首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

Arbuscular mycorrhizal fungi (AMF) are important components of the grassland ecosystems in terms of plant phosphorus uptake and accumulation of glomalin-related soil protein (GRSP). Though Mongolian grasslands are seriously degraded by livestock grazing, the effects of grazing on soil AMF and GRSP remain unclear. Here, we examined community composition and diversity of AMF as well as amount of GRSP at three different grazing intensities: lightly grazed (LG), moderately grazed (MG), and heavily grazed (HG) under two different types of grassland, mountain forest steppe at Hustai and desert steppe at Mandalgobi. The diversity and biomass of AMF-host and non-AMF plants strongly affected the overall AMF community composition and its diversity. When we separately analyzed the factors affecting soil AMF diversity at Hustai and Mandalgobi, decrease in the shoot biomass of Poaceae plants at Hustai and decreases in the species number and shoot biomass of AMF-host plants at Mandalgobi were significantly correlated with AMF diversity. GRSP decreased with increasing grazing intensity, which was significantly correlated with soil pH and total root biomass at Hustai. The decrease in plant biomass caused by grazing thus led to GRSP reduction. Our results showed that change in soil AMF community caused by livestock grazing were associated with change in the biomass and diversity of functional vegetation groups such as Poaeceae, AMF-host and non-AMF plants, indicating the importance to focus on such functional vegetation groups to evaluate the effect of grazing on AMF.

  相似文献   

2.

Aims

To study the relationship between changes in soil properties and plant community characters produced by grazing in a meadow steppe grassland and the composition and diversity of spore-producing arbuscular mycorrhizal fungi (AMF).

Methods

A field survey was carried out in a meadow steppe area with a gradient of grazing pressures (a site with four grazing intensities and a reserve closed to grazing). The AMF community composition (characterized by spore abundance) and diversity, the vegetation characters and soil properties were measured, and root colonization by AMF was assessed.

Results

AMF diversity (richness and evenness) was higher under light to moderate grazing pressure and declined under intense grazing pressures. Results of multiple regressions indicated that soil electrical conductivity was highly associated with AMF diversity. The variation in AMF diversity was partially associated to the density of tillers of the dominant grass (Leymus chinensis), the above and below-ground biomass and the richness of the plant community.

Conclusions

We propose that the relationship between plants and AMF is altered by environmental stress (salinity) which is in turn influenced by animal grazing. Direct and indirect interactions between vegetation, soil properties, and AMF community need to be elucidated to improve our ability to manage these communities.  相似文献   

3.
Grazing is an important modulator of both plant productivity and biodiversity in grassland community, yet how to determine a suitable grazing intensity in alpine grassland is still controversy. Here, we explore the effects of different grazing intensities on plant biomass and species composition, both at community level and functional group level, and examines the productivity–species richness relationship under four grazing patterns: no grazing (CK), light grazing (LG), moderate grazing, (MG) and heavy grazing (HG), attempt to determine a suitable grazing intensity in alpine grassland. The results were as follows. The total aboveground biomass (AGB) reduced with increasing grazing intensity, and the response of plant functional groups was different. AGB of both sedges and legumes increased from MG to HG, while the AGB of forbs reduced sharply and the grass AGB remained steady. There was a significant positive relationship between productivity and species richness both at community level and functional group level. In contrast, the belowground biomass (BGB) showed a unimodal relationship from CK to HG, peaking in MG (8,297.72 ± 621.29 g/m2). Interestingly, the grassland community tends to allocate more root biomass to the upper soil layer under increasing grazing intensities. Our results suggesting that moderate levels of disturbance may be the optimal grassland management strategy for alpine meadow in terms of root production.  相似文献   

4.
放牧对贝加尔针茅草原群落植物多样性和生产力的影响   总被引:29,自引:3,他引:26  
研究了不同放牧强度对贝加尔针茅草原群落植物多样性和生产力的影响。结果表明,在牧压梯度上,不同的植物表现出不同的生态适应对策,贝加尔针茅种群随着牧压的增加,种群株丛破碎化、小型化,羊草耐牧性较强,在中牧阶段生产力最高。群落初级生产力随着放牧强度的增加逐渐下降。较大的放牧压力下,群落中适口性差、耐牧的杂类草植物渐趋增加。而在更大的放牧压力下,群落逐步被耐牧的小丛生禾草、旱生小苔草、小灌木和灌木所替代。草地群落的稳定性随着放牧强度增加逐渐降低。放牧干扰对群落植物多样性和生产力及其稳定性的影响是不同步的,不对称的。植物群落初级生产力对放牧干扰的响应更迅速,变化更剧烈。  相似文献   

5.
水分与氮素作为干旱和半干旱草原生产力的共同限制性因子在退化草原的生态快速修复过程中备受关注。以不同放牧强度背景下的短花针茅荒漠草原为研究对象,开展围封模拟放牧利用实验,同时添加氮素和水分。通过分析历史放牧强度与年份对生产力的影响,以及添加氮素和水分对不同功能群植物生物量的作用,探讨放牧强度对短花针茅草原生产力的内在作用机制,以及如何实现荒漠草原资源合理开发和可持续利用。研究结果显示,降雨量与放牧强度决定着短花针茅草原的植物群落结构。氮素和水分添加可分别提升11%-29%和12%-32%的群落地上生物量,且二者存在显著的交互作用。不同功能群植物的地上生物量对氮素与水分添加的响应存在差异,多年生丛生禾草对氮素和水分添加响应最敏感。氮素与水分添加可显著提高多年生丛生禾草的地上生物量,但与自然降水量相关。氮素添加对地上生物量的影响在正常降雨和稍旱年份作用显著,而水分添加在干旱年份作用显著。在正常降雨年份,以半灌木植物为优势种的轻度放牧背景以添加水分对提升生产力最宜,以多年生丛生禾草和半灌木为共优种的中度放牧背景和以多年生丛生禾草为优势种的重度放牧以同时添加水分和氮素对提升生产力最为宜;在干旱年份不同放牧强度背景下均以同时添加水分和氮素对提升生产力最为宜。我们的结果表明了养分与资源的改善有利于退化短花针茅草原的快速恢复和可持续生产。  相似文献   

6.
Arbuscular mycorrhizal fungi (AMF) are related to plant community dynamics and ecosystem functioning. Overgrazing can negatively affect plant performance, and consequently unbalance the association with AMF. We studied the grazing effect on AMF colonization for preferred (Bromus pictus and Poa ligularis) and unpreferred grasses (Pappostipa speciosa and Pappostipa humilis) by sheep in the Patagonian steppe. For each species, AMF colonization in ungrazed, moderate and intense grazing sites was quantified. In ungrazed areas, B. pictus showed the highest extent of AMF colonization. Mycorrhizal colonization was higher during the active season, and largely reduced by intense grazing conditions. The decrease of AMF colonization was maximal for the most preferred species, but also significant for the unpreferred species. Our results suggest that overgrazing could reduce mycorrhizal benefits for the plant by reduction of AMF colonization, which can be a good indicator of ecosystem functioning, eventually revealing an increasing degree of environmental degradation.  相似文献   

7.
草地生态系统作为陆地生态系统的重要组成部分,在全球碳循环中发挥着重要作用。以内蒙古短花针茅荒漠草原不同放牧强度样地为研究对象,通过分析地上植物、凋落物、根系、土壤中有机碳和土壤轻组有机碳,研究草原植被-土壤系统有机碳组分储量的变化特征,从碳储量角度为合理利用草原提供指导。研究结果表明:(1)不同放牧强度荒漠草原地上植物碳储量为11.98—44.51 g/m~2,凋落物碳储量10.43—36.12 g/m~2,根系(0—40cm)碳储量502.30—804.31 g/m~2,且对照区(CK)均显著高于中度放牧区(MG)、重度放牧区(HG);(2)0—40cm土壤碳储量为7817.43—9694.16 g/m~2,其中轻度放牧区(LG)碳储量为9694.16 g/m~2,显著高于CK、HG(P0.05);(3)植被—土壤系统的碳储量为8342.14—10494.80 g/m~2,LGMGCKHG,有机碳主要储存于土壤当中,占比约90.54%—93.71%,适度放牧利用有利于发挥草地生态系统的碳汇功能;(4)土壤轻组有机碳储量为484.20—654.62 g/m~2,LG储量最高,表明适度放牧有助于草原土壤营养物质的循环和积累。  相似文献   

8.
放牧强度引起的草原植物群落物种多样性与地上生物量变化是近年来草地生态系统研究的热点问题。以内蒙古锡林郭勒克氏针茅草原为研究对象,探究植物群落结构特征、物种多样性与地上生物量之间相互关系及其对不同放牧强度的响应。结果表明:随着放牧强度的增加植物群落结构逐步向退化方向演替;植物群落高度逐渐降低(P<0.05),密度逐渐增加(P<0.05),盖度总体呈下降趋势(P<0.05);植物群落和原有群落优势种地上生物量总体呈下降趋势(P<0.05),而退化指示物种的地上生物量逐渐增加(P<0.05);轻度、中度放牧条件下群落物种Margalef指数、Pielou指数、Simpson指数均显著高于重度放牧(P<0.05);地上生物量与Shannon-Wiener指数、Margalef指数和Pielou指数呈正相关关系,而与Simpson指数呈负相关关系。综上所述,克氏针茅草原植物群落结构和功能在不同放牧强度下产生不同的响应,适度放牧有利于提高群落物种多样性与生物量。  相似文献   

9.
Understanding changes in biodiversity in agricultural landscapes in relation to land-use type and intensity is a major issue in current ecological research. In this context nutrient enrichment has been identified as a key mechanism inducing species loss in Central European grassland ecosystems. At the same time, insights into the linkage between agricultural land use and plant nutrient status are largely missing. So far, studies on the relationship between chemical composition of plant community biomass and biodiversity have mainly been restricted to wetlands and all these studies neglected the effects of land use. Therefore, we analyzed aboveground biomass of 145 grassland plots covering a gradient of land-use intensities in three regions across Germany. In particular, we explored relationships between vascular plant species richness and nutrient concentrations as well as fibre contents (neutral and acid detergent fibre and lignin) in the aboveground community biomass.We found the concentrations of several nutrients in the biomass to be closely linked to plant species richness and land use. Whereas phosphorus concentrations increased with land-use intensity and decreased with plant species richness, nitrogen and potassium concentrations showed less clear patterns. Fibre fractions were negatively related to nutrient concentrations in biomass, but hardly to land-use measures and species richness. Only high lignin contents were positively associated with species richness of grasslands. The N:P ratio was strongly positively related to species richness and even more so to the number of endangered plant species, indicating a higher persistence of endangered species under P (co-)limited conditions. Therefore, we stress the importance of low P supply for species-rich grasslands and suggest the N:P ratio in community biomass to be a useful proxy of the conservation value of agriculturally used grasslands.  相似文献   

10.
高寒小嵩草草甸牦牛优化放牧强度的研究   总被引:3,自引:0,他引:3  
高寒小嵩草草甸牦牛放牧强度试验表明:(1)不同放牧强度下各植物类群的地上生物量和总的地上生物量之间差异极显著,莎草科植物地上生物量的百分比组成之间差异极显著,禾本科和杂类草地上生物量的百分比组成之间差异显著,而且禾本科和莎草科(除对照外)植物的地上生物量及其百分比组成随放牧强度的增加而减小,杂类草的变化与之相反;(2)优良牧草比例和草地质量指数与放牧强度之间均呈负相关,而优良牧草比例的年度变化和牦牛个体增重的年度变化之间呈正相关;(3)群落的相似性系数随放牧强度的增加而减小.通过建立植被变化度量指标,认为优良牧草比例的年度变化是评价高寒小嵩草草甸放牧价值的直接度量指标,而相似性系数的变化和草地质量指数的变化与牦牛生产力没有明显的联系,不能反映草场植被放牧价值的变化,只能指示植物群落整体的相对变化程度;牦牛的放牧强度约为1.86头/hm2是小嵩草高寒草甸暖季草场可持续生产而不退化的最大放牧强度.  相似文献   

11.
Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes for biomass production and species composition in plant communities. We set up a greenhouse experiment using intact soil cores with their associated vegetation.We found that plant biomass production in the short term was affected by an interaction between simulated grazing (clipping) and ant mound presence. Clipping homogenized production on and off mounds, while in unclipped situations production was higher off than on mounds. During the experiment, these differences in unclipped situations disappeared, because production on unclipped mounds increased. Plant species richness was on average higher in clipped treatments and patterns did not change significantly over the experimental period. Plant community composition was mainly affected by clipping, which increased the cover of grazing-tolerant plant species. The actual presence of yellow meadow ants did not affect plant community composition and production.We conclude that the interaction between ant mounds and clipping determined plant community composition and biomass production, while the actual presence of ants themselves was not important. Moreover, clipping can overrule effects of ant mounds on biomass production. Only shortly after the cessation of clipping biomass production was affected by ant mound presence, suggesting that only under low intensity clipping ant mounds may become important determining plant production. Therefore, under low intensity grazing ant mounds may drive the formation of small-scale plant patches.  相似文献   

12.
While invasive plants are widely studied for their effects on native plants, we questioned how plant invasions affect higher trophic levels. We investigated the effects of the invasive plant, Brassica nigra on the multi-trophic arthropod community residing on the native California annual Deinandra fasciculata. In a common garden experiment, we planted D. fasciculata without B. nigra or with one of 45 B. nigra half-sib genetic families. We in turn crossed this B. nigra treatment with the suppression of soil fungi to both test for effects of arbuscular mycorrhizal fungi (AMF) on arthropods, and elucidate the mechanisms of B. nigra’s below ground effects. B. nigra had no effect on D. fasciculata traits (biomass, inflorescence number, root colonization by AMF), arthropod community composition or predator density, but increased herbivore density. While B. nigra families varied 18-fold in size, there was no genetic variation for effects on D. fasciculata or its arthropods. Soil fungi suppression had no effect on D. fasciculata traits, herbivore density or herbivore community composition, but increased predator density and altered predator community composition. While the exact mechanisms of B. nigra effects are unclear, they do not appear to have been mediated by altered plant performance or reductions in root colonization by AMF. Our experiment shows that invasive plants such as B. nigra may affect higher trophic levels even when they do not measurably affect native plant performance.  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) provide a number of ecosystem services as important members of the soil microbial community. Increasing evidence suggests AMF diversity is at least partially controlled by the identities of plants in the host plant neighborhood. However, much of this evidence comes from greenhouse studies or work in invaded systems dominated by single plant species, and has not been tested in species-rich grasslands. We worked in 67 grasslands spread across the three German Biodiversity Exploratories that are managed primarily as pastures and meadows, and collected data on AMF colonization, AMF richness, AMF community composition, plant diversity, and land use around focal Plantago lanceolata plants. We analyzed the data collected within each Exploratory (ALB Schwäbische Alb, HAI Hainich-Dün, SCH Schorfheide-Chorin) separately, and used variance partitioning to quantify the contribution of land use, host plant neighborhood, and spatial arrangement to the effect on AMF community composition. We performed canonical correspondence analysis to quantify the effect of each factor independently by removing the variation explained by the other factors. AMF colonization declined with increasing land use intensity (LUI) along with concurrent increases in non-AMF, suggesting that the ability of AMF to provide protection from pathogens declined under high LUI. In ALB and HAI mowing frequency and percent cover of additional P. lanceolata in the host plant neighborhood were important for AMF community composition. The similar proportional contribution of land use and host neighborhood to AMF community composition in a focal plant rhizosphere suggests that the diversity of this important group of soil microbes is similarly sensitive to changes at large and small scales.  相似文献   

14.
Decomposers and arbuscular mycorrhizal fungi (AMF) both determine plant nutrition; however, little is known about their interactive effects on plant communities. We set up a greenhouse experiment to study effects of plant competition (one- and two-species treatments), Collembola (Heteromurus nitidus and Protaphorura armata), and AMF (Glomus intraradices) on the performance (above- and belowground productivity and nutrient uptake) of three grassland plant species (Lolium perenne, Trifolium pratense, and Plantago lanceolata) belonging to three dominant plant functional groups (grasses, legumes, and herbs). Generally, L. perenne benefited from being released from intraspecific competition in the presence of T. pratense and P. lanceolata. However, the presence of AMF increased the competitive strength of P. lanceolata and T. pratense against L. perenne and also modified the effects of Collembola on plant productivity. The colonization of roots by AMF was reduced in treatments with two plant species suggesting that plant infection by AMF was modified by interspecific plant interactions. Collembola did not affect total colonization of roots by AMF, but increased the number of mycorrhizal vesicles in P. lanceolata. AMF and Collembola both enhanced the amount of N and P in plant shoot tissue, but impacts of Collembola were less pronounced in the presence of AMF. Overall, the results suggest that, by differentially affecting the nutrient acquisition and performance of plant species, AMF and Collembola interactively modify plant competition and shape the composition of grassland plant communities. The results suggest that mechanisms shaping plant community composition can only be understood when complex belowground interactions are considered.  相似文献   

15.
Arbuscular mycorrhizal fungi (AMF) play an important role in maintaining the function and sustainability of grassland ecosystem, but they are also susceptible to environmental changes. In recent decades, alpine meadows on the Tibetan Plateau have experienced severe degradation due to the impact of human activities and climate change. But it remains unclear how degradation affects the AMF community, a group of functionally important root associated microorganisms, which potentially limit the development and application of microbial technologies in the restoration of degraded grasslands. In this study, we investigated AMF communities richness and composition in non-degraded (ND), moderately degraded (MD) and severely degraded (SD) alpine meadows on the Tibetan Plateau, and then explored their main biotic and abiotic determinants. Alpine meadow degradation significantly reduced plant community biomass, richness, soil organic carbon, total nitrogen, total phosphorus, available nitrogen and available phosphorus, but increased soil pH. AMF community composition and the iesdominant family and genera differed significantly among different degradation stages. Grassland degradation shifted the AMF community composition in favor of Claroideoglomus over Rhizophagus, and resulted in a marked loss of Glomeraceae and the dominance of Diversisporaceae. Alpine meadow degradation significantly increased AMF hyphal density and richness, likely working as a plant strategy to relieve nutrient deficiencies or loss as a result of degradation. The structural equation model showed that AMF community richness and composition were significantly influenced by plant community, followed by soil available nutrients. Soil available nutrients was the key contributor to the increased AMF hyphal density and richness during grassland degradation. Our findings identify the effects of alpine meadow degradation on AMF richness and highlight the importance of the plant community in shaping the AMF community during alpine meadow degradation. These results suggest that plant community restoration should be the primary goal for the ecological restoration of degraded alpine meadows, and these soil functional microorganisms should be simultaneously integrated into ecological restoration strategies and management.  相似文献   

16.
任强  艾鷖  胡健  田黎明  陈仕勇  泽让东科 《生态学报》2021,41(17):6862-6870
放牧作为家畜饲养方式之一,是草地最简单、有效的利用方式,放牧中的家畜对草地生态系统的影响是全球畜牧生态学研究的焦点。过度放牧导致草地退化严重,虽然在青藏高原地区已有较多放牧对草地影响的研究,但探究连续4年放牧对高寒草地生态系统影响的定位实验却鲜见报道。本研究在青藏高原东缘选取典型高寒草地,使用高原特有且分布最广的牦牛作为大型草食放牧家畜,设置了4个牦牛放牧强度(禁牧:无放牧、轻牧:1头/hm2、中牧:2头/hm2和重牧:3头/hm2)以研究其对高寒草地土壤和植物功能的影响。开展4年试验后的结果表明:放牧条件下土壤含水率显著增加;而土壤容重、全磷和有机质含量对放牧强度均无显著性响应;土壤全氮和pH的响应主要在表层0-20 cm,其中全氮为轻牧和重牧处理分别显著高于中牧,中牧处理下的土壤pH为显著高于轻牧;土壤全钾含量在禁牧处理中显著高于放牧处理;而土壤有效氮和速效钾均为中牧处理显著高于禁牧;放牧可以显著降低植物地上生物量。牦牛放牧强度显著影响土壤含水率、有效养分和植物地上生物量,而对其它土壤理化性质影响较弱。本研究结果揭示放牧对高寒草地土壤理化性质和植物地上生物量的影响,为青藏高原高寒草甸生态系统保护、可持续管理和合理放牧率提供理论依据。  相似文献   

17.
日本国立草地研究所位于日本中部的西那须地区,为了提示草地生态系统的能流和碳循环与气象因素与人为干扰之间的关系的规律,在其所辖人工草地的放牧试验场内,自1974a至1994a间,进行了不同放牧条件的长期实验。对该人工草地在21a间的地上枯死量(包括立枯部和地面凋落物)随时间变化规律以及不同放牧处理(不同放牧强度和施肥量)对其影响进行了评价和分析。结果表明,地上立枯部分和凋落物的量随季节和年度变化很大,并与地上部现存生物量有显著的正相关关系;协方差分析结果表明放牧压力、季节和年度等变化因素对地上立枯部分和凋落物的量有着极强的影响(p<0.01),而施肥量的影响则无显著性差异。  相似文献   

18.

Aim

In our previous study, we found strong effects of fungicide application on diversity and composition of grassland plant community. Here, we evaluated the recovery of the plant community and arbuscular mycorrhizal fungi (AMF ) infectivity after fungicide application and the effects of grazing management on the recovery.

Location

Northern Bohemia, Czech Republic.

Methods

We recorded plant species composition and AMF infectivity in permanent plots in dry grassland over a period of 5 years after termination of fungicide application and grazing introduction.

Results

The negative effect of fungicide on plant species composition, diversity, AMF infectivity and cover of forbs still persisted 5 years after the last fungicide application. The cover of graminoids decreased, and their cover reached the level before fungicide application. While grazing had no effect on plant species recovery, it led to recovery of AMF infectivity.

Conclusion

Although graminoids lost their dominance after termination of fungicide application and grazing led to the recovery of AMF infectivity, the dry grassland plant community was not completely restored. The forbs were not able to recolonize the site. Their absence might be caused by dispersal limitation or changes in restored AMF community composition. Direct seed sowing may thus be used to support the plant recovery.
  相似文献   

19.
Grazing removal is widely used in grassland management. Plant responses following grazing removal at different organizational levels, however, are not well understood. We examined plant responses at different stocking rates in an Inner Mongolia grassland ecosystem dominated by Leymus chinensis and Stipa grandis. Our results indicated that plant response patterns differed significantly among stocking rates, at different levels of organization, and between wet and dry years. Community aboveground net primary production (ANPP) recovered more quickly at low and moderate stocking rates than those at high stocking rates. Response of aboveground net primary production (RANPP) was significantly positively correlated with both individual biomass and density responses of L. chinensis. Overcompensation of L. chinensis after grazing removal contributed greatly to positive RANPP at the community level. Significant compensatory effects were found between the two dominant species and between dominant species and the remaining non-dominant species. Variation in precipitation significantly affected community ANPP, relationships between community and species responses, and compensatory effects between species. Our study suggests that periodic grazing removal is likely to be a useful method for grassland management and that a combination of species with compensatory effects can be advantageous for reseeding practices in grassland restoration.  相似文献   

20.
李琪琪  黄小娟  李岚  常生华  侯扶江 《生态学报》2023,43(15):6131-6142
划破是草原改良的基础措施之一,划破强度是划破措施的关键环节,划破对草原健康持续管理有重要意义。目前的研究主要集中在划破对植物群落结构和生产力的影响上,然而草原植物群落与土壤水分对划破强度的响应尚不清楚。在黄土高原典型草原开展不同程度的草地划破试验,探究不同划破强度(27.4%、46.3%和61.9%)对草地植物群落物种多样性、生物量和土壤水分的影响。结果表明:3个划破强度下划破带物种丰富度显著低于未划破带1-3种/m2,划破带和未划破带群落相似性分别低于整区23.85%-119.23%和44.43%-84.55%。地上生物量随物种丰富度的增加而增大,且地上生物量与Simpson指数和Shannon Weiner指数显著负相关。3个划破强度下未划破带地下生物量和总生物量分别高于划破带88.2%-134.6%、52.4%-67.8%、2.5%-16.6%和103.9%-152.9%、59.3%-75.8%、9.1%-22.6%。植物群落物种丰富度和地上生物量随划破强度的增加呈"驼峰"型曲线变化,当划破强度分别为43.7%-55.3%和43.8%-45.7%时,植物群落物种丰富度和生物量均最高。本试验阐明了划破对典型草原植物群落特征和土壤水分的作用机制,研究结果为采用划破措施实现草地培育和草原修复提供了科学依据,对保护草地生物多样性和提高生产力具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号