首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The capacity of platelets to form a thrombus is mediated by integrin αIIbβ3. The cytoplasmic tail of αIIb contains a highly conserved motif, 989KVGFFKR995, which plays a critical role in regulating integrin activation and acts as a recognition site for various intracellular proteins, e.g. CIB1, PP1, ICln and RN181. Previously, we demonstrated that a cell-permeable integrin-derived activating (IDA) peptide, KVGFFKR, induces platelet activation, whereas an integrin-derived inhibitory (IDI) peptide, KVGAAKR, is antithrombotic. To elucidate the molecular mechanism underlying these opposite effects we investigate the affinity of known integrin αIIb binding proteins for the two immobilized peptides in dependence on the activation state of platelets by means of peptide-affinity chromatography, blotting techniques and protein:peptide docking studies.Our results provide a model for the inhibition of ICln interaction with the integrin in activated platelets by the IDI-peptide. Thus, ICln:IDI-peptide interaction profiles can have a pivotal purpose in the search for consensus pharmacophores specifically inhibiting ICln function in platelets potentially leading to the development of integrin-derived antithrombotic drugs.  相似文献   

2.
A critical role for the conserved alpha-integrin cytoplasmic motif, KVGFFKR, is recognized in the regulation of activation of the platelet integrin alpha(IIb)beta(3). To understand the molecular mechanisms of this regulation, we sought to determine the nature of the protein interactions with this cytoplasmic motif. We used a tagged synthetic peptide, biotin-KVGFFKR, to probe a high density protein expression array (37,200 recombinant human proteins) for high affinity interactions. A number of potential integrin-binding proteins were identified. One such protein, a chloride channel regulatory protein, ICln, was characterized further because its affinity for the integrin peptide was highest as was its expression in platelets. We verified the presence of ICln in human platelets by PCR, Western blots, immunohistochemistry, and its co-association with alpha(IIb)beta(3) by surface plasmon resonance. The affinity of this interaction was 82.2 +/- 24.4 nm in a cell free assay. ICln co-immunoprecipitates with alpha(IIb)beta(3) in platelet lysates demonstrating that this interaction is physiologically relevant. Furthermore, immobilized KVGFFKR peptides, but not control KAAAAAR peptides, specifically extract ICln from platelet lysates. Acyclovir (100 microm to 5 mm), a pharmacological inhibitor of the ICln chloride channel, specifically inhibits integrin activation (PAC-1 expression) and platelet aggregation without affecting CD62 P expression confirming a specific role for ICln in integrin activation. In parallel, a cell-permeable peptide corresponding to the potential integrin-recognition domain on ICln (AKFEEE, 10-100 microm) also inhibits platelet function. Thus, we have identified, verified, and characterized a novel functional interaction between the platelet integrin and ICln, in the platelet membrane.  相似文献   

3.
Regulation of integrin activation occurs by specific interactions among cytoplasmic proteins and integrin alpha and beta cytoplasmic tails. We report that the catalytic subunit of protein phosphatase 1 (PP1c) constitutively associates with the prototypic integrin alphaIIbbeta3 in platelets and in cell lines overexpressing the integrin. PP1c binds directly to the cytoplasmic domain of integrin alphaIIb subunit containing a conserved PP1c binding motif 989KVGF992. Anchored PP1c is inactive, while thrombin-induced platelet aggregation or fibrinogen-alphaIIbbeta3 engagement caused PP1c dissociation and concomitant activation as revealed by dephosphorylation of PP1c substrate, myosin light chain. Inhibition of ligand binding to activated alphaIIbbeta3 blocks PP1c dissociation and represses PP1c activation. These studies reveal a previously unrecognized role for integrins whereby the alpha subunit cytoplasmic tail localizes the machinery for initiating and temporally maintaining the regulatory signaling activity of a phosphatase.  相似文献   

4.
Calcium- and integrin-binding protein 1 (CIB1) is involved in the process of platelet aggregation by binding the cytoplasmic tail of the alpha(IIb) subunit of the platelet-specific integrin alpha(Iib)beta(3). Although poorly understood, it is widely believed that CIB1 acts as a global signaling regulator because it is expressed in many tissues that do not express integrin alpha(Iib)beta(3). We report the structure of human CIB1 to a resolution of 2.3 A, crystallized as a dimer. The dimer interface includes an extensive hydrophobic patch in a crystal form with 80% solvent content. Although the dimer form of CIB1 may not be physiologically relevant, this intersub-unit surface is likely to be linked to alpha(IIb) binding and to the binding of other signaling partner proteins. The C-terminal domain of CIB1 is structurally similar to other EF-hand proteins such as calmodulin and calcineurin B. Despite structural homology to the C-terminal domain, the N-terminal domain of CIB1 lacks calcium-binding sites. The structure of CIB1 revealed a complex with a molecule of glutathione in the reduced state bond to the N-terminal domain of one of the two subunits poised to interact with the free thiol of C35. Glutathione bound in this fashion suggests CIB1 may be redox regulated. Next to the bound GSH, the orientation of residues C35, H31, and S48 is suggestive of a cysteine-type protein phosphatase active site. The potential enzymatic activity of CIB1 is discussed and suggests a mechanism by which it regulates a wide variety of proteins in cells in addition to platelets.  相似文献   

5.
We previously identified proteins that bind with high affinity to a peptide corresponding to the cytoplasmic regulatory domain (KVGFFKR) of the platelet-specific integrin subunit αIIb. These included a hypothetical protein termed HSPC238, recently renamed as RING finger protein, RN181. Here, we establish the presence of RN181 in human platelets by RT-PCR, Western blotting and mass spectrometry and confirm its affinity for the platelet integrin. We demonstrate that RN181 has ubiquitin E3 ligase activity and that all other components of the ubiquitination pathway are abundant in platelets, suggesting a novel link of integrin signal transduction pathways with ubiquitin-conjugation events.  相似文献   

6.
Integrins are transmembrane proteins regulating cellular shape, mobility and the cell cycle. A highly conserved signature motif in the cytoplasmic tail of the integrin α‐subunit, KXGFFKR, plays a critical role in regulating integrin function. To date, six proteins have been identified that target this motif of the platelet‐specific integrin αIIbβ3. We employ peptide‐affinity chromatography followed‐up with LC‐MS/MS analysis as well as protein chips to identify new potential regulators of integrin function in platelets and put them into their biological context using information from protein:protein interaction (PPI) databases. Totally, 44 platelet proteins bind with high affinity to an immobilized LAMWKVGFFKR‐peptide. Of these, seven have been reported in the PPI literature as interactors with integrin α‐subunits. 68 recombinant human proteins expressed on the protein chip specifically bind with high affinity to biotin‐tagged α‐integrin cytoplasmic peptides. Two of these proteins are also identified in the peptide‐affinity experiments, one is also found in the PPI databases and a further one is present in the data to all three approaches. Finally, novel short linear interaction motifs are common to a number of proteins identified.  相似文献   

7.
Calcium- and integrin-binding protein (CIB) is a novel member of the helix-loop-helix family of regulatory calcium-binding proteins which likely has a specific function in hemostasis through its interaction with platelet integrin alphaIIbbeta(3). The significant amino acid sequence homology between CIB and other regulatory calcium-binding proteins such as calmodulin, calcineurin B, and recoverin suggests that CIB may undergo a calcium-induced conformational change; however, the mechanism of calcium binding and the details of a structural change have not yet been investigated. Consequently, we have performed a variety of spectroscopic and microcalorimetric studies of CIB to determine its calcium binding characteristics, and the subsequent conformational changes that occur. Furthermore, we provide the first evidence for magnesium binding to CIB and determine the structural consequences of this interaction. Our results indicate that in the absence of any bound metal ions, apo-CIB adopts a folded yet highly flexible molten globule-like structure. Both calcium and magnesium binding induce conformational changes which stabilize both the secondary and tertiary structure of CIB, resulting in considerable increases in the thermal stability of the proteins. CIB was found to bind two Ca(2+) ions in a sequential manner with dissociation constants (K(d)) near 0.54 and 1.9 microM for sites EF-4 and EF-3, respectively. In contrast, CIB bound only one Mg(2+) ion to EF-3 with a K(d) near 120 microM. Together, our results suggest that CIB may exist in multiple structural and metal ion-bound states in vivo which may play a role in its regulation of target proteins such as platelet integrin.  相似文献   

8.
CIB1 (CIB) is an EF-hand-containing protein that binds multiple effector proteins, including the platelet alphaIIbbeta3 integrin and several serine/threonine kinases and potentially modulates their function. The crystal structure for Ca(2+)-bound CIB1 has been determined at 2.0 A resolution and reveals a compact alpha-helical protein containing four EF-hands, the last two of which bind calcium ions in the standard fashion seen in many other EF-hand proteins. CIB1 shares high structural similarity with calcineurin B and the neuronal calcium sensor (NCS) family of EF-hand-containing proteins. Most importantly, like calcineurin B and NCS proteins, which possess a large hydrophobic pocket necessary for ligand binding, CIB1 contains a hydrophobic pocket that has been implicated in ligand binding by previous mutational analysis. However, unlike several NCS proteins, Ca(2+)-bound CIB1 is largely monomeric whether bound to a relevant peptide ligand or ligand-free. Differences in structure, oligomeric state, and phylogeny define a new family of CIB1-related proteins that extends from arthropods to humans.  相似文献   

9.
Integrin adhesion receptors appear to be regulated by molecules that bind to their cytoplasmic domains. We previously identified a 22-kDa, EF-hand-containing protein, CIB, which binds to the alpha(IIb) cytoplasmic tail of the platelet integrin, alpha(IIb)beta(3). Here we describe regions within CIB and alpha(IIb) that interact with one another. CIB binding to alpha(IIb) cytoplasmic tail peptides, as measured by intrinsic tryptophan fluorescence, indicates a CIB-binding site within a hydrophobic, 15-amino acid, membrane-proximal region of alpha(IIb). This region is analogous to the alpha-helical targets of other EF-hand-containing proteins, such as calcineurin B or calmodulin. A homology model of CIB based upon calcineurin B and recoverin indicated a conserved hydrophobic pocket within the C-terminal EF-hand motifs of CIB as a potential integrin-binding site. CIB engineered to contain alanine substitutions in the implicated regions retained wild type secondary structure as determined by circular dichroism, yet failed to bind alpha(IIb) in 11 of 12 cases, whereas CIB mutated within the N terminus retained binding activity. Thus, specific hydrophobic residues in the C terminus of CIB appear necessary for CIB binding to alpha(IIb). The identification of essential interacting regions within alpha(IIb) and CIB provides tools for further probing potential interrelated functions of these proteins.  相似文献   

10.
In response to agonist stimulation, the alphaIIbbeta3 integrin on platelets is converted to an active conformation that binds fibrinogen and mediates platelet aggregation. This process contributes to both normal hemostasis and thrombosis. Activation of alphaIIbbeta3 is believed to occur in part via engagement of the beta3 cytoplasmic tail with talin; however, the role of the alphaIIb tail and its potential binding partners in regulating alphaIIbbeta3 activation is less clear. We report that calcium and integrin binding protein 1 (CIB1), which interacts directly with the alphaIIb tail, is an endogenous inhibitor of alphaIIbbeta3 activation; overexpression of CIB1 in megakaryocytes blocks agonist-induced alphaIIbbeta3 activation, whereas reduction of endogenous CIB1 via RNA interference enhances activation. CIB1 appears to inhibit integrin activation by competing with talin for binding to alphaIIbbeta3, thus providing a model for tightly controlled regulation of alphaIIbbeta3 activation.  相似文献   

11.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

12.
Many pathogenic bacteria interact with human integrins to enter host cells and to augment host colonization. Group A Streptococcus (GAS) employs molecular mimicry by direct interactions between the cell surface streptococcal collagen-like protein-1 (Scl1) and the human collagen receptor, integrin alpha2beta1. The collagen-like (CL) region of the Scl1 protein mediates integrin-binding, although, the integrin binding motif was not defined. Here, we used molecular cloning and site-directed mutagenesis to identify the GLPGER sequence as the alpha2beta1 and the alpha11beta1 binding motif. Electron microscopy experiments mapped binding sites of the recombinant alpha2-integrin-inserted domain to the GLPGER motif of the recombinant Scl (rScl) protein. rScl proteins and a synthetic peptide harboring the GLPGER motif mediated the attachment of C2C12-alpha2+myoblasts expressing the alpha2beta1 integrin as the sole collagen receptor. The C2C12-alpha11+myoblasts expressing the alpha11beta1 integrin also attached to GLPGER-harboring rScl proteins. Furthermore, the C2C12-alpha11+cells attached to rScl1 more efficiently than C2C12-alpha2+cells, suggesting that the alpha11beta1 integrin may have a higher binding affinity for the GLPGER sequence. Human endothelial cells and dermal fibroblasts adhered to rScl proteins, indicating that multiple cell types may recognize and bind the Scl proteins via their collagen receptors. This work is a stepping stone toward defining the utilization of collagen receptors by microbial collagen-like proteins that are expressed by pathogenic bacteria.  相似文献   

13.
Calcium- and integrin-binding protein 1 (CIB1) regulates platelet aggregation in hemostasis through a specific interaction with the alphaIIb cytoplasmic domain of platelet integrin alphaIIbbeta3. In this work we report the structural characteristics of CIB1 in solution and the mechanistic details of its interaction with a synthetic peptide derived from the alphaIIb cytoplasmic domain. NMR spectroscopy experiments using perdeuterated CIB1 together with heteronuclear nuclear Overhauser effect experiments have revealed a well folded alpha-helical structure for both the ligand-free and alphaIIb-bound forms of the protein. Residual dipolar coupling experiments have shown that the N and C domains of CIB1 are positioned side by side, and chemical shift perturbation mapping has identified the alphaIIb-binding site as a hydrophobic channel spanning the entire C domain and part of the N domain. Data obtained with a truncated version of CIB1 suggest that the extreme C-terminal end of the protein weakly interacts with this channel in the absence of a biological target, but it is displaced by the alphaIIb cytoplasmic domain, suggesting a novel mechanism to increase binding specificity.  相似文献   

14.
The Wiskott-Aldrich syndrome (WAS) is an X-chromosome-linked immunodeficiency disorder. The most common symptom seen in WAS patients is bleeding. One of the main causes of bleeding is defective platelet aggregation. The causative gene of WAS encodes WAS protein (WASP). Here, we show that WASP binds to the calcium- and integrin-binding protein (CIB) in platelets. CIB was originally identified as a protein binding to the alphaIIb cytoplasmic tail of platelet integrin alphaIIb beta3, which has a primary role in platelet aggregation. We also show that the WASP-CIB complex is important in alphaIIb beta3-mediated cell adhesion, and that in patients mutant forms of WASP are expressed at reduced levels or show lower affinities for CIB than wild-type WASP. Our results indicate that impaired complex formation between mutant WASPs and CIB reduces alphaIIb beta3-mediated cell adhesion and causes defective platelet aggregation, resulting in bleeding.  相似文献   

15.
Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin alpha(IIb)beta(3) on platelets, resulting in platelet aggregation. alpha(v)beta(3) binds fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's alpha subunit. alpha(IIb)beta(3) also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the gamma subunit (gammaC peptide). These distinct modes of fibrinogen binding enable alpha(IIb)beta(3) and alpha(v)beta(3) to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin alpha(IIb)beta(3)-gammaC peptide interface, and, for comparison, integrin alpha(IIb)beta(3) bound to a lamprey gammaC primordial RGD motif. Compared with RGD, the GAKQAGDV motif in gammaC adopts a different backbone configuration and binds over a more extended region. The integrin metal ion-dependent adhesion site (MIDAS) Mg(2+) ion binds the gammaC Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca(2+) ion binds the gammaC C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered gammaC peptide enhances our understanding of the involvement of gammaC peptide and integrin alpha(IIb)beta(3) in hemostasis and thrombosis.  相似文献   

16.
We have used recombinant or synthetic alphaIIb and beta3 integrin cytoplasmic peptides to study their in vitro complexation and ligand binding capacity by surface plasmon resonance. alpha.beta heterodimerization occurred in a 1:1 stoichiometry with a weak KD in the micromolar range. Divalent cations were not required for this association but stabilized the alpha.beta complex by decreasing the dissociation rate. alpha.beta complexation was impaired by the R995A substitution or the KVGFFKR deletion in alphaIIb but not by the beta3 S752P mutation. Recombinant calcium- and integrin-binding protein (CIB), an alphaIIb-specific ligand, bound to the alphaIIb cytoplasmic peptide in a Ca2+- or Mn2+-independent, one-to-one reaction with a KD value of 12 microM. In contrast, in vitro liquid phase binding of CIB to intact alphaIIbbeta3 occurred preferentially with Mn2+-activated alphaIIbbeta3 conformers, as demonstrated by enhanced coimmunoprecipitation of CIB with PAC-1-captured Mn2+-activated alphaIIbbeta3, suggesting that Mn2+ activation of intact alphaIIbbeta3 induces the exposure of a CIB-binding site, spontaneously exposed by the free alphaIIb peptide. Since CIB did not stimulate PAC-1 binding to inactive alphaIIbbeta3 nor prevented activated alphaIIbbeta3 occupancy by PAC-1, we conclude that CIB does not regulate alphaIIbbeta3 inside-out signaling, but rather is involved in an alphaIIbbeta3 post-receptor occupancy event.  相似文献   

17.
Insulin-like growth factor (IGF)-I regulates a mutually exclusive interaction of PP2A and beta1 integrin with the WD repeat scaffolding protein RACK1. This interaction is required for the integration of IGF-I receptor (IGF-IR) and adhesion signaling. Here we investigated the nature of the binding site for PP2A and beta1 integrin in RACK1. A WD7 deletion mutant of RACK1 did not associate with PP2A but retained some interaction with beta1 integrin, whereas a WD6/WD7 mutant lost the ability to bind to both PP2A and beta1 integrin. Using immobilized peptide arrays representing the entire RACK1 protein, we identified a common cluster of amino acids (FAGY) at positions 299-302 within WD7 of RACK1 which were essential for binding of both PP2A and beta1 integrin to RACK1. PP2A showed a higher level of association with a peptide in which Tyr-302 was phosphorylated compared with an unphosphorylated peptide, whereas beta1 integrin binding was not affected by phosphorylation. RACK1 mutants in which either the FAGY cluster or Tyr-302 were mutated to AAAF, or Phe, respectively, did not interact with either PP2A or beta1 integrin. These mutants were unable to rescue the decrease in PP2A activity caused by suppression of RACK1 in MCF-7 cells with small interfering RNA. MCF-7 cells and R+ (IGF-IR-overexpressing fibroblasts) expressing these mutants exhibited decreased proliferation and migration, whereas R- cells (IGF-IR null fibroblasts) were unaffected. Taken together, the data demonstrate that Tyr-302 in RACK1 is required for interaction with PP2A and beta1 integrin, for regulation of PP2A activity, and for IGF-I-mediated cell migration and proliferation.  相似文献   

18.
Our previous studies showed that the alpha 5 beta 1 integrin selects cysteine pair-containing RGD peptides from a phage display library based on a random hexapeptide. We have therefore searched for more selective peptides for this integrin using a larger phage display library, where heptapeptides are flanked by cysteine residues, thus making the inserts potentially cyclic. Most of the phage sequences that bound to alpha 5 beta 1 (69 of 125) contained the RGD motif. Some of the heptapeptides contained an NGR motif. As the NGR sequence occurs in the cell-binding region of the fibronectin molecule, this sequence could contribute to the specific recognition of fibronectin by alpha 5 beta 1. Selection for high affinity peptides for alpha 5 beta 1 surprisingly yielded a sequence RRETAWA that does not bear obvious resemblance to known integrin ligand sequences. The synthetic cyclic peptide GACRRETAWACGA (*CRRETAWAC*) was a potent inhibitor of alpha 5 beta 1-mediated cell attachment to fibronectin. This peptide is nearly specific for the alpha 5 beta 1 integrin, because much higher concentrations were needed to inhibit the alpha v beta 1 integrin, and there was no effect on alpha v beta 3- and alpha v beta 5-mediated cell attachment to vitronectin. The peptide also did not bind to the alpha IIb beta 3 integrin. *CRRETAWAC* appears to interact with the same or an overlapping binding site in alpha 5 beta 1 as RGD, because cell attachment to *CRRETAWAC* coated on plastic was divalent cation dependent and could be blocked by an RGD-containing peptide. These results reveal a novel binding specificity in the alpha 5 beta 1 integrin.  相似文献   

19.
Direct interactions between collagen, the most thrombogenic component of the extracellular matrix, and platelet surface membrane receptors mediate platelet adhesion and induce platelet activation and aggregation. In this process two glycoproteins are crucial: integrin alpha2beta1, an adhesive receptor, and GPVI, which is especially responsible for signal transduction. Specific antagonists of the collagen receptors are useful tools for investigating the complexity of platelet-collagen interactions. In this work we assessed the usefulness of DGEA peptide (Asp-Gly-Glu-Ala), the shortest collagen type I-derived motif recognised by the collagen-binding integrin alpha2beta1, as a potential antagonist of collagen receptors. We examined platelet function using several methods including platelet adhesion under static conditions, platelet function analyser PFA-100TM, whole blood electric impedance aggregometry (WBEA) and flow cytometry. We found that DGEA significantly inhibited adhesion, aggregation and release reaction of collagen activated blood platelets. The inhibitory effect of DGEA on static platelet adhesion reached sub-maximal values at millimolar inhibitor concentrations, whereas the specific blocker of alpha2beta1 - monoclonal antibodies Gi9, when used at saturating concentrations, had only a moderate inhibitory effect on platelet adhesion. Considering that 25-30% of total collagen binding to alpha2beta1 is specific, we conclude that DGEA is a strong antagonist interfering with a variety of collagen-platelet interactions, and it can be recognised not only by the primary platelet adhesion receptor alpha2beta1 but also by other collagen receptors.  相似文献   

20.
A number of cytoskeletal-associated proteins that are concentrated in focal contacts, namely alpha-actinin, vinculin, talin, and integrin, have been shown to interact in vitro such that they suggest a potential link between actin filaments and the membrane. Because some of these interactions are of low affinity, we suspect the additional linkages also exist. Therefore, we have used a synthetic peptide corresponding to the cytoplasmic domain of beta 1 integrin and affinity chromatography to identify additional integrin-binding proteins. Here we report our finding of an interaction between the cytoplasmic domain of beta 1 integrin and the actin-binding protein alpha-actinin. Beta 1-integrin cytoplasmic domain peptide columns bound several proteins from Triton extracts of chicken embryo fibroblasts. One protein at approximately 100 kD was identified by immunoblot analysis as alpha-actinin. Solid phase binding assays indicated that alpha-actinin bound specifically and directly to the beta 1 peptide with relatively high affinity. Using purified heterodimeric chicken smooth muscle integrin (a beta 1 integrin) or the platelet integrin glycoprotein IIb/IIIa complex (a beta 3 integrin), binding of alpha-actinin was also observed in similar solid phase assays, albeit with a lower affinity than was seen using the beta 1 peptide. alpha-Actinin also bound specifically to phospholipid vesicles into which glycoprotein IIb/IIIa had been incorporated. These results lead us to suggest that this integrin-alpha-actinin linkage may contribute to the attachment of actin filaments to the membrane in certain locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号