首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2008年   2篇
  2004年   1篇
排序方式: 共有15条查询结果,搜索用时 53 毫秒
1.
2.
Plant facilitation (positive plant–plant interactions) strongly influences biodiversity, structure, and dynamics in plant communities, and the topic has received considerable attention among ecologists. Most studies of facilitation processes by shrubs have been conducted at small spatial scales between shrubs and their neighboring species. Yet, we know little about whether facilitation processes by shrubs at a small scale (i.e., a patch scale) also work at a larger scale (i.e., a site scale) in terms of the maintenance of biodiversity. Here, we report that the facilitative effects of shrubs on plant diversity at a larger scale can be explained by changing ecological stoichiometry. The soil fertility showed unimodal shape along shrub cover gradient, suggesting that the facilitative effects of a shrub do not necessarily increase as the shrub develops. The unimodal shape of dependence of plant species richness on shrub cover probably was generated by the unimodal dependence of soil fertility on shrub cover. Soil nutrient enrichment by shrubs shifted low N:P ratios of plant communities with low levels of shrub cover to more balanced N:P ratios at intermediate levels of shrub cover. At the peak N:P ratio along the gradient in shrub cover, the maximum species richness and functional richness were observed, which was consistent with the unimodal relationship predicted by the resource balance hypothesis. Thus, our findings showed that facilitation processes by shrubs at a patch scale also work at a larger scale in terms of the maintenance of biodiversity. Because observed larger-scale facilitation processes are enhanced at some intermediate levels of shrub cover, this study offers practical insight into the need for management practices that allow some intermediate levels of grazing by livestock for optimizing the role of larger-scale facilitation processes in the maintenance of biodiversity and ecosystem functioning in arid and semi-arid rangelands.  相似文献   
3.
Facilitation (positive plant–plant interactions) is a potential means to accelerate vegetation restoration in arid areas. Shrubs can accelerate vegetation recovery by means of soil amelioration, but this effect has not been evaluated at large spatial scales or across scales. Here, we examined the facilitative function of shrub change across spatial scales at a desert steppe in Mongolia. Using a high-resolution satellite image, we established five 2500 m2 plots in each of three shrub density classes (low, moderate, high) in a desert steppe in Mongolia. To evaluate the facilitative functions of shrubs at multiple spatial scales, we recorded the total number of plant species at three nested spatial scales in each plot: 25, 400, and 2500 m2. The facilitative effect of shrubs on plant species richness was more pronounced at larger scales. Denser shrub communities increased plant species diversity at a larger scale. However, the increased taxonomic diversity was not clearly related to increased functional diversity in this system. This scale dependency in species diversity can be explained by the degree to which spatial heterogeneity of habitats within the plots increased as plot size increased. These results support the hypothesis of scale-dependent changes in the balance between facilitation and competition. Therefore, transplanting shrub saplings at high-density and a larger scale could potentially improve the success of vegetation restoration in arid regions.  相似文献   
4.
Communities of arbuscular mycorrhizal (AM) fungi were investigated in Stipa krylovii, Leymus chinensis (Poaceae), Allium bidentatum (Liliaceae), and Astragalus brevifolius (Fabaceae) in the Mongolian steppe to examine the effect of plant species on the communities in this study. The AM fungal communities were examined by molecular analysis based on the partial sequences of a small subunit of the ribosomal RNA gene. The sequences obtained were divided into 23 phylotypes by the sequence similarity >98%. Many of the AM fungal phylotypes included AM fungi previously detected in high-altitude regions in the Tibet and Loes plateaus, which suggested that these AM fungi may have wide distribution with stressful conditions of aridity and coldness. Among the 23 phylotypes, 12 phylotypes were found in all four plants, and 87.4% of the all obtained sequences were affiliated into these 12 types. For the distribution of the AM fungal phylotypes, overlapping of the phylotypes among the four plant species were significantly higher than that simulated by random chance. These results suggested that AM fungal communities were less diversified among the examined plant species.  相似文献   
5.
X-ray-induced telomeric instability in Atm-deficient mouse cells   总被引:6,自引:0,他引:6  
The gene responsible for ataxia telangiectasia (AT) encodes ATM protein, which plays a major role in the network of a signal transduction initiated by double strand DNA breaks. To determine how radiation-induced genomic instability is modulated by the dysfunction of ATM protein, we examined radiation-induced delayed chromosomal instability in individual cell lines established from wild-type Atm(+/+), heterozygote Atm(+/-), and knock-out Atm(-/-) mouse embryos. The results indicate that Atm(-/-) mouse cells are highly susceptible to the delayed induction of telomeric instability and end-to-end chromosome fusions by radiation in addition to the elevated spontaneous telomeric instability detected by telomere fluorescence in situ hybridization (FISH). The telomeric instability was characterized by abnormal telomere FISH signals, including loss of the signals and the extra-chromosomal signals that were associated and/or not associated with chromosome ends, suggesting that Atm deficiency makes telomeres vulnerable to breakage. Thus, the present study shows that Atm protein plays an essential role in maintaining telomere integrity and prevents chromosomes from end-to-end fusions, indicating that telomeres are a target for the induction of genomic instability by radiation.  相似文献   
6.
With our enhanced understanding of the factors that determine biodiversity and assemblage structure has come increasing acknowledgment that the use of an appropriate disturbance regime to maintain spatial heterogeneity is an effective conservation technique. A herbivore’s behavior affects its disturbance regime (size and intensity); this, in turn, may modify the associated spatial heterogeneity of plants and soil properties. We examined whether the pattern of spatial disturbance created by the Siberian marmot (Marmota sibirica) affects the spatial heterogeneity of vegetation and soils at a colony scale on the Mongolian steppe. We expected that the difference in management between two types of area (protection against hunting marmots vs. hunting allowed) would result in different behavioral patterns; therefore, we estimated the patterns of spatial disturbance separately in protected and unprotected areas. We then surveyed plant communities and soil nutrients in these areas to assess their spatial heterogeneity. We found that disturbance of both vegetation and soil was more concentrated near marmot burrows in the unprotected area than in the protected area. In addition, the degrees of spatial heterogeneity of vegetation and soil NO3-N were greater in the unprotected area than in the protected area, where disturbance was more widely distributed. These results indicate that the spatial pattern of disturbance by herbivores affects the spatial heterogeneity of vegetation and soil properties through changes in the disturbance regime. Our findings also suggest that the intensity of disturbance is more important than its size in determining community structure in Mongolian grasslands.  相似文献   
7.
In arid and semiarid regions, variations in “islands of fertility” accompanied by discontinuous vegetation is frequently observed. However, the effects of vegetation patches on soil, including the influence of canopy size, are not fully understood, particularly under conditions of severe grazing. We examined the effects of patches of mound-forming shrub, Caragana microphylla, and the plant’s canopy size on these islands of fertility in a heavily grazed Mongolian grassland. In 11 patches with various canopy sizes (32.5–180 cm in diameter), we compared the chemical properties of soils among three microsites: Mound, Below, and Around, which were inside, below, and outside of C. microphylla mounds, respectively. Total carbon (C) and most essential elements for the plants were more concentrated in Mound, but total nitrogen (N) and nonlimiting elements, such as exchangeable sodium (Na), did not significantly differ among microsites. Larger canopies more strongly affected the enrichment of total C and most essential elements, including total N, in Mound. These results suggest that C. microphylla patches substantially enrich total C and most essential elements and that the extent of enrichment was intensified with canopy size. However, under severe grazing, total N may be relatively more affected by the redistribution of resources through grazing, particularly when the canopy size is small.  相似文献   
8.
9.
We focused on responses to grazing by individual species and functional groups in relation to ecological thresholds in Mongolian rangelands, with repeated measures from the same ecological sites to account for rainfall variability. At all sites, even under rainfall fluctuations, there were robust combinations of indicator species that could be used to forewarn managers to take action to minimize the probability of crossing ecological thresholds. Depending on the landscape condition of each site, the cover of functional groups, which shared traits of perennial life history, grass or forb growth form, linear leaf shape, and alternate leaf attachment, or the cover of functional groups of woody shrubs dramatically decreased before an ecological threshold was crossed. Thus, across all sites, the responses of certain functional groups to grazing appeared to predict the crossing of an ecological threshold. The ecological indicators derived in this study should help to improve land managers’ ability to prevent adverse changes in states before ecological thresholds are reached.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号