首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Interpolated markov chains for eukaryotic promoter recognition.   总被引:9,自引:0,他引:9  
MOTIVATION: We describe a new content-based approach for the detection of promoter regions of eukaryotic protein encoding genes. Our system is based on three interpolated Markov chains (IMCs) of different order which are trained on coding, non-coding and promoter sequences. It was recently shown that the interpolation of Markov chains leads to stable parameters and improves on the results in microbial gene finding (Salzberg et al., Nucleic Acids Res., 26, 544-548, 1998). Here, we present new methods for an automated estimation of optimal interpolation parameters and show how the IMCs can be applied to detect promoters in contiguous DNA sequences. Our interpolation approach can also be employed to obtain a reliable scoring function for human coding DNA regions, and the trained models can easily be incorporated in the general framework for gene recognition systems. RESULTS: A 5-fold cross-validation evaluation of our IMC approach on a representative sequence set yielded a mean correlation coefficient of 0.84 (promoter versus coding sequences) and 0.53 (promoter versus non-coding sequences). Applied to the task of eukaryotic promoter region identification in genomic DNA sequences, our classifier identifies 50% of the promoter regions in the sequences used in the most recent review and comparison by Fickett and Hatzigeorgiou ( Genome Res., 7, 861-878, 1997), while having a false-positive rate of 1/849 bp.  相似文献   

2.
We study the length distribution functions for the 16 possible distinct dimeric tandem repeats in DNA sequences of diverse taxonomic partitions of GenBank (known human and mouse genomes, and complete genomes of Caenorhabditis elegans and yeast). For coding DNA, we find that all 16 distribution functions are exponential. For non-coding DNA, the distribution functions for most of the dimeric repeats have surprisingly long tails, that fit a power-law function. We hypothesize that: (i) the exponential distributions of dimeric repeats in protein coding sequences indicate strong evolutionary pressure against tandem repeat expansion in coding DNA sequences; and (ii) long tails in the distributions of dimers in non-coding DNA may be a result of various mutational mechanisms. These long, non-exponential tails in the distribution of dimeric repeats in non-coding DNA are hypothesized to be due to the higher tolerance of non-coding DNA to mutations. By comparing genomes of various phylogenetic types of organisms, we find that the shapes of the distributions are not universal, but rather depend on the specific class of species and the type of a dimer.  相似文献   

3.
MOTIVATION: Prediction of the coding potential for stretches of DNA is crucial in gene calling and genome annotation, where it is used to identify potential exons and to position their boundaries in conjunction with functional sites, such as splice sites and translation initiation sites. The ability to discriminate between coding and non-coding sequences relates to the structure of coding sequences, which are organized in codons, and by their biased usage. For statistical reasons, the longer the sequences, the easier it is to detect this codon bias. However, in many eukaryotic genomes, where genes harbour many introns, both introns and exons might be small and hard to distinguish based on coding potential. RESULTS: Here, we present novel approaches that specifically aim at a better detection of coding potential in short sequences. The methods use complementary sequence features, combined with identification of which features are relevant in discriminating between coding and non-coding sequences. These newly developed methods are evaluated on different species, representative of four major eukaryotic kingdoms, and extensively compared to state-of-the-art Markov models, which are often used for predicting coding potential. The main conclusions drawn from our analyses are that (1) combining complementary sequence features clearly outperforms current Markov models for coding potential prediction in short sequence fragments, (2) coding potential prediction benefits from length-specific models, and these models are not necessarily the same for different sequence lengths and (3) comparing the results across several species indicates that, although our combined method consistently performs extremely well, there are important differences across genomes. SUPPLEMENTARY DATA: http://bioinformatics.psb.ugent.be/.  相似文献   

4.
Most of the gene prediction algorithms for prokaryotes are based on Hidden Markov Models or similar machine-learning approaches, which imply the optimization of a high number of parameters. The present paper presents a novel method for the classification of coding and non-coding regions in prokaryotic genomes, based on a suitably defined compression index of a DNA sequence. The main features of this new method are the non-parametric logic and the costruction of a dictionary of words extracted from the sequences. These dictionaries can be very useful to perform further analyses on the genomic sequences themselves. The proposed approach has been applied on some prokaryotic complete genomes, obtaining optimal scores of correctly recognized coding and non-coding regions. Several false-positive and false-negative cases have been investigated in detail, which have revealed that this approach can fail in the presence of highly structured coding regions (e.g., genes coding for modular proteins) or quasi-random non-coding regions (e.g., regions hosting non-functional fragments of copies of functional genes; regions hosting promoters or other protein-binding sequences). We perform an overall comparison with other gene-finder software, since at this step we are not interested in building another gene-finder system, but only in exploring the possibility of the suggested approach.  相似文献   

5.
To identify non-coding RNA (ncRNA) signals within genomic regions, a classification tool was developed based on a hybrid random forest (RF) with a logistic regression model to efficiently discriminate short ncRNA sequences as well as long complex ncRNA sequences. This RF-based classifier was trained on a well-balanced dataset with a discriminative set of features and achieved an accuracy, sensitivity and specificity of 92.11%, 90.7% and 93.5%, respectively. The selected feature set includes a new proposed feature, SCORE. This feature is generated based on a logistic regression function that combines five significant features—structure, sequence, modularity, structural robustness and coding potential—to enable improved characterization of long ncRNA (lncRNA) elements. The use of SCORE improved the performance of the RF-based classifier in the identification of Rfam lncRNA families. A genome-wide ncRNA classification framework was applied to a wide variety of organisms, with an emphasis on those of economic, social, public health, environmental and agricultural significance, such as various bacteria genomes, the Arthrospira (Spirulina) genome, and rice and human genomic regions. Our framework was able to identify known ncRNAs with sensitivities of greater than 90% and 77.7% for prokaryotic and eukaryotic sequences, respectively. Our classifier is available at http://ncrna-pred.com/HLRF.htm.  相似文献   

6.
With the completion of the human and a few model organisms' genomes, and with the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time-based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Our method requires approximately 6 . N byte memory and a computational time of N log N to extract all the repeat-related and periodic or quasi-periodic features from a sequence of length N without any prior knowledge on the consensus sequence of those features, hence enables us to carry out sequence analysis on the whole genomic scale by a PC.  相似文献   

7.
编码序列和非编码序列的3-tuple分布特征   总被引:2,自引:0,他引:2  
傅强  钱敏平  陈良标  朱玉贤 《遗传学报》2005,32(10):1018-1026
非编码序列,特别是内含子的起源,是一个重要的悬而未决的问题。首先通过计算模式生物的编码序列和非编码序列的不同阅读框中3-tupie的频率分布,发现编码区中不同阅读框具有十分不同的3-tuple分布,而在非编码区中,不同阅读框的3-tuple分布几乎相等,并且这一性质不具有物种依赖性。为了描述分布差异的程度,引进夏量一对称相对熵,并通过比较原核生物和真核生物,发现无论是编码区还是非编码区,原核生物都具有比真核生物更高的SRE值。进一步研究表明,某一生物的SRE值与该生物全基因组中编码区所占的百分比存在一定的相关性(相关系数为0.86)。计算机模拟进化实验发现,2%的突变就足以使典型的嗯核生物编码区高SRE值变为真核生物内含子区特有的低SRE值。比对数据库中已经注释的内含子和编码区序列,证明确实有一部分与编码区具有很高同源性的内含子序列。实验表明,至少部分真核生物的内含子可能起源于编码序列,同时也说明SRE可能被用于研究物种基因组序列的进化。  相似文献   

8.
While veritable oceans of ink have been spilled over the base distributions within genes, the literature is virtually silent on large scale intra genomic base distribution. To address this issue, we have examined approximately 3400 chromosomal sequences from approximately 2000 entire genomes-including DNA and RNA, single- and double-stranded, coding and non-coding genomes. For each sequence the mean, variance, skewness, and kurtosis for each base were computed along with the genome base composition. The main findings are: (1) there is no simple relationship between these statistics and the base composition of the genome, (2) in non-viral genomes, base distribution is non-uniform, (3) base distribution in non-eukaryotic genomes obeys a number of simple rules, (4) these rules are not dependent on the presence of coding sequences, (5) bacterial genomes in particular are unusually compliant with these rules, and (6) eukaryotes have a unique pattern of base distribution.  相似文献   

9.
Oligonucleotide usage in archaeal and bacterial genomes can be linked to a number of properties, including codon usage (trinucleotides), DNA base-stacking energy (dinucleotides), and DNA structural conformation (di- to tetranucleotides). We wanted to assess the statistical information potential of different DNA ‘word-sizes’ and explore how oligonucleotide frequencies differ in coding and non-coding regions. In addition, we used oligonucleotide frequencies to investigate DNA composition and how DNA sequence patterns change within and between prokaryotic organisms. Among the results found was that prokaryotic chromosomes can be described by hexanucleotide frequencies, suggesting that prokaryotic DNA is predominantly short range correlated, i.e., information in prokaryotic genomes is encoded in short oligonucleotides. Oligonucleotide usage varied more within AT-rich and host-associated genomes than in GC-rich and free-living genomes, and this variation was mainly located in non-coding regions. Bias (selectional pressure) in tetranucleotide usage correlated with GC content, and coding regions were more biased than non-coding regions. Non-coding regions were also found to be approximately 5.5% more AT-rich than coding regions, on average, in the 402 chromosomes examined. Pronounced DNA compositional differences were found both within and between AT-rich and GC-rich genomes. GC-rich genomes were more similar and biased in terms of tetranucleotide usage in non-coding regions than AT-rich genomes. The differences found between AT-rich and GC-rich genomes may possibly be attributed to lifestyle, since tetranucleotide usage within host-associated bacteria was, on average, more dissimilar and less biased than free-living archaea and bacteria.  相似文献   

10.
A statistical analysis of occurrence of particular nucleotide runs (1 divided by 10 nucleotides long) in DNA sequences of different species has been carried out. There are considerable differences in run distributions in DNA sequences of prokaryotes, invertebrates and vertebrates. Distribution of various types of runs has been found to be different in coding and non-coding sequences. There is an abundance of short runs 1 divided by 2 nucleotides long in coding sequences, and there is a deficiency of such runs in the non-coding regions. However, some interesting exceptions from this rule exist: for run distribution of adenine in prokaryotes and for distribution of purine-pyrimidine runs in eukaryotes. This may be stipulated by the fact that the distribution of runs are predetermined by structural peculiarities of the entire DNA molecule. Runs of guanine or cytosine of three to six nucleotides long occur predominantly in the non-coding DNA regions in eukaryotes, especially in vertebrates.  相似文献   

11.
The recent electronmicroscopic and biochemical mapping of Z-DNA sites in phi X174, SV40, pBR322 and PM2 DNAs has been used to determine two sets of criteria for identification of potential Z-DNA sequences in natural DNA genomes. The prediction of potential Z-DNA tracts and corresponding statistical analysis of their occurrence have been made on a sample of 14 DNA genomes. Alternating purine and pyrimidine tracts longer than 5 base pairs in length and their clusters (quasi alternating fragments) in the 14 genomes studied are under-represented compared to the expectation from corresponding random sequences. The fragments [d(G X C)]n and [d(C X G)]n (n greater than or equal to 3) in general do not occur in circular DNA genomes and are under-represented in the linear DNAs of phages lambda and T7, whereas in linear genomes of adenoviruses they are strongly over-represented. With minor exceptions, potential Z-DNA sites are also under-represented compared to random sequences. In the 14 genomes studied, predicted Z-DNA tracts occur in non-coding as well as in protein coding regions. The predicted Z-DNA sites in phi X174, SV40, pBR322 and PM2 correspond well with those mapped experimentally. A complete listing together with a compact graphical representation of alternating purine-pyrimidine fragments and their Z-forming potential are presented.  相似文献   

12.
We study the coding potential of human DNA sequences, using the positional asymmetry function (D(p)) and the positional information function (I(q)). Both D(p)and I(q)are based on the positional dependence of single nucleotide frequencies. We investigate the accuracy of D(p)and I(q)in distinguishing coding and non-coding DNA as a function of the parameters p and q, respectively, and explore at which parameters p(opt)and q(opt)both D(p)and I(q)distinguish coding and non-coding DNA most accurately. We compare our findings with classically used parameter values and find that optimized coding potentials yield comparable accuracies as classical frame-independent coding potentials trained on prior data. We find that p(opt)and q(opt)vary only slightly with the sequence length.  相似文献   

13.
Heuristic approach to deriving models for gene finding.   总被引:21,自引:2,他引:19       下载免费PDF全文
Computer methods of accurate gene finding in DNA sequences require models of protein coding and non-coding regions derived either from experimentally validated training sets or from large amounts of anonymous DNA sequence. Here we propose a new, heuristic method producing fairly accurate inhomogeneous Markov models of protein coding regions. The new method needs such a small amount of DNA sequence data that the model can be built 'on the fly' by a web server for any DNA sequence >400 nt. Tests on 10 complete bacterial genomes performed with the GeneMark.hmm program demonstrated the ability of the new models to detect 93.1% of annotated genes on average, while models built by traditional training predict an average of 93.9% of genes. Models built by the heuristic approach could be used to find genes in small fragments of anonymous prokaryotic genomes and in genomes of organelles, viruses, phages and plasmids, as well as in highly inhomogeneous genomes where adjustment of models to local DNA composition is needed. The heuristic method also gives an insight into the mechanism of codon usage pattern evolution.  相似文献   

14.
A new system, ZCURVE 1.0, for finding protein- coding genes in bacterial and archaeal genomes has been proposed. The current algorithm, which is based on the Z curve representation of the DNA sequences, lays stress on the global statistical features of protein-coding genes by taking the frequencies of bases at three codon positions into account. In ZCURVE 1.0, since only 33 parameters are used to characterize the coding sequences, it gives better consideration to both typical and atypical cases, whereas in Markov-model-based methods, e.g. Glimmer 2.02, thousands of parameters are trained, which may result in less adaptability. To compare the performance of the new system with that of Glimmer 2.02, both systems were run, respectively, for 18 genomes not annotated by the Glimmer system. Comparisons were also performed for predicting some function-known genes by both systems. Consequently, the average accuracy of both systems is well matched; however, ZCURVE 1.0 has more accurate gene start prediction, lower additional prediction rate and higher accuracy for the prediction of horizontally transferred genes. It is shown that the joint applications of both systems greatly improve gene-finding results. For a typical genome, e.g. Escherichia coli, the system ZCURVE 1.0 takes approximately 2 min on a Pentium III 866 PC without any human intervention. The system ZCURVE 1.0 is freely available at: http://tubic. tju.edu.cn/Zcurve_B/.  相似文献   

15.
Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar.  相似文献   

16.
Prokaryotic genomes are considered to be 'wall-to-wall' genomes, which consist largely of genes for proteins and structural RNAs, with only a small fraction of the genomic DNA allotted to intergenic regions, which are thought to typically contain regulatory signals. The majority of bacterial and archaeal genomes contain 6-14% non-coding DNA. Significant positive correlations were detected between the fraction of non-coding DNA and inter- and intra-operonic distances, suggesting that different classes of non-coding DNA evolve congruently. In contrast, no correlation was found between any of these characteristics of non-coding sequences and the number of genes or genome size. Thus, the non-coding regions and the gene sets in prokaryotes seem to evolve in different regimes. The evolution of non-coding regions appears to be determined primarily by the selective pressure to minimize the amount of non-functional DNA, while maintaining essential regulatory signals, because of which the content of non-coding DNA in different genomes is relatively uniform and intra- and inter-operonic non-coding regions evolve congruently. In contrast, the gene set is optimized for the particular environmental niche of the given microbe, which results in the lack of correlation between the gene number and the characteristics of non-coding regions.  相似文献   

17.
18.
The MICdb (Microsatellites Database) (http://www.cdfd.org.in/micas) is a comprehensive relational database of non-redundant microsatellites extracted from fully sequenced prokaryotic genomes. The current version (1.0) of the database has been compiled from 83 genomes belonging to different phylogenetic groups. This database has been linked to MICAS, the web-based Microstatellite Analysis Server. MICAS provides a user-friendly front-end to systematically extract data on microsatellite tracts from genomes. The database contains the following information pertaining to the microsatellites: the regions (coding/non-coding, if coding, their GenBank annotations) containing microsatellite tracts; the frequencies of their occurrences, the size and the number of repeating motifs; and the sequences of the tracts. MICAS also provides an interface to Autoprimer, a primer design program to automatically design primers for selected microsatellite loci.  相似文献   

19.
20.
The genomes of barley and wheat, two of the world's most important crops, are very large and complex due to their high content of repetitive DNA. In order to obtain a whole-genome sequence sample, we performed two runs of 454 (GS20) sequencing on genomic DNA of barley cv. Morex, which yielded approximately 1% of a haploid genome equivalent. Almost 60% of the sequences comprised known transposable element (TE) families, and another 9% represented novel repetitive sequences. We also discovered high amounts of low-complexity DNA and non-genic low-copy DNA. We identified almost 2300 protein coding gene sequences and more than 660 putative conserved non-coding sequences. Comparison of the 454 reads with previously published genomic sequences suggested that TE families are distributed unequally along chromosomes. This was confirmed by in situ hybridizations of selected TEs. A comparison of these data for the barley genome with a large sample of publicly available wheat sequences showed that several TE families that are highly abundant in wheat are absent from the barley genome. This finding implies that the TE composition of their genomes differs dramatically, despite their very similar genome size and their close phylogenetic relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号