首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We examined survival, growth and protein synthesis in mosquito cells that had been maintained for up to 21 days in serum-free medium. On polyacrylamide gels, protein bands from "starved" cells remained discrete, and despite low levels of incorporation, radiolabeled bands were detectable, suggesting that low levels of protein synthesis were sustained. A prominent band that accumulated in serum-starved cells was digested with trypsin and analyzed by tandem mass spectrometry, which identified the protein as eukaryotic elongation factor (EF)-1 alpha EF-1 alpha is well-conserved among species, and differential accumulation of EF-1 alpha in serum-starved cells was verified by western blotting using a primary antibody to the homologous protein from Trypanosoma brucei. Aside from its importance in the elongation step of protein synthesis, EF-1 alpha has been shown to have a number of non-canonical functions, including interaction with viral RNA and a potential role in apoptosis. We anticipate that the prolonged viability of mosquito cells in serum-free medium may provide a system to explore whether EF-1 alpha accumulation is an adaptive response compatible with resumption of growth in the event that nutrients are replenished, or whether the excess EF-1 alpha represents an irreversible commitment to an apoptotic pathway.  相似文献   

2.
The capacity of parathyroid hormone (PTH) to increase serum 1,25(OH)(2)D levels declines with age in both rats and humans. In young rats, PTH stimulates renal 1,25(OH)(2)D production and increases mRNA levels for the terminal mitochondrial P450 of the 1alpha-hydroxylase complex (CYP27B1 or CYP1alpha). However, in older rats PTH increases mRNA levels but not 1,25(OH)(2)D production. This suggests that in old animals there is either decreased CYP1alpha protein levels in response to PTH or that the protein produced lacks functionality. The CYP1alpha protein is located on the inner mitochondrial membrane, the site of increased free radical production with age. To study these possibilities, we examined the effect of PTH and free radicals on CYP1alpha expression in a model system-AOK-B50 renal tubular cells. PTH increased CYP1alpha mRNA and protein in a similar time-dependent manner, suggesting that CYP1alpha protein levels were largely regulated by mRNA levels. The effect of free radicals was determined by preincubation with hydrogen peroxide (H(2)O(2)), a standard model for studying free radical damage. H(2)O(2) inhibited PTH-stimulated CYP1alpha protein levels and 1,25(OH)(2)D production in a dose dependent manner. However, 1,25(OH)(2)D production was more sensitive to H(2)O(2) than was CYP1alpha protein levels. This suggests that the catalytic activity of the CYP1alpha protein may be reduced by free radical damage in these cells. Future studies will focus on detecting oxidative damage in this model system and in vivo.  相似文献   

3.
Previously, we reported that PC12 cells showed increased vulnerability to oxidative stress (OS) induced by H2O2 (as assessed by decrements in calcium recovery, i.e., the ability of cells to buffer Ca(2+) after a depolarization event) when the membrane levels of cholesterol (CHL) and sphingomyelin (SPH) were modified to approximate those seen in the neuronal membranes of old animals. The present study was designed to examine whether the enrichment of the membranes with SPH-CHL and increased cellular vulnerability to OS are mediated by neutral SPH-specific phospholipase C (N-Sase) and the intracellular antioxidant GSH. The results showed a significant up-regulation of N-Sase activity by both low (5 microM) and high (300 microM) doses of H2O2. However, under high doses of H2O2 the up-regulation of N-Sase is accompanied by a significant increase in reactive oxygen species and by a decrease in intracellular GSH. The enrichment of membranes with SPH-CHL significantly potentiated the effects of high doses of H2O2, by further reducing the intracellular GSH and further up-regulating the N-Sase activity. Furthermore, repleting intracellular GSH with 20 mM N-acetylcysteine treatment was sufficient to attenuate the effect of a low dose of H2O2 on Ca(2+) recovery in SPH-CHL-treated cells. Thus, these results suggested that age-related alterations in the membrane SPH-CHL levels could be important determinants of the susceptibility of neuronal cells to OS.  相似文献   

4.
Oxidative inactivation of protein tyrosine phosphatases and calcineurin is a well established mechanism; however, little information with regard to the effect of oxidants on PP1 and PP2A activity is available. Herein, we show that PP1 activity is inhibited by H(2)O(2) treatment in differentiated PC12 cells both in vitro and in vivo experiments. Thiol-antioxidant N-acetyl-cysteine (NAC) and reduced glutathione (GSH), when added in vitro to lysates from H(2)O(2)-treated cells, reversed PP1 inhibition. H(2)O(2) treatment increased eIF2 alpha phosphorylated levels (eIF2 alpha P) in a time- and dose-dependent fashion and promoted protein synthesis inhibition. Interestingly, NAC pretreatment protected cells from H(2)O(2)-induced PP1 inactivation and, consequently, it abolished increased H(2)O(2)-induced eIF2 alpha phosphorylation and protein synthesis inhibition. In addition, PP1 inhibitor tautomycin prevented both NAC-induced PP1 reactivation and eIF2 alpha P dephosphorylation in H(2)O(2)-treated cells. Taken together, our findings support a role for PP1 in eIF2 alpha phosphorylation and oxidative stress-triggered translation down regulation.  相似文献   

5.
6.
We have cloned cDNAs encoding two variants of the elongation factor for protein synthesis in Xenopus laevis, called EF-1 alpha. One of these (42Sp50) is expressed exclusively in immature oocytes. It is one of two protein components of a 42S RNP particle that is very abundant in previtellogenic oocytes. The 42S RNP particle consists of various tRNAs, 5S RNA, 42Sp50 and a 5S RNA binding protein (42Sp43). A major function served by 42Sp50 appears to be the storage of tRNAs for later use in oogenesis and early embryogenesis. The second EF-1 alpha variant (EF-1 alpha O) is expressed mainly in oocytes but transiently in early embryogenesis as well. Its mRNA cannot be detected after neurulation in somatic cells. EF-1 alpha O is closely related to a third EF-1 alpha (EF-1 alpha S), discovered originally by Krieg et al. (1). EF-1 alpha S is expressed at low levels in oocytes but actively in somatic cells. The latter two proteins are very similar to known eukaryotic EF-1 alpha from other organisms and presumably function in their respective cell types to support protein synthesis.  相似文献   

7.
To identify genes that contribute to apoptotic resistance, IL-3 dependent hematopoietic cells were transfected with a cDNA expression library and subjected to growth factor withdrawal. Transfected cells were enriched for survivors over two successive rounds of IL-3 withdrawal and reconstitution, resulting in the identification of a full-length elongation factor 1 alpha (EF-1alpha) cDNA. Ectopic EF-1alpha expression conferred protection from growth factor withdrawal and agents that induce endoplasmic reticulum stress, but not from nuclear damage or death receptor signaling. Overexpression of EF-1alpha did not lead to growth factor independent cell proliferation or global alterations in protein levels or rates of synthesis. These findings suggest that overexpression of EF-1alpha results in selective resistance to apoptosis induced by growth factor withdrawal and ER stress.  相似文献   

8.
9.
从盐胁迫下的盐地碱蓬(Suaeda salsa)的cDNA文库中获得了一个延伸因子(SsEF-1α)的cDNA片段。以此片段为探针,对其在不同胁迫处理下的盐地碱蓬中表达利用Northern杂交进行分析,结果表明,不同盐浓度处理、同一盐浓度不同时间处理下及双氧水刺激条件下延伸因子在碱蓬叶中的表达量先呈现减少然后增加的趋势;聚乙二醇(PEG)及低温诱导下均呈现上升趋势。由此可见该基因在盐、氧化、高渗和低温胁迫条件下产生一定的反应。  相似文献   

10.
Fibroblasts are the most ubiquitous cell types within our body. They produce various factors to maintain the texture and structure of a particular organ or tissue. To identify protein factors secreted by fibroblasts and alteration of these protein factors upon oxidative stress, HCA3 human skin diploid fibroblasts were exposed to a sublethal dose of H2O2, which induces a prematurely senescent phenotype. Conditioned media from prematurely senescent cells versus control cells were analyzed for proteins using an LC-MS/MS-based proteomic technique. Collagen alpha1(VI), collagen alpha2(I), fibronectin, lumican, and matrix metalloproteinase 2 were among the proteins consistently detected from control and H2O2-treated cells. Insulin-like growth factor-binding protein-6 (IGFBP-6) consistently showed up in the conditioned medium of H2O2-treated cells but not from untreated cells. Increased IGFBP-6 production due to H2O2 treatment was confirmed by RT-PCR and Western blot analyses. While H2O2 induced a dose-dependent elevation of IGFBP-6 mRNA, Western blot analyses detected elevated levels of IGFBP-6 protein in the conditioned medium of H2O2-treated cells. In comparison, fibronectin or matrix metalloproteinase 2 did not show changes at the mRNA level in cell lysates or at the protein level in the conditioned medium by H2O2 treatment. Using several types of toxins at sublethal doses, including cis-platin, hydroxyurea, colchicine, L-mimosine, rhodamine, dithiothreitol, or N-ethylmaleimide, we found that these agents induced increases of IGFBP-6 at mRNA and protein levels. An increased level of IGFBP-6 protein was detected in the plasma of aging mice and of young mice treated with doxorubicin. These data suggest that IGFBP-6 may serve as a sensitive biomarker of cell degeneration or injury in vitro and in vivo.  相似文献   

11.
We have purified and partially sequenced the EF-1 alpha protein from Xenopus laevis oocytes (EF-1 alpha O). We show that the two cDNA clones isolated by Coppared et al. (Coppard, N. J., K. Poulsen, H. O. Madsen, J. Frydenberg, and B. F. C. Clark. 1991. J. Cell Biol. 112:237-243) do not encode 42Sp50, as claimed by these authors, but two very similar forms of EF-1 alpha O (EF-1 alpha O and EF-1 alpha O1). 42Sp50 is the major protein component of a 42S nucleoprotein particle that is very abundant in previtellogenic oocytes of X. laevis, 42Sp50 differs from EF-1 alpha O not only by its amino acid sequence, but also by several properties already reported. In particular, 42Sp50 has a low EF-1 alpha activity. It is distributed uniformly in the cytoplasm of previtellogenic oocytes, in contrast to EF-1 alpha O which is concentrated in a small region of the cytoplasm, known as the mitochondrial mass or Balbiani body.  相似文献   

12.
NF-kappa B mediates the adaptation of human U937 cells to hydrogen peroxide   总被引:2,自引:0,他引:2  
Low doses of oxidative stress can induce cellular resistance to subsequent higher doses of the same stress. By using human U937 leukemia cells, we previously demonstrated that H(2)O(2) can induce such an adaptive response without elevating the cellular capacity to degrade H(2)O(2), and were able to confer the cells a cross-resistance to an H(2)O(2)-independent lethal stimulus, C(2)-ceramide. In this study, it was found that the adaptation is accompanied by the translocation of cytoplasmic NF-kappa B to the nuclei. This event was promoted or abolished when either IKK alpha or a dominant negative mutant of I kappa B, respectively, was overexpressed. The overexpression of IKK alpha also resulted in the suppression of H(2)O(2)-induced cell death and DNA fragmentation, whereas these events were accelerated by the expression of the I kappa B mutant. The protective effect of IKK alpha was accompanied neither by an elevation of protein levels of various antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase, nor by an increase in the cellular capacity to consume H(2)O(2). Moreover, the overexpression of IKK alpha resulted in an enhancement of H(2)O(2)-induced resistance to C(2)-ceramide. The overall data suggest that NF-kappa B mediates the H(2)O(2) adaptation induced in a manner independent of H(2)O(2)-degrading activity.  相似文献   

13.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-alpha elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10(-6)-10(-4) mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H(2)O(2) levels and H(2)O(2)-mediated apoptotic cell death induced by oxidative stressors (exogenous H(2)O(2), paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H(2)O(2) in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H(2)O(2) and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.  相似文献   

14.
Calmodulin (CaM) is known to be a ciliary component. However, the function of CaM in cilia or flagella has not been well understood. Immunoelectron microscopy using anti-CaM antibody showed that CaM was localized on the axonemal microtubules (MTs) and matrix of Tetrahymena cilia. To investigate the signal transduction of Ca(2+)/CaM in cilia, we performed Ca(2+)/CaM-affinity column chromatography in the membrane and matrix fraction. Elongation factor-1alpha (EF-1alpha) was identified as a Ca(2+)/CaM-binding protein in cilia. EF-1alpha is a highly conserved protein and functions in protein translation. In addition, EF-1alpha has been reported to interact with MTs and F-actin in several organisms. Immunoelectron microscopy showed that EF-1alpha was localized on the axonemal MTs. However, in immunoblot analysis, EF-1alpha was mainly extracted in the membrane and matrix fraction from the axonemal MTs by 1% Triton X-100 extraction. These results suggest that interaction between EF-1alpha and axonemal MTs is weak and sensitive to treatment with 1% Triton X-100 and that EF-1alpha mediates between axonemal MTs and CaM in the presence of Ca(2+). Moreover, EF-1alpha was also localized in cilia of Paramecium, suggesting that EF-1alpha functions as a target protein of Ca(2+)/CaM in ciliate cilia.  相似文献   

15.
We investigated through which mechanisms ceramide increased oxidative damage to induce leukemia HL-60 cell apoptosis. When 5 microm N-acetylsphingosine (C(2)-ceramide) or 20 microm H(2)O(2) alone induced little increase of reactive oxygen species (ROS) generation as judged by the 2'-7'-dichlorofluorescin diacetate method, 20 microm H(2)O(2) enhanced oxidative damage as judged by ROS accumulation, and thiobarbituric acid-reactive substance production after pretreatment with 5 microm C(2)-ceramide at least for 12 h. The treatment with a catalase inhibitor, 3-amino-1h-1,2,4-triazole, increased oxidative damage and apoptosis induced by H(2)O(2), and in contrast, purified catalase inhibited the enhancement of oxidative damage by H(2)O(2) in ceramide-pretreated cells, suggesting that the oxidative effect of ceramide is involved in catalase regulation. Indeed, C(2)-ceramide inhibited the activity of immunoprecipitated catalase and decreased the levels of catalase protein in a time-dependent manner. Moreover, acetyl-Asp-Met-Gln-Asp-aldehyde, which dominantly inhibited caspase-3 and blocked the increase of oxidative damage and apoptosis due to C(2)-ceramide-induced catalase depletion at protein and activity levels. In vitro, active and purified caspase-3, but not caspase-6, -8, and -9, inhibited catalase activity and induced the proteolysis of catalase protein whereas these in vitro effects of caspase-3 were blocked by acetyl-Asp-Met-Gln-Asp-aldehyde. Taken together, it is suggested that H(2)O(2) enhances apoptosis in ceramide-pretreated cells, because ceramide increases oxidative damage by inhibition of ROS scavenging ability through caspase-3-dependent proteolysis of catalase.  相似文献   

16.
Two species of the elongation factor 1 (EF-1) differing in molecular weight, subunit composition, and isoelectric point have been isolated from cell-free extracts of the yeast Saccharomyces cerevisiae. The ratio of these two forms of EF-1 activity (EF-1 alpha and EF-1H) seem to vary in different strains and upon the growth phase from which the cells have been isolated. The log phase cells of a protease negative yeast strain EJ101 show a distribution of EF-1 alpha and EF-1H in the ratio of 3:1. Another laboratory yeast strain, D-587-4B, shows a distribution pattern of 4:1. The two forms of EF-1 are completely separable by ion exchange, gel permeation, and hydrophobic and affinity chromatography. Yeast EF-1 alpha is a single polypeptide of molecular weight 50,000 and has an isoelectric point of 8.9. The newly identified form of the yeast EF-1 (EF-1H) has a molecular weight of 200,000. The isoelectric point of this protein is around 5.5. Electrophoresis of the partially purified EF-1H in polyacrylamide gel containing sodium dodecyl sulfate indicates the presence of three nonidentical polypeptides having molecular weights of 50,000, 47,000, and 33,000. The three polypeptides are present in the ratio of 2:1:1. EF-1H is readily converted to EF-1 alpha and EF-1 beta gamma on anion exchange columns. The 50,000 dalton component of EF-1H immunologically cross-reacts with the antibody to EF-1 alpha. The other two polypeptides do not. On the basis of molecular weight, EF-1H is 2-3-fold more active than EF-1 alpha in poly(U)-dependent polyphenylalanine synthesis. EF-1H exchanges nucleotide (GDP----GTP) at a faster rate than EF-1 alpha. Both EF-1 alpha and EF-1H exhibit similar binding constants for GDP and GTP although the affinity of EF-1 alpha for guanine nucleotides is several-fold higher than that of EF-1H. The 33,000-dalton component of EF-1H appears to be functionally analogous to EF-1 beta (Ts) isolated from other eukaryotic sources. The function of EF-1 gamma is unknown.  相似文献   

17.
18.
H2O2, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM H2O2, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with H2O2. On the contrary, inhibition of PKA or specifically PKCdelta resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in H2O2 treated cells after inhibition of PKA or PKCdelta whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, PKCdelta and phosphatases.  相似文献   

19.
Hydrogen peroxide (H(2)O(2)), a representative ROS, has been used to study the apoptosis of cancer cells to oxidative stress. In this study, we exploited the cellular and molecular mechanisms involved in H(2)O(2)-induced apoptosis in human gastric carcinoma MGC803 cells. Exposure of cells to H(2)O(2) might cause significant viability loss and the increase in apoptotic rate. Treatment with 0.4 mmol/L H(2)O(2) up-regulated Bax but down-regulated Bcl-2 in a time-dependent manner, while Bcl-xL expression remained unchanged. Our results also showed that the levels of Fas and Fas-L were increased, the pro-caspase-3 and pro-caspase-9 were down-regulated in H(2)O(2)-treated MGC803 cells. Under H(2)O(2) stress, we found that the protein p53 also participated in MGC803 cells apoptosis. Taken together, the present study indicated that Fas-mediated cell surface death receptor pathway and mitochondria-mediated pathway may participate in regulating the MGC803 cells apoptosis under oxidative stress.  相似文献   

20.
Gaucher disease (GD) is a lysosomal storage disorder, due to glucosylceramide (GlcCer) accumulation in several body tissues, which causes cellular failure by yet unidentified mechanisms. Several evidence indicates that GD pathogenesis is associated to an impairment in intracellular redox state. In fibroblast primary cultures, reactive oxygen species (ROS) levels and protein carbonyl content resulted significantly increased in GD patients compared to healthy donors, suggesting that GD cells, facing a condition of chronic oxidative stress, have evolved an adaptive response to survive. The ROS rise is probably due to NAD(P)H oxidase activity, being inhibited by the treatment with diphenylene iodonium chloride. Interestingly, GD cells are more sensitive to H(2)O(2) induced cell death, suggesting a dysregulation in the adaptive response to oxidative stress in which APE1/Ref-1 plays a central role. We found that the cytoplasmic amounts of APE1/Ref-1 protein were significantly higher in GD fibroblasts with respect to controls, and that GD cells failed to upregulate its expression upon H(2)O(2) treatment. Both ROS and APE1/Ref-1 increases are due to GlcCer accumulation, being prevented by treatment of GD fibroblasts with Cerezyme and induced in healthy fibroblasts treated with conduritol-beta-epoxide. These data, suggesting that GD cells display an impairment in the cellular redox state and in the adaptive cellular response to oxidative stress, may open new perspectives in the comprehension of GD pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号