首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Purified alpha 2-macroglobulin (alpha 2M) from the American horseshoe crab, Limulus polyphemus was cleaved with trypsin and 20 of the tryptic peptides were sequenced and compared with the sequences of human alpha 2M, rat alpha 1M, alpha 2M, and alpha 1-inhibitor 3, and human complement proteins C3 and C4. 2. Ten of the peptides (233 residues), including that containing the thiol ester site, could be aligned unambiguously with stretches in mammalian alpha 2M, with a degree of identity greater than 30%. 3. The 12-residue thiol ester-containing peptide of Limulus alpha 2M showed 67% identity with the same stretch of human alpha 2M.  相似文献   

2.
The products generated by the reaction of Limulus alpha 2-macroglobulin with trypsin were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Unreacted Limulus alpha 2-macroglobulin had a subunit molecular mass of 185 kDa. Trypsin-reacted samples contained two prominent peptides smaller (85 and 100 kDa) and three peptides larger (200, 250, and 300-350 kDa) than the unreacted subunit. Reaction of methylamine-treated Limulus alpha 2-macroglobulin with trypsin resulted in the same two prominent reaction products smaller than 185 kDa, but all of the reaction products larger than 185 kDa were absent. The covalent binding of biotinylated trypsin with Limulus alpha 2-macroglobulin was detected by probing Western blots with horseradish peroxidase-avidin. Surprisingly, the only reaction products that contained trypsin were bands at 100 and 120 kDa. The staining of these bands with horseradish peroxidase-avidin was weak: most of the biotinylated trypsin that remained associated with alpha 2-macroglobulin during gel filtration chromatography was located at the dye front following reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The reaction products larger than 185 kDa did not contain trypsin. Methylamine-reacted Limulus alpha 2-macroglobulin failed to bind any biotinylated trypsin. In contrast to the reaction of trypsin with Limulus alpha 2-macroglobulin, all high molecular mass bands generated by the reaction of human alpha 2-macroglobulin with biotinylated trypsin stained intensely with horseradish peroxidase-avidin. Thus, Limulus alpha 2-macroglobulin forms thiol ester-dependent, high molecular mass products involving isopeptide bonding between trypsin-generated fragments, without the incorporation of trypsin into the complexes. Most of the alpha 2-macroglobulin-associated trypsin is non-covalently trapped rather than covalently cross-linked.  相似文献   

3.
Rat blood plasma contains three high molecular weight thiol ester-containing proteinase inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2-macroglobulin (alpha 2M). Rat serums have been analyzed using a two-dimensional gel electrophoretic technique which optimizes recovery of high molecular weight proteins. alpha 1M, and (alpha beta)4-tetramer in native solution, separated in the second sodium dodecyl sulfate-containing electrophoretic dimension as a disulfide-linked (alpha beta)2-dimer with an approximate Mr of 360 kDa. alpha 1I3 separated in the gels as a single 190-kDa polypeptide. It is also a monomer in native solution by ultracentrifugation criteria. Native rat alpha 2M is a tetramer, but it separates in the gels as a disulfide-linked dimer with an Mr of approximately 360 kDa. The kinetics of changes in concentration of these proteins during the induction of polyarthritis was also measured by quantitative immunoelectrophoresis. In rats with adjuvant-induced polyarthritis, the concentration of alpha 1I3 dramatically decreases and alpha 2M appears and continues to increase in a biphasic manner for 2 weeks. The alpha 1M concentration remains relatively constant. All three macroglobulins were purified utilizing modern rapid chromatographic techniques, and parallel comparisons of their native physicochemical properties were carried out. The N-terminal sequence of the alpha-chain of rat alpha 1M was also shown to share sequence homology with that of alpha 2M. In agreement, Esnard et al. (Esnard, F., Gutman, N., El Moujahed, A., and Gauthier, F. (1985) FEBS Lett. 182, 125-129) recently reported that alpha 1I3 also contains a thiol ester bond, as do alpha 1M and alpha 2M, since it reacts covalently with [14C]methylamine and is cleaved autolytically at 80 degrees C. We have examined negatively stained preparations of native, trypsin-treated, and methylamine-treated human alpha 2M, rat alpha 2M, and rat alpha 1M in the electron microscope. Trypsin appears to convert globular ring-shaped native molecules to rectangular box-like structures, in agreement with the conclusions of a recent report on human alpha 2M (Tapon-Bretaudiere, J., Bros, A., Couture-Tosi, E., and Delain, E. (1985) EMBO J. 4, 85-89).  相似文献   

4.
Activation of the fourth component of complement (C4) by C1s results in the generation of a reactive acyl group, able to react with putrescine, and in the release of a free thiol group that cannot be detected in the native haemolytically active molecule. Both the reactive acyl group and the free thiol group have been shown to reside in C4d, a fragment of the alpha'-chain of C4b derived from digestion of the molecule with the control proteins C3b inactivator and C4-binding protein. Peptides derived from CNBr digestion of [1,4-14C]putrescine-labelled and iodo(2-14C]acetic acid-labelled C4d have been obtained and used to establish a continuous sequence of 88 residues from the N-terminus of the molecule. The thiol and reactive acyl groups are contained in an octapeptide that shows near identity with the equivalent sequences reported for alpha 2-macroglobulin and C3. Other adjacent short sections also show homology of sequence between the three proteins, and it is highly likely that they contribute to the overall structure that gives a unique reactivity to the thiol ester bond postulated to exist in the native forms of the three proteins.  相似文献   

5.
The structure and the mechanism for proteinase inhibition of the egg white protein ovostatin (ovomacroglobulin) are similar to those of plasma alpha 2-macroglobulin, but previous studies have shown that chicken ovostatin lacks a reactive thiol ester (Nagase, H., and Harris, E. D., Jr. (1983) J. Biol. Chem. 258, 7490-7498). Here we show that duck ovostatin has conserved such a thiol ester and is capable of inhibiting both metallo- and serine proteinases stoichiometrically. Evidence for thiol esters was established by the following results with duck ovostatin: 1) autolysis into fragments of Mr = 123,000 and 60,000 occurred by heating in sodium dodecyl sulfate, but was prevented by treatment with CH3NH2; 2) covalent linkages were formed with proteinases on complex formation; 3) reaction with CH3NH2 generated 3.6 SH groups/mol, and 3.9 mol of [14C]CH3NH2 were incorporated per mol of protein; and 4) saturation with a proteinase liberated 3.8 SH groups/mol of the inhibitor. Conformational rearrangement of duck ovostatin upon reacting with CH3NH2 or proteinases was demonstrated by an increased mobility of the protein in polyacrylamide gel electrophoresis. CH3NH2-treated duck ovostatin was able to bind and inhibit proteinases without forming covalent bonds, but, unlike unmodified ovostatin, its inhibitory activity was destroyed by freezing and thawing. Complexes formed between CH3NH2-treated duck ovostatin and a proteinase were not dissociable except under denaturing conditions. These results and other evidence indicate that covalent bond formation through reaction with a thiol ester is a separate process from the trapping and inhibition of proteinases by this family of proteins.  相似文献   

6.
7.
Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.  相似文献   

8.
1. A high mol. wt proteinase inhibitor has been purified from the haemolymph of the freshwater crayfish Astacus astacus. 2. The protein is a disulphide-bonded dimer (Mr 390,000) of two identical polypeptide chains (Mr 185,000). 3. The inhibitor displays a broad specificity and protects trypsin from inhibition by soybean trypsin inhibitor and thus is similar to vertebrate alpha 2-macroglobulin. 4. The alpha 2-macroglobulin-like inhibitor from Astacus interacts with bovine trypsin in an equimolar stoichiometry thereby decreasing tryptic hydrolysis of N-benzoyl-L-arginine-ethylester to 50% residual activity. In contrast, the activity of Astacus protease, a digestive zinc proteinase from crayfish toward succinyl-alanyl-alanyl-alanyl-4-nitroanilide is inhibited almost completely. 5. Sensitivity of the inhibitor to methylamine and autolytic cleavage suggests the presence of an internal thioester bond. 6. The N-terminal amino acid sequence of Astacus alpha 2-macroglobulin is strongly related to the alpha 2-macroglobulins from Pacifastacus leniusculus (91% identity) and from the lobster Homarus americanus (72% identity). In contrast, only 25% of the residues are identical with the alpha 2-macroglobulin from the horseshoe crab Limulus polyphemus. There is also a faint similarity to human complement protein C3 and human alpha 2-macroglobulin.  相似文献   

9.
Treatment of human alpha 2-macroglobulin (alpha 2M) with proteinase results in cleavage of the alpha 2M subunits and subsequently in a conformational change in the inhibitor. This change irreversibly traps the proteinase and is accompanied by the generation of four thiol groups as well as exposure of receptor recognition sites. cis-Dichlorodiammineplatinum(II) (cis-DDP) causes extensive intersubunit cross-linking of alpha 2M. Incubation of alpha 2M or cis-DDP-treated alpha 2M with trypsin results in complete subunit cleavage; however, trypsin treatment of cis-DDP-alpha 2M does not result in a conformational change as determined by nondenaturing polyacrylamide gel electrophoresis (PAGE), receptor recognition site exposure, or appearance of thiol groups from the inhibitor. These results are in marked contrast to previous studies which demonstrated that incubation of cis-DDP-treated alpha 2M with CH3NH2 resulted in thiol ester bond cleavage and receptor recognition site exposure. cis-DDP-treated alpha 2M bound only 0.13 mol of 125I-trypsin/mol of cis-DDP-alpha 2M. Incubation of trypsin-treated cis-DDP-alpha 2M with diethyldithiocarbamate (DDC), a potent chelator of platinum compounds, results in the removal of the intersubunit cross-links and completion of the alpha 2M conformational change as determined by nondenaturing PAGE. Complete receptor recognition site exposure and the appearance of 3.3 thiol groups/mol of alpha 2M also occur following this treatment. These results demonstrate that cross-linking of alpha 2M by cis-DDP prevents a conformational change in the inhibitor which is necessary for thiol ester bond activation and cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The plasma proteins, alpha 2-macroglobulin and complement components 3 and 4, contain an internal thiol ester involving a glutamyl and cysteinyl residue. The thiol ester is susceptible to cyclization at greater than 37 degrees C and forms an unstable 5-oxyproline intermediate. The latter can be hydrolyzed to produce two peptide fragments. We propose that enzymes having activated glutamyl residues as part of their catalytic mechanisms may undergo an analogous cyclization and peptidyl cleavage. As a model, we have investigated pig heart succinyl-CoA:3-keto acid transferase. When the CoA-enzyme thiolester intermediate is heated at pH 7.4 and 70 degrees C for 1 h, approximately 60% of the Mr = 60,000 subunits are cleaved to give Mr = 40,000 and 20,000 fragments. We have shown that formation of the enzyme thiolester is an obligate precursor for the protein fragmentation. However, the reaction was incomplete with a maximum of approximately 65% cleavage at times greater than 60 min. These results suggest that there is a competing, deactivation reaction; namely, the thiol ester and oxyproline intermediates are hydrolyzed to regenerate the active site glutamic acid. Although the maximum rate of cleavage is at 70 degrees C, approximately 15% autolysis also occurs at 37 degrees C. The Mr = 40,000 fragment had the same amino terminal sequence as the Mr = 60,000 subunit, (Trp-Lys-Phe-Tyr-Thr-Asp-Ala-Val-Glu-Ala-). No amino terminal could be detected for the Mr = 20,000 fragment, even after digesting the fragment with pyroglutaminase. Peptide maps of the fragments and the uncleaved subunit indicate that the fragments are generated in parallel. The size of the fragments puts the active site about two-thirds of the way from the amino terminal of the protein.  相似文献   

11.
Alpha 1-macroglobulin was purified from rat plasma by gel filtration (Sephacryl S-300) and ion exchange chromatography (DE52). Analysis of the purified alpha 1-macroglobulin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two polypeptides: a light chain which could be resolved into a double band (36/38 kDa) and a heavy chain (160 kDa). Under non-reducing conditions complexes of 200 and 400 kDa could be demonstrated. Antibodies were raised against both chains of alpha 1-macroglobulin which did not cross-react with either rat alpha 2-macroglobulin or rat alpha 1-inhibitor 3. It was shown that in the medium of [35S]methionine-labeled hepatocytes the two subunits of alpha 1-macroglobulin are linked by disulfide bridges. Intracellularly, however, a high molecular mass polypeptide (185 kDa) could be immunoprecipitated with either the antiserum to the heavy or the light chain of alpha 1-macroglobulin, indicating the existence of a polyprotein precursor. Also in a cell-free translation system alpha 1-macroglobulin was synthesized as a polyprotein consisting of heavy and light chains (162 kDa). In a pulse-chase experiment using tunicamycin to block N-glycosylation, alpha 1-macroglobulin secretion was totally inhibited. This finding reflects the importance of the oligosaccharide side chains for the proteolytic processing to the two subunits and/or secretion of alpha 1-macroglobulin.  相似文献   

12.
The human protease inhibitor alpha 2-macroglobulin (alpha 2 M) is inactivated by reaction with methylamine. The site of reaction is a protein functional group having the properties of a thiol ester. To ascertain the relationship between thiol ester cleavage and protein inactivation, the rates of methylamine incorporation and thiol release were measured. As expected for a concerted reaction of a nucleophile with a thiol ester, the rates were identical. Furthermore, both rates were first order with respect to methylamine and second order overall. The methylamine inactivation of alpha 2M was determined by measuring the loss of total protease-binding capacity. This rate was slower than the thiol ester cleavage and had a substantial initial lag. However, the inactivation followed the same time course as a conformational change in alpha 2M that was measured by fluorescent dye binding, ultraviolet difference spectroscopy, and limited proteolysis. Thus, the methylamine inactivation of alpha 2M is a sequential two-step process where thiol ester cleavage is followed by a protein conformational change. It is the latter that results in the loss of total protease-binding capacity. A second assay was used to monitor the effect of methylamine on alpha 2M. The assay measures the fraction of alpha 2M-bound protease (less than 50%) that is resistant to inactivation by 100 microM soybean trypsin inhibitor. In contrast to the total protease-binding capacity, this subclass disappeared with a rate coincident with methylamine cleavage of the thiol ester. alpha 2M-bound protease that is resistant to a high soybean trypsin inhibitor concentration may reflect the fraction of the protease randomly cross-linked to alpha 2M. Both the thiol ester cleavage and the protein conformational change rates were dependent on methylamine concentration. However, the thiol ester cleavage depended on methylamine acting as a nucleophile, while the conformational change was accelerated by the ionic strength of methylamine. Other salts and buffers that do not cleave the thiol ester increased the rate of the conformational change. A detailed kinetic analysis and model of the methylamine reaction with alpha 2M is presented. The methylamine reaction was exploited to study the mechanism of protease binding by alpha 2M. At low ionic strength, the protein conformational change was considerably slower than thiol ester cleavage by methylamine. Thus, at some time points, a substantial fraction of the alpha 2M had all four thiol esters cleaved, yet had not undergone the conformational change. This fraction (approximately 50%) retained full protease-binding capacity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
alpha(2)-Macroglobulin (alpha(2)M) is a broad-spectrum protease-binding protein abundant in plasma from vertebrates and several invertebrate phyla. This protein was purified from cell-free hemolymph of the white shrimp, Penaeus vannamei, using Blue-Sepharose and Phenyl-Sepharose chromatography. The shrimp alpha(2)M is a 380 kDa protein, a homodimer of two apparently identical subunits of approximately 180 kDa linked by disulphide bridges. The amino acid sequence of the N-terminus is similar to the Limulus alpha(2)M counterpart. The shrimp alpha(2)M has a wide inhibition spectrum against different proteinase types including trypsin, leucine amino peptidase, chymotrypsin, elastase and papain. The secondary structure of shrimp alpha(2)M is mainly beta-sheet (36%), with a characteristic minimum elipticity at 217 nm. Evidence for a thiolester-mediated inhibition mechanism of proteases by alpha(2)M was provided by inactivation with methylamine.  相似文献   

14.
Different conformational states of human alpha 2-macroglobulin (alpha 2M) and pregnancy zone protein (PZP) were investigated following modifications of the functional sites, i.e. the 'bait' regions and the thiol esters, by use of chymotrypsin, methylamine and dinitrophenylthiocyanate. Gel electrophoresis, mAb (7H11D6 and alpha 1:1) and in vivo plasma clearance were used to describe different molecular states in the proteinase inhibitors. In alpha 2M, in which the thiol ester is broken by binding of methylamine and the 'trap' is closed, cyanylation of the liberated thiol group from the thiol ester modulates reopening of the 'trap' and the 'bait' regions become available for cleavage again. The trapping of proteinases in the cyanylated derivative indicates that the trap functions as in native alpha 2M. In contrast, cyanylation has no effect on proteinase-treated alpha 2M. As demonstrated by binding to mAb, the methylamine and dinitrophenylthiocyanate-treated alpha 2M exposes the receptor-recognition site, but the derivative is not cleared from the circulation in mice. The trap is not functional in PZP. In native PZP and PZP treated with methylamine, the conformational states seem similar. The receptor-recognition sites are not exposed and removal from the circulation in vivo is not seen for these as for the PZP-chymotrypsin complex. Tetramers are only formed when proteinases can be covalently bound to the PZP. Conformational changes are not detected in PZP derivatives in which the thiol ester is treated with methylamine and dinitrophenylthiocyanate. The results suggest that the conformational changes in alpha 2M are generated by mechanisms different to these in PZP. The key structure gearing the conformational changes in alpha 2M is the thiol ester, by which the events 'trapping' and exposure of the receptor-recognition site can be separated. In PZP, the crucial step for the conformational changes is the cleavage of the 'bait' region, since cleavage of the thiol ester does not lead to any detectable conformational changes by the methods used.  相似文献   

15.
Primary structure of human alpha 2-macroglobulin. V. The complete structure   总被引:14,自引:0,他引:14  
The primary structure of the tetrameric plasma glycoprotein human alpha 2-macroglobulin has been determined. The identical subunits contain 1451 amino acid residues. Glucosamine-based oligosaccharide groups are attached to asparagine residues 32, 47, 224, 373, 387, 846, 968, and 1401. Eleven intrachain disulfide bridges have been placed (Cys25-Cys63, Cys228-Cys276, Cys246-Cys264, Cys255-Cys408, Cys572-Cys748, Cys619-Cys666, Cys798-Cys826, Cys824-Cys860, Cys898-Cys1298, Cys1056-Cys1104, and Cys1329-Cys1444). Cys-447 probably forms an interchain bridge with Cys-447 from another subunit. The beta-SH group of Cys-949 is thiol esterified to the gamma-carbonyl group of Glx-952, thus forming an activatable reactive site which can mediate covalent binding of nucleophiles. A putative transglutaminase cross-linking site is constituted by Gln-670 and Gln-671. The primary sites of proteolytic cleavage in the activation cleavage area (the "bait" region) are located in the sequence: -Arg681-Val-Gly-Phe-Tyr-Glu-. The molecular weight of the unmodified alpha 2-macroglobulin subunit is 160,837 and approximately 179,000, including the carbohydrate groups. The presence of possible internal homologies within the alpha 2-macroglobulin subunit is discussed. A comparison of stretches of sequences from alpha 2-macroglobulin with partial sequence data for complement components C3 and C4 indicates that these proteins are evolutionary related. The properties of alpha 2-macroglobulin are discussed within the context of proteolytically regulated systems with particular reference to the complement components C3 and C4.  相似文献   

16.
Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein, strongly related to alpha 2-macroglobulin (alpha 2M). Its properties and its reactions with a number of enzymes, particularly chymotrypsin, and with methylamine have been investigated. It is concluded that native PZP molecules are dimers of disulfide-bridged 180-kDa subunits and that proteinase binding results in covalent 1:1 (tetrameric)PZP-enzyme complexes. Native PZP is unstable, and storage should be avoided, but when kept unfrozen at 0 degree C most PZP preparations stay native 1-3 months. The reaction of PZP with chymotrypsin involves (i) proteolysis of bait regions, (ii) cleavage of beta-cysteinyl-gamma-glutamyl thiol ester groups, (iii) some change of the conformation and quaternary structure of PZP, and (iv) the formation of covalent 1:1 chymotrypsin-PZP(tetramer) complexes in which chymotrypsin is active but shows less activity than free chymotrypsin. The emission spectra of intrinsic fluorescence show significant differences between the PZP-chymotrypsin complex and its native components, whereas no differences are observed between methylamine-reacted PZP and native PZP. Methylamine reacts with the beta-cysteinyl-gamma-glutamyl thiol ester groups of PZP in a second-order process with k = (13.6 +/- 0.5) M-1 s-1, pH 7.6, 25 degrees C. The reaction product is PZP(dimers); no PZP(tetramers) are formed. The proteinase-binding specificity of PZP is far more restricted than that of alpha 2M. Certain chymotrypsin-like and trypsin-like enzymes are bound much less efficiently than is chymotrypsin itself.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Binding of IL-1 beta to alpha-macroglobulins and release by thioredoxin.   总被引:2,自引:0,他引:2  
Human alpha 2-macroglobulin (H alpha 2M) is a major IL-1 beta binding plasma protein. The characteristics of the H alpha 2M IL-1 beta complex formation suggested, that cleavage of the internal thiol ester in other members of the alpha-macroglobulin family (alpha M) could enable these proteins to bind IL-1 beta. Characterization of optimal conditions for binding 125I IL-1 beta to H alpha 2M showed that H alpha 2M-IL-1 beta complex formation could be obtained over a pH range of 6.3 to 9 in the presence of some metal cations (i.e., Zn2+, Cd2+, Cu2+, Ni2+). Other divalent metal cations (i.e., Mn2+, Mg2+, Ca2+) were without effect. Time kinetic studies showed that binding of IL-1 beta to H alpha 2M was complete within 200 min and that H alpha 2M-IL-1 beta complexes became increasingly resistant to dissociation by boiling in SDS as a function of incubation time. Human pregnancy zone protein, rat alpha 1-, alpha 2-macroglobulin (R alpha 1M, R alpha 2M), all homologous with H alpha 2M, were tested for their ability to bind IL-1 beta. In each instance, alpha M-IL-1 beta complex formation was observed only after treatment of alpha M with methylamine, a primary amine that causes cleavage of the internal thiol ester in alpha M and the appearance of free thiol groups. Similarly, for each of these proteins, complex formation was increased several fold in the presence of Zn2+. Competition experiments using cytokines or proteins of similar molecular mass as IL-1 beta established that only unlabeled IL-1 beta was effective in inhibiting binding of 125I IL-1 beta to H"F" alpha 2M. Acylation of H"F" alpha 2M by diethylpyrocarbonate blocked the binding of IL-1 beta when analyzed by native PAGE. Deacylation of H"F" alpha 2M with hydroxylamine partially restored the binding capacity of H"F" alpha 2M further supporting the involvement of histidyl residues in the Zn2(+)-dependent binding of IL-1 beta. Reduced thioredoxin, but not its alkylated form, from Escherichia coli readily releases H"F" alpha 2M bound IL-1 beta under conditions that did not lead to reduction of disulfide bonds in H"F" alpha 2M. The action of thioredoxin also augmented IL-1-like activity in two independent bioassays suggesting that H"F" alpha 2M bound IL-1 beta is partially biologically inactive or latent. These results suggest that "activated" alpha M exert a modulating role for IL-1 beta by exposing specific binding sites, which are inaccessible in the native proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Previous biochemical and electrophysiological evidence suggests that in invertebrate photoreceptors, a GTP-binding protein (G-protein) mediates the actions of photoactivated rhodopsin in the initial stages of transduction. We find that squid photoreceptors contain more than one protein (molecular masses 38, 42 and 46 kDa) whose ADP-ribosylation by bacterial exotoxins is light-sensitive. Several lines of evidence suggest that these proteins represent distinct alpha subunits of G-proteins. (1) Pertussis toxin and cholera toxin react with distinct subsets of these polypeptides. (2) Only the 42 kDa protein immunoreacts with the monoclonal antibody 4A, raised against the alpha subunit of the G-protein of vertebrate rods [Hamm & Bownds (1984) J. Gen. Physiol. 84. 265-280]. (3) In terms of ADP-ribosylation, the 42 kDa protein is the least labile to freezing. (4) Of the 38 kDa and 42 kDa proteins, the former is preferentially extracted with hypo-osmotic solutions, as demonstrated by the solubility of its ADP-ribosylated state and by the solubility of the light-dependent binding of guanosine 5'-[gamma-thio]triphosphate. The specific target enzymes for the observed G-proteins have not been established.  相似文献   

20.
The 192-kDa protein HX, a major component of serum that specifically binds to zymosan particles, was prepared from the plasma of the hagfish (Eptatretus burgeri) by ion-exchange chromatography and gel filtration. HX, present at a concentration of 0.8 mg/ml in the original plasma, was composed of two distinct subunits of 115 kDa and 77 kDa, respectively, which were linked by disulfide bonds. The protein had the same electrophoretic mobility as beta-globulin. Digestion by trypsin resulted in a specific cleavage of the 115-kDa subunit and a change in its immunoelectrophoretic mobility in the anodal direction, leaving the 77-kDa subunit intact. Treatment with SDS and urea resulted in the splitting of the 115-kDa subunits into 68-kDa and 45-kDa components, but this splitting was inhibited by pretreatment with methylamine, suggesting the presence of a thiol ester bond in the 115-kDa subunit. The amino acid composition of HX revealed a striking resemblance to that of human C3. We conclude, therefore, that the 192-kDa protein isolated in this study is analogous to C3, which plays a key role in the mammalian C system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号