalently bound to subunits of the purified plasma inhibitors. The Mr of the labeled products with rat and human alpha 2M had molecular weights which suggested trypsin was bound to intact as well as cleaved subunit chains and also to multiple chains via cross-linking. Rat alpha 1M also produced a product which may be an intact subunit alpha chain plus trypsin. Greater than 80% of the trypsin was bound covalently to these inhibitors at low molar ratios.  相似文献   

2.
Murinoglobulin, a newly identified mouse plasma protein with trypsin-protein esterase activity (Saito, A. & Sinohara, H. (1985) J. Biol. Chem. 260, 775-781), was also found in rat plasma and purified to apparent homogeneity. The serum level of rat murinoglobulin was 14.1 mg/ml, amounting to 1/3 of the total serum globulin fraction. Rat murinoglobulin was a monomeric glycoprotein (Mr = 210,000) containing 12% carbohydrate. Rat plasma contained two isoforms of murinoglobulin, termed I and II, which showed complete immunological identity on double diffusion analysis using rabbit antiserum raised against isoform I or II. These antisera also showed partial cross-reactivity towards mouse murinoglobulin and rat alpha-1-macroglobulin but not towards rat or human alpha-2-macroglobulin. The chemical compositions, peptide mapping patterns and electrophoretic mobilities of the two isoforms resembled each other but clearly differed from those of rat alpha-1- or alpha-2-macroglobulin. Rat murinoglobulin inhibited the proteolytic activity of trypsin towards casein and remazol brilliant blue hide powder. The inhibition as to the latter substrate was greater than that as to the former. When molar ratios of inhibitor to trypsin were low, murinoglobulin and the two alpha-macroglobulins stimulated the amidolytic activity of trypsin towards a synthetic substrate. At higher ratios, however, murinoglobulin, but not the alpha-macroglobulins, inhibited the same activity. The trypsin-protein esterase activity of murinoglobulin and the two alpha-macroglobulins was impaired by a molar excess of soybean trypsin inhibitor. Murinoglobulin and the two alpha-macroglobulins were inactivated by methylamine with a concomitant unmasking of the thiol group. Murinoglobulin was much more sensitive to soybean trypsin inhibitor and methylamine than the two alpha-macroglobulins.  相似文献   

3.
A form of human alpha 2-macroglobulin (alpha 2M) has been prepared that has properties intermediate to those of native alpha 2-macroglobulin and 2:1 protease-alpha 2 M ternary complex by using Sepharose-linked chymotrypsin. The intermediate form has mobility on native polyacrylamide gels between the fast and slow forms of alpha 2M and migrates as a diffuse band. Two bait regions and two thiol esters per alpha 2M tetramer are cleaved, although no chymotrypsin is detectable in the modified alpha 2-macroglobulin species. The remaining bait regions and thiol esters can be cleaved by further reaction with other proteases. Intermediate-form alpha 2M can trap 1.18 mol of chymotrypsin, 0.85 mol of trypsin, and 0.65 mol of thrombin. Although both thrombin and methylamine react with intermediate-form alpha 2M at rates not distinguishable within experimental error from those of their reactions with native alpha 2M, chymotrypsin-Sepharose reacts much more slowly with the intermediate form than with native alpha 2 M, indicating a nonequivalence of the two reactive sites on alpha 2M. This nonequivalence may be present initially or be induced by reaction at the first site. Comparison of ESR results obtained from spin-labeling methylamine-treated or protease-reacted alpha 2M with those from spin-labeling of the free SH groups in intermediate-form alpha 2M shows that trapped protease influences the mobility of the attached nitroxide either through direct contact or by producing a different conformation from that present in methylamine-treated or intermediate-form alpha 2M.  相似文献   

4.
Structure of the rat alpha 2-macroglobulin-coding gene   总被引:3,自引:0,他引:3  
M Hattori  S Kusakabe  H Ohgusu  Y Tsuchiya  T Ito  Y Sakaki 《Gene》1989,77(2):333-340
Rat alpha 2-macroglobulin (alpha 2M) is an acute-phase protein, i.e., produced upon tissue inflammation. Genomic DNA clones covering the entire sequence of the alpha 2M gene were isolated and characterized by restriction mapping. Southern blotting and (partial) DNA sequencing. The rat alpha 2M gene is approx. 50 kb in length and consists of 36 exons ranging in size from 21 to 229 bp. Two functional domains, a bait region and a thiol ester site, are encoded by the exon 18 and 24, respectively. Several possible regulatory signals such as a TPA-inducible enhancer core, an identifier sequence, purine-pyrimidine alternative stretches and viral enhancer core sequences were identified. Several genomic DNA clones which cross-hybridized with the alpha 2M cDNA probe were also identified. Sequence analysis showed that they possessed sequences identical to a part of the rat alpha 1-inhibitor III cDNA and that they had a strikingly similar exon organization to the alpha 2M gene.  相似文献   

5.
It has been shown previously [Van Leuven, F., Marynen, P., Cassiman, J. J., & Van den Berghe, H. (1982) Biochem. J. 203, 405-411] that 2,4-dinitrophenyl thiocyanate (DNPSCN) can block the conversion of "slow" to "fast" electrophoretic forms of human alpha 2-macroglobulin (alpha 2M) normally resulting from reaction of alpha 2M with methylamine. The kinetics of reaction of DNPSCN with alpha 2M in the presence of methylamine are examined here and shown to approximate pseudo first order, reflecting the rate-limiting reaction of alpha 2M with methylamine [Larsson, L. J., & Bj?rk, I. (1984) Biochemistry 23, 2802-2807]. One mole of DNPS is liberated per mole of free thiol in alpha 2M, consistent with cyanylation of the thiol liberated upon scission of the internal thiol esters by methylamine. I3(-) can also react with the methylamine-generated thiol groups of alpha 2M with a stoichiometry consistent with conversion of the thiol to a sulfenyl iodide. Reaction of the thiol groups with either DNPSCN or I3(-) inhibits the conversion of alpha 2M from the "slow" to the "fast" electrophoretic form. Furthermore, DNPSCN added after the conformational change can partially reverse the change. A similar reversal can be effected by cyanylation, with NaCN, of methylamine-treated alpha 2M in which the liberated thiols have first been converted to mixed disulfides by reaction with dithiobis(nitrobenzoic acid). Differential scanning calorimetry shows nearly identical properties for the methylamine-treated "fast" form and the cyanylated "slow" form of alpha 2M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Binding of IL-1 beta to alpha-macroglobulins and release by thioredoxin.   总被引:2,自引:0,他引:2  
Human alpha 2-macroglobulin (H alpha 2M) is a major IL-1 beta binding plasma protein. The characteristics of the H alpha 2M IL-1 beta complex formation suggested, that cleavage of the internal thiol ester in other members of the alpha-macroglobulin family (alpha M) could enable these proteins to bind IL-1 beta. Characterization of optimal conditions for binding 125I IL-1 beta to H alpha 2M showed that H alpha 2M-IL-1 beta complex formation could be obtained over a pH range of 6.3 to 9 in the presence of some metal cations (i.e., Zn2+, Cd2+, Cu2+, Ni2+). Other divalent metal cations (i.e., Mn2+, Mg2+, Ca2+) were without effect. Time kinetic studies showed that binding of IL-1 beta to H alpha 2M was complete within 200 min and that H alpha 2M-IL-1 beta complexes became increasingly resistant to dissociation by boiling in SDS as a function of incubation time. Human pregnancy zone protein, rat alpha 1-, alpha 2-macroglobulin (R alpha 1M, R alpha 2M), all homologous with H alpha 2M, were tested for their ability to bind IL-1 beta. In each instance, alpha M-IL-1 beta complex formation was observed only after treatment of alpha M with methylamine, a primary amine that causes cleavage of the internal thiol ester in alpha M and the appearance of free thiol groups. Similarly, for each of these proteins, complex formation was increased several fold in the presence of Zn2+. Competition experiments using cytokines or proteins of similar molecular mass as IL-1 beta established that only unlabeled IL-1 beta was effective in inhibiting binding of 125I IL-1 beta to H"F" alpha 2M. Acylation of H"F" alpha 2M by diethylpyrocarbonate blocked the binding of IL-1 beta when analyzed by native PAGE. Deacylation of H"F" alpha 2M with hydroxylamine partially restored the binding capacity of H"F" alpha 2M further supporting the involvement of histidyl residues in the Zn2(+)-dependent binding of IL-1 beta. Reduced thioredoxin, but not its alkylated form, from Escherichia coli readily releases H"F" alpha 2M bound IL-1 beta under conditions that did not lead to reduction of disulfide bonds in H"F" alpha 2M. The action of thioredoxin also augmented IL-1-like activity in two independent bioassays suggesting that H"F" alpha 2M bound IL-1 beta is partially biologically inactive or latent. These results suggest that "activated" alpha M exert a modulating role for IL-1 beta by exposing specific binding sites, which are inaccessible in the native proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Intra-chain thiol ester bonds are present in a limited number of proteins. The thiol ester class of proteins includes vertebrate alpha 2-macroglobulin and the complement proteins C3 and C4. We report here the first instance of a thiol ester protein from an invertebrate, the alpha 2-macroglobulin proteinase-inhibitor homologue present in the plasma of the American horseshoe crab Limulus polyphemus. Our evidence is of three kinds: (1) the proteinase-binding activity of Limulus alpha 2-macroglobulin is inactivated by the low-molecular-mass primary amine methylamine; (2) the native protein is subject to autolytic fragmentation during mild thermal denaturation, yielding fragments of approx. 125 kDa and 55 kDa, whereas the methylamine-treated protein is stable under these conditions of thermal treatment; (3) new thiol groups are generated rapidly during reaction of the protein with trypsin. The demonstration of the thiol ester bond in a protein from an ancient invertebrate provides evolutionary evidence for the importance of this bond in the function of plasma forms of the alpha 2-macroglobulin-like proteinase inhibitors.  相似文献   

8.
1. Purified alpha 2-macroglobulin (alpha 2M) from the American horseshoe crab, Limulus polyphemus was cleaved with trypsin and 20 of the tryptic peptides were sequenced and compared with the sequences of human alpha 2M, rat alpha 1M, alpha 2M, and alpha 1-inhibitor 3, and human complement proteins C3 and C4. 2. Ten of the peptides (233 residues), including that containing the thiol ester site, could be aligned unambiguously with stretches in mammalian alpha 2M, with a degree of identity greater than 30%. 3. The 12-residue thiol ester-containing peptide of Limulus alpha 2M showed 67% identity with the same stretch of human alpha 2M.  相似文献   

9.
Affinity labeling and immunoprecipitation studies demonstrate that alpha 2-macroglobulin (alpha 2M) is the major serum-binding protein for transforming growth factors beta 1 and beta 2 (TGF-beta 1 and TGF-beta 2). Purified alpha 2M inhibits the binding of both 125I-TGF-beta 1 and 125I-TGF-beta 2 to cell surface receptors at I50 values of 200 and 10 micrograms/ml, respectively. alpha 2M (200 micrograms/ml) does not block TGF-beta 1 inhibition of CCL-64 mink lung cell growth but reduces this activity of TGF-beta 2 10-fold. The electrophoretic migration of 125I-TGF-beta.alpha 2M complexes on polyacrylamide gels under nondenaturing conditions demonstrates that alpha 2M has 10-fold greater affinity for TGF-beta 2 than for TGF-beta 1. Each of these complexes comigrates as a single band with the fast form of alpha 2M. We suggest that alpha 2M is an important differential regulator of the biological activities of TGF-beta 1 and TGF-beta 2 in vivo.  相似文献   

10.
Monoamine-activated human alpha2-macroglobulin (alpha2M) has been previously demonstrated to inhibit TrkA-, TrkB-, and TrkC-mediated signal transduction. Rat alpha1-macroglobulin (alpha1M) and alpha2M are structural homologues of human alpha2M, but rat alpha1M is distinctly different from rat alpha2M in many ways and its role in the mammalian nervous system is unknown. In this report, monoamine-activated rat alpha1M was demonstrated to enhance in a dose-dependent manner nerve growth factor (NGF)-promoted neurite outgrowth in pheochromocytoma PC12 cells. Monoamine-activated alpha1M by itself, however, was neither neurotrophic nor mitogenic to PC12 cells. To investigate further its possible mode of action, the ability of monoamine-activated alpha1M and normal alpha1M to bind and to activate the NGF receptor (TrkA) was investigated. Monoamine-activated alpha1M formed a more stable complex with TrkA than normal alpha1 M, but the binding of monoamine-activated alpha1M to TrkA was adversely affected by prior stimulation of TrkA with NGF. In addition, monoamine-activated alpha1M enhanced the NGF-promoted TrkA phosphorylation and up-regulated the expression of NGF-inducible immediate-early genes (c-jun and NGFI-A) and delayed-response genes (SCG10 and transin) in PC12 cells; normal alpha1M, in contrast, produced little or no effect. This study demonstrates that alpha1M, the constitutive form of alpha-macroglobulin in the rat, possesses the ability to promote NGF-mediated differentiation in PC12 cells, possibly via its direct action on TrkA receptors and TrkA-mediated signal transduction and gene expression.  相似文献   

11.
alpha 1 Inhibitor3 (alpha 1I3) is a monomeric protease inhibitor of about 190 kDa which is secreted by rodent hepatocytes. We have studied intracellular modifications of this protein in [35]methionine-labelled rat hepatocytes by pulse/chase experiments followed by immunoprecipitation and gel electrophoresis under reducing and nonreducing conditions. Directly after the pulse, most of the unreduced alpha 1I3 migrated faster than the reduced form, indicating that disulphide bridges are formed during or shortly after synthesis yielding a compact structure. With increasing chase time however, an increasing portion of the unreduced alpha 1I3 migrated with a mobility lower than that of the reduced protein, half-maximal conversion occurring after about 10 min. This finding suggests that alpha 1I3 undergoes a conformational change in the endoplasmic reticulum, possibly becoming more elongated. During 10-30 min of chase, the protein acquired the capacity to undergo autolytic cleavage upon heating, a property due to the existence of an internal thiolester bond [Howard, J. B., Vermeulen, M. & Swenson, R. P. (1980) J. Biol. Chem. 255, 3820-3823; Esnard, F., Gutman, N., El Moujahed, A. & Gauthier, F. (1985) FEBS Lett. 182, 125-129]. Analysis by subcellular fractionation indicated that this bond is formed in the endoplasmic reticulum. Finally, we show that secreted alpha 1I3 is sulphated, presumably at Tyr618.  相似文献   

12.
Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.  相似文献   

13.
Inhibition of human blood coagulation factor Xa by alpha 2-macroglobulin   总被引:1,自引:0,他引:1  
The inactivation of activated factor X (factor Xa) by alpha 2-macroglobulin (alpha 2M) was studied. The second-order rate constant for the reaction was 1.4 X 10(3) M-1 s-1. The binding ratio was found to be 2 mol of factor Xa/mol of alpha 2M. Interaction of factor Xa with alpha 2M resulted in the appearance of four thiol groups per molecule of alpha 2M. The apparent second-order rate constants for the appearance of thiol groups were dependent on the factor Xa concentration. Sodium dodecyl sulfate gradient polyacrylamide gel electrophoresis was used to study complex formation between alpha 2M and factor Xa. Under nonreducing conditions, four factor Xa-alpha 2M complexes were observed. Reduction of these complexes showed the formation of two new bands. One complex (Mr 225,000) consisted of the heavy chain of the factor Xa molecule covalently bound to a subunit of alpha 2M, while the second complex (Mr 400,000) consisted of the heavy chain of factor Xa molecule and two subunits of alpha 2M. Factor Xa was able to form a bridge between two subunits of alpha 2M, either within one molecule of alpha 2M or by linking two molecules of alpha 2M. Complexes involving more than two molecules of alpha 2M were not formed.  相似文献   

14.
Receptors for alpha 2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled alpha 2-macroglobulin.trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8-9.0. The half-time for association was about 5 min at 37 degrees C in contrast to about 5 h at 4 degrees C. The half-saturation constant was about 100 pM at 4 degrees C and 1 nM at 37 degrees C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 +/- 71 kDa (S.D., n = 7) for alpha 2-macroglobulin.trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat alpha 1-inhibitor-3.chymotrypsin, a 210 kDa analogue which binds to the alpha 2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55-60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked alpha 2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-alpha 1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400-500 kDa alpha 2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

15.
The products generated by the reaction of Limulus alpha 2-macroglobulin with trypsin were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Unreacted Limulus alpha 2-macroglobulin had a subunit molecular mass of 185 kDa. Trypsin-reacted samples contained two prominent peptides smaller (85 and 100 kDa) and three peptides larger (200, 250, and 300-350 kDa) than the unreacted subunit. Reaction of methylamine-treated Limulus alpha 2-macroglobulin with trypsin resulted in the same two prominent reaction products smaller than 185 kDa, but all of the reaction products larger than 185 kDa were absent. The covalent binding of biotinylated trypsin with Limulus alpha 2-macroglobulin was detected by probing Western blots with horseradish peroxidase-avidin. Surprisingly, the only reaction products that contained trypsin were bands at 100 and 120 kDa. The staining of these bands with horseradish peroxidase-avidin was weak: most of the biotinylated trypsin that remained associated with alpha 2-macroglobulin during gel filtration chromatography was located at the dye front following reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The reaction products larger than 185 kDa did not contain trypsin. Methylamine-reacted Limulus alpha 2-macroglobulin failed to bind any biotinylated trypsin. In contrast to the reaction of trypsin with Limulus alpha 2-macroglobulin, all high molecular mass bands generated by the reaction of human alpha 2-macroglobulin with biotinylated trypsin stained intensely with horseradish peroxidase-avidin. Thus, Limulus alpha 2-macroglobulin forms thiol ester-dependent, high molecular mass products involving isopeptide bonding between trypsin-generated fragments, without the incorporation of trypsin into the complexes. Most of the alpha 2-macroglobulin-associated trypsin is non-covalently trapped rather than covalently cross-linked.  相似文献   

16.
Treatment of normal human plasma with methylamine resulted in the discovery of an interleukin-1 beta(IL-1 beta) binding protein. The protein was labeled with 125I-IL-1 beta and the relative molecular mass (Mr) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein-IL-1 beta complex had a Mr of approximately 400,000 in non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis but became dissociated when exposed to beta-mercaptoethanol. The 125I-IL-1 beta labeled protein complex could be immunoprecipitated from plasma by using an anti-alpha 2-macroglobulin (alpha 2M) antiserum. Similarly, a monoclonal antibody (mAb) specific for electrophoretically fast ("F")alpha 2M was able to adsorb the 125I-IL-1 beta labeled complex from plasma. The mAb was also capable of adsorbing "F" alpha 2M-125I-IL-1 beta complexes from binary reaction mixtures, but failed to adsorb free 125I-IL-1 beta. Experiments carried out with purified plasma alpha 2M established that IL-1 beta became bound to alpha 2M only upon reaction with trypsin or methylamine, which results in the appearance of free thiol groups in alpha 2M ("F" alpha 2M). There was no binding of IL-1 beta to the native form of alpha 2M (electrophoretically slow or "S" alpha 2M), which lacks free thiol groups. Pretreatment of "F" alpha 2M with N-ethylmaleimide or [ethylenebis(oxyethylenenitrilo)] tetraacetic acid prevented complex formation between "F" alpha 2M and IL-1 beta. In contrast, the yield of "F" alpha 2M IL-1 beta complex formation was increased severalfold in the presence of 2.5 mM Zn2+. These findings indicate that "F" alpha 2M interacts with IL-1 beta through a thiol-disulfide exchange reaction. Zn2+ may play a major role in bringing together the reactive domains of the adjoining peptide backbones into proper orientation. The ready complex formation between "F" alpha 2M and the pleiotropic cytokine IL-1 beta suggests a novel biological role for "F" alpha 2M, since "F" alpha 2M-IL-1 beta complexes, but not "F" alpha 2M alone, retained IL-1-like activity in the thymocyte costimulator bioassay.  相似文献   

17.
A mouse alpha-macroglobulin (AMG), a homologue of human alpha 2-macroglobulin (alpha 2 M), has been purified to homogeneity. In contrast to human and acute-phase rat alpha 2 M which contains subunits of about Mr 190 000, the mouse protein contains two major (Mr 163000 and 35000) and one minor (Mr 185000) subunits. Also unlike human alpha 2 M, which can be broken down into about 85000-dalton subunits when reacted with an endopeptidase, the native AMG is cleaved by trypsin into multiple components (Mr 86000, 63000, 61000 and 33000). Two-dimensional peptide map analysis of these various 125I-labeled subunit components reveals that the 185000- and 163000-dalton components are homologous proteins but only the 185000-dalton protein contains the 35000-dalton component. The 163000-dalton protein is cleaved by trypsin into 86000- and 63000-dalton components, and the 86-kDa component in turn can be broken down into 61000- and 33000-dalton fragments. Since the 35000-dalton component is serologically related to AMG but does not share any tryptic peptides with both the 163000- and 33000-dalton components, it is neither a copurified impurity nor a cleavage product of the major (163000-dalton) subunit. AMG, therefore, is composed of covalently linked subunits of Mr 163000 and 35000, and the 185000-dalton protein may be a variant subunit of AMG. Trypsin treatment of the [14C]methylamine-labeled AMG and alpha 2 M also sequentially generate subunit patterns indistinguishable from those of the unlabeled macroglobulins. The methylamine-sensitive site(s) of AMG is localized in the 63000-dalton peptide, which is rather resistant to trypsin digestion and to staining by Coomassie brillant blue. We conclude from this study that the mouse homologue has a subunit composition and primary structure distinctly different from those of human and rat alpha 2 M.  相似文献   

18.
alpha 2-Macroglobulin-trypsin complex (alpha 2M.T) and alpha 2M-methylamine bind in a Ca2+-dependent way to a 400- to 500-kDa receptor in rat and human liver membranes (Gliemann, J., Davidsen, O., and Moestrup, S. K. (1989) Biochim. Biophys. Acta 980, 326-332). Here we report the preparation of alpha 2M receptors from rat liver membranes solubilized in 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonic acid (CHAPS) dihydrate and incubated with Sepharose-immobilized alpha 2M-methylamine. The receptor preparation eluted with EDTA (pH 6.0) contained a protein larger than the 360-kDa alpha 2M (nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and some minor contaminants. The reduced large protein was about 440 kDa using reduced laminin (heavy chain: 400 kDa) as a standard. About 10 micrograms of receptor protein was obtained from 100 mg of liver membranes. The receptor preparation immobilized on nitrocellulose sheets bound 125I-alpha 2M.T, and the binding activity co-eluted with the 440-kDa protein. 125I-Labeled rat alpha 1-inhibitor-3 (alpha 1I3), a 200-kDa analogue of the alpha 2M subunit which binds to the alpha 2M receptors, was cross-linked to the 440-kDa protein. The receptor preparation was iodinated, and the 125I-labeled 440-kDa protein was isolated. It showed Ca2+-dependent saturable binding to alpha 2M-methylamine. In conclusion, we have purified the major hepatic alpha 2M receptor as an approximately 440-kDa single chain protein.  相似文献   

19.
Pregnancy-associated plasma protein-A (PAPP-A), like alpha 2-macroglobulin (alpha 2M), is a large protein with homotetrameric molecular conformation. Each monomer has Mr 205 kDa. Total carbohydrate content of PAPP-A (19.4%) exceeded that of alpha 2M (8.6%). In addition to glucose (9.4%), fucose (3.1%), mannose (2.3%) and galactose (0.8%), PAPP-A contained glucuronic acid (3.8%). The amino acid composition of PAPP-A differed most significantly from alpha 2M, in the content of glutamate, glycine and lysine. Although the peptide core of both proteins were of similar size, the difference in size, of native molecules was due to the carbohydrate moiety. Whereas alpha 2M monomer was autolytically cleaved into two smaller non-identical subunits (Mr 128 and 65 kDa), no such breakdown products were observed with PAPP-A. Unlike alpha 2M, PAPP-A is not a broad spectrum protease inhibitor. Both proteins inhibited human granulocyte elastase (HGE) in a dose dependent relationship, with PAPP-A (Ki 0.2 x 10(-6) M) being a more potent inhibitor than alpha 2M (Ki 1.02 x 10(-6) M). Since PAPP-A lacked internal thiolester groups, the mechanism of HGE inhibition was unlikely to be entrapment, as defined for alpha 2M. Inhibition kinetics of HGE for PAPP-A (noncompetitive inhibitor) and alpha 2M (uncompetitive inhibitor) were distinct. Thus, these findings do not support the tenet of a common ancestral protein for PAPP-A and alpha 2M.  相似文献   

20.
Alpha 1-Microglobulin (alpha 1-m), or protein HC, a low molecular weight plasma protein with immunoregulatory properties, was isolated from rat serum by affinity chromatography using Sepharose-coupled monoclonal anti-alpha 1-m antibodies. High molecular weight forms of alpha 1-m were then separated from the low molecular weight alpha 1-m by gel chromatography of the eluted proteins. The apparent Mr (28,000), the charge heterogeneity, the N-linked carbohydrate, and yellow-brown chromophore suggest that the low molecular weight alpha 1-m is the serum counterpart to urinary alpha 1-m, which was purified previously. A high molecular weight complex of alpha 1-m was also isolated by the gel chromatography. It was homogeneous as judged by nondenaturing polyacrylamide gel electrophoresis. The molecule was bound by antibodies against human alpha 2-macroglobulin, and experiments with antisera against the three alpha-macroglobulin variants in rat serum, alpha 1-macroglobulin, alpha 2-macroglobulin, and alpha 1-inhibitor-3 (alpha 1I3) suggested that alpha 1I3 was the complex-partner of alpha 1-m. An antiserum raised against high molecular weight alpha 1-m was then used to isolate the complex-partner of alpha 1-m from rat serum with affinity chromatography, and this molecule was positively identified as alpha 1I3 by its physicochemical properties. Gel chromatography of the alpha 1I3.alpha 1-m complex suggested a molecule with an Mr of 266,000. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, however, it migrated as three major molecular species with apparent molecular weights of 224,000, 205,000, and 194,000 and several minor species of both higher and lower molecular weights, suggesting a complex subunit structure. alpha 1-m and alpha 1I3 could be detected in all three major species by Western blotting, and NH2-terminal amino acid sequencing suggested a molar ratio of 1:1 of alpha 1-m and alpha 1I3 in all three species. alpha 1I3.alpha 1-m was colorless, did not show light absorbance beyond 300 nm which is typical of low molecular weight alpha 1-m and was electrophoretically homogeneous, suggesting that it lacks the chromophore. Finally, the serum concentrations of the alpha 1I3.alpha 1-m complex and free alpha 1-m were determined as 0.16 and 0.010 g/liter, respectively. Thus, alpha 1I3.alpha 1-m constitutes 1-3% of the total alpha 1I3 in rat serum (w/w) and approximately 60% of the total alpha 1-m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号