首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The G protein-coupled inwardly rectifying K+ channel, GIRK1/GIRK4, can be activated by receptors coupled to the Galpha(i) subunit. An opposing role for Galpha(q) receptor signaling in GIRK regulation has only recently begun to be established. We have studied the effects of m1 muscarinic acetylcholine receptor (mAChR) stimulation, which is known to mobilize calcium and activate protein kinase C (PKC) by a Galpha(q)-dependent mechanism, on whole cell GIRK1/4 currents in Xenopus oocytes. We found that stimulation of the m1 mAChR suppresses both basal and dopamine 2 receptor-activated GIRK 1/4 currents. Overexpression of Gbetagamma subunits attenuates this effect, suggesting that increased binding of Gbetagamma to the GIRK channel can effectively compete with the G(q)-mediated inhibitory signal. This G(q) signal requires the use of second messenger molecules; pharmacology implicates a role for PKC and Ca2+ responses as m1 mAChR-mediated inhibition of GIRK channels is mimicked by PMA and Ca2+ ionophore. We have analyzed a series of mutant and chimeric channels suggesting that the GIRK4 subunit is capable of responding to G(q) signals and that the resulting current inhibition does not occur via phosphorylation of a canonical PKC site on the channel itself.  相似文献   

2.
G protein-coupled inwardly rectifying K+ (GIRK) channels can be activated or inhibited by distinct classes of receptor (G(alpha)i/o- and G(alpha)q-coupled), providing dynamic regulation of cellular excitability. Receptor-mediated activation involves direct effects of G(beta)gamma subunits on GIRK channels, but mechanisms involved in GIRK channel inhibition have not been fully elucidated. An HEK293 cell line that stably expresses GIRK1/4 channels was used to test G protein mechanisms that mediate GIRK channel inhibition. In cells transiently or stably cotransfected with 5-HT1A (G(alpha)i/o-coupled) and TRH-R1 (G(alpha)q-coupled) receptors, 5-HT (5-hydroxytryptamine; serotonin) enhanced GIRK channel currents, whereas thyrotropin-releasing hormone (TRH) inhibited both basal and 5-HT-activated GIRK channel currents. Inhibition of GIRK channel currents by TRH primarily involved signaling by G(alpha)q family subunits, rather than G(beta)gamma dimers: GIRK channel current inhibition was diminished by Pasteurella multocida toxin, mimicked by constitutively active members of the G(alpha)q family, and reduced by minigene constructs that disrupt G(alpha)q signaling, but was completely preserved in cells expressing constructs that interfere with signaling by G(beta)gamma subunits. Inhibition of GIRK channel currents by TRH and constitutively active G(alpha)q was reduced by, an inhibitor of phospholipase C (PLC). Moreover, TRH- R1-mediated GIRK channel inhibition was diminished by minigene constructs that reduce membrane levels of the PLC substrate phosphatidylinositol bisphosphate, further implicating PLC. However, we found no evidence for involvement of protein kinase C, inositol trisphosphate, or intracellular calcium. Although these downstream signaling intermediaries did not contribute to receptor-mediated GIRK channel inhibition, bath application of TRH decreased GIRK channel activity in cell-attached patches. Together, these data indicate that receptor-mediated inhibition of GIRK channels involves PLC activation by G(alpha) subunits of the G(alpha)q family and suggest that inhibition may be communicated at a distance to GIRK channels via unbinding and diffusion of phosphatidylinositol bisphosphate away from the channel.  相似文献   

3.
G protein-activated K+ channels (Kir3 or GIRK) are activated by direct binding of Gbetagamma. The binding sites of Gbetagamma in the ubiquitous GIRK1 (Kir3.1) subunit have not been unequivocally charted, and in the neuronal GIRK2 (Kir3.2) subunit the binding of Gbetagamma has not been studied. We verified and extended the map of Gbetagamma-binding sites in GIRK1 by using two approaches: direct binding of Gbetagamma to fragments of GIRK subunits (pull down), and competition of these fragments with the Galphai1 subunit for binding to Gbetagamma. We also mapped the Gbetagamma-binding sites in GIRK2. In both subunits, the N terminus binds Gbetagamma. In the C terminus, the Gbetagamma-binding sites in the two subunits are not identical; GIRK1, but not GIRK2, has a previously unrecognized Gbetagamma-interacting segments in the first half of the C terminus. The main C-terminal Gbetagamma-binding segment found in both subunits is located approximately between amino acids 320 and 409 (by GIRK1 count). Mutation of C-terminal leucines 262 or 333 in GIRK1, recognized previously as crucial for Gbetagamma regulation of the channel, and of the corresponding leucines 273 and 344 in GIRK2 dramatically altered the properties of K+ currents via GIRK1/GIRK2 channels expressed in Xenopus oocytes but did not appreciably reduce the binding of Gbetagamma to the corresponding fusion proteins, indicating that these residues are mainly important for the regulation of Gbetagamma-induced changes in channel gating rather than Gbetagamma binding.  相似文献   

4.
G protein-activated K(+) channels (GIRKs; Kir3) are activated by direct binding of Gbetagamma subunits released from heterotrimeric G proteins. In native tissues, only pertussis toxin-sensitive G proteins of the G(i/o) family, preferably Galpha(i3) and Galpha(i2), are donors of Gbetagamma for GIRK. How this specificity is achieved is not known. Here, using a pull-down method, we confirmed the presence of Galpha(i3-GDP) binding site in the N terminus of GIRK1 and identified novel binding sites in the N terminus of GIRK2 and in the C termini of GIRK1 and GIRK2. The non-hydrolyzable GTP analog, guanosine 5'-3-O-(thio)triphosphate, reduced the binding of Galpha(i3) by a factor of 2-4. Galpha(i1-GDP) bound to GIRK1 and GIRK2 much weaker than Galpha(i3-GDP). Titrated expression of components of signaling pathway in Xenopus oocytes and their activation by m2 muscarinic receptors revealed that G(i3) activates GIRK more efficiently than G(i1), as indicated by larger and faster agonist-evoked currents. Activation of GIRK by purified Gbetagamma in excised membrane patches was strongly augmented by coexpression of Galpha(i3) and less by Galpha(i1). Differences in physical interactions of GIRK with GDP-bound Galpha subunits, or Galphabetagamma heterotrimers, may dictate different extents of Galphabetagamma anchoring, influence the efficiency of GIRK activation by Gbetagamma, and play a role in determining signaling specificity.  相似文献   

5.
G protein-gated K(+) channels (GIRK, or Kir3) are activated by the direct binding of Gbetagamma or of cytosolic Na(+). Na(+) activation is fast, Gbetagamma-independent, and probably via a direct, low affinity (EC(50), 30-40 mm) binding of Na(+) to the channel. Here we demonstrate that an increase in intracellular Na(+) concentration, [Na(+)](in), within the physiological range (5-20 mm), activates GIRK within minutes via an additional, slow mechanism. The slow activation is observed in GIRK mutants lacking the direct Na(+) effect. It is inhibited by a Gbetagamma scavenger, hence it is Gbetagamma-dependent; but it does not require GTP. We hypothesized that Na(+) elevates the cellular concentration of free Gbetagamma by promoting the dissociation of the Galphabetagamma heterotrimer into free Galpha(GDP) and Gbetagamma. Direct biochemical measurements showed that Na(+) causes a moderate decrease (approximately 2-fold) in the affinity of interaction between Galpha(GDP) and Gbetagamma. Furthermore, in accord with the predictions of our model, slow Na(+) activation was enhanced by mild coexpression of Galpha(i3). Our findings reveal a previously unknown mechanism of regulation of G proteins and demonstrate a novel Gbetagamma-dependent regulation of GIRK by Na(+). We propose that Na(+) may act as a regulatory factor, or even a second messenger, that regulates effectors via Gbetagamma.  相似文献   

6.
Cardiac and neuronal G protein-activated K+ channels (GIRK; Kir3) open following the binding of Gbetagamma subunits, released from Gi/o proteins activated by neurotransmitters. GIRKs also possess basal activity contributing to the resting potential in neurons. It appears to depend largely on free Gbetagamma, but a Gbetagamma-independent component has also been envisaged. We investigated Gbetagamma dependence of the basal GIRK activity (A(GIRK,basal)) quantitatively, by titrated expression of Gbetagamma scavengers, in Xenopus oocytes expressing GIRK1/2 channels and muscarinic m2 receptors. The widely used Gbetagamma scavenger, myristoylated C terminus of beta-adrenergic kinase (m-cbetaARK), reduced A(GIRK,basal) by 70-80% and eliminated the acetylcholine-evoked current (I(ACh)). However, we found that m-cbetaARK directly binds to GIRK, complicating the interpretation of physiological data. Among several newly constructed Gbetagamma scavengers, phosducin with an added myristoylation signal (m-phosducin) was most efficient in reducing GIRK currents. m-phosducin relocated to the membrane fraction and did not bind GIRK. Titrated expression of m-phosducin caused a reduction of A(GIRK,basal) by up to 90%. Expression of GIRK was accompanied by an increase in the level of Gbetagamma and Galpha in the plasma membrane, supporting the existence of preformed complexes of GIRK with G protein subunits. Increased expression of Gbetagamma and its constitutive association with GIRK may underlie the excessively high A(GIRK,basal) observed at high expression levels of GIRK. Only 10-15% of A(GIRK,basal) persisted upon expression of both m-phosducin and cbetaARK. These results demonstrate that a major part of Ibasal is Gbetagamma-dependent at all levels of channel expression, and only a small fraction (<10%) may be Gbetagamma-independent.  相似文献   

7.
Gbetagamma subunits interact directly and activate G protein-gated Inwardly Rectifying K(+) (GIRK) channels. Little is known about the identity of functionally important interactions between Gbetagamma and GIRK channels. We tested the effects of all mammalian Gbeta subunits on channel activity and showed that whereas Gbeta1-4 subunits activate heteromeric GIRK channels independently of receptor activation, Gbeta5 does not. Gbeta1 and Gbeta5 both bind the N and C termini of the GIRK1 and GIRK4 channel subunits. Chimeric analysis between the Gbeta1 and Gbeta5 proteins revealed a 90-amino acid stretch that spans blades two and three of the seven-propeller structure and is required for channel activation. Within this region, eight non-conserved amino acids were critical for the activity of Gbeta1, as mutation of each residue to its counterpart in Gbeta5 significantly reduced the ability of Gbeta1 to stimulate channel activity. In particular, mutation of residues Ser-67 and Thr-128 to the corresponding Gbeta5 residues completely abolished Gbeta1 stimulation of GIRK channel activity. Mapping these functionally important residues on the three-dimensional structure of Gbeta1 shows that Ser-67, Ser-98, and Thr-128 are the only surface accessible residues. Galpha(i)1 interacts with Ser-98 but not with Ser-67 and Thr-128 in the heterotrimeric Galphabetagamma structure. Further characterization of the three mutant proteins showed that they fold properly and interact with Ggamma2. Of the three identified functionally important residues, the Ser-67 and Thr-128 Gbeta mutants significantly inhibited basal currents of a channel point mutant that displays Gbetagamma-mediated basal but not agonist-induced currents. Our findings indicate that the presence of Gbeta residues that do not interact with Galpha are involved in Gbetagamma interactions in the absence of agonist stimulation.  相似文献   

8.
Gbetagamma subunits are known to bind to and activate G-protein-activated inwardly rectifying K(+) channels (GIRK) by regulating their open probability and bursting behavior. Studying G-protein regulation of either native GIRK (I(KACh)) channels in feline atrial myocytes or heterologously expressed GIRK1/4 channels in Chinese hamster ovary cells and HEK 293 cells uncovered a novel Gbetagamma subunit mediated regulation of the inwardly rectifying properties of these channels. I(KACh) activated by submaximal concentrations of acetylcholine exhibited a approximately 2.5-fold stronger inward rectification than I(KACh) activated by saturating concentrations of acetylcholine. Similarly, the inward rectification of currents through GIRK1/4 channels expressed in HEK cells was substantially weakened upon maximal stimulation with co-expressed Gbetagamma subunits. Analysis of the outward current block underlying inward rectification demonstrated that the fraction of instantaneously blocked channels was reduced when Gbetagamma was over-expressed. The Gbetagamma induced weakening of inward rectification was associated with reduced potencies for Ba(2+) and Cs(+) to block channels from the extracellular side. Based on these results we propose that saturation of the channel with Gbetagamma leads to a conformational change within the pore of the channel that reduced the potency of extracellular cations to block the pore and increased the fraction of channels inert to a pore block in outward direction.  相似文献   

9.
G proteins interact with effectors at multiple sites and regulate their activity. The functional significance of multiple contact points is not well understood. We previously identified three residues on distinct surfaces of Gbetagamma that are crucial for G protein-coupled inward rectifier K(+) (GIRK) channel activation. Here we show that mutations at these sites, S67K, S98T, and T128F, abolished or reduced direct GIRK current activation in inside-out patches, but, surprisingly, all mutants synergized with sodium in activating K(+) currents. Each of the three Gbeta(1) mutants bound the channel indicating that the defects reflected mainly functional impairments. We tested these mutants for functional interactions with effectors other than K(+) channels. With N-type calcium channels, Gbetagamma wild type and mutants all inhibited basal currents. A depolarizing pre-pulse relieved Gbetagamma inhibition of Ca(2+) currents by the wild type and the S98T and T128F mutants but not the S67K mutant. Both wild type and mutant Gbetagamma subunits activated phospholipase C beta(2) with similar potencies; however, the S67K mutant showed reduced maximal activity. These data establish a pattern where mutations can alter the Gbetagamma regulation of a specific effector function without affecting other Gbetagamma-mediated functions. Moreover, Ser-67 showed this pattern in all three effectors tested, suggesting that this residue participates in a common functional domain on Gbeta(1) that regulates several effectors. These data show that distinct domains within Gbetagamma subserve specific functional roles.  相似文献   

10.
The betagamma subunits of G proteins modulate inwardly rectifying potassium (GIRK) channels through direct interactions. Although GIRK currents are stimulated by mammalian Gbetagamma subunits, we show that they were inhibited by the yeast Gbetagamma (Ste4/Ste18) subunits. A chimera between the yeast and the mammalian Gbeta1 subunits (ymbeta) stimulated or inhibited GIRK currents, depending on whether it was co-expressed with mammalian or yeast Ggamma subunits, respectively. This result underscores the critical functional influence of the Ggamma subunits on the effectiveness of the Gbetagamma complex. A series of chimeras between Ggamma2 and the yeast Ggamma revealed that the C-terminal half of the Ggamma2 subunit is required for channel activation by the Gbetagamma complex. Point mutations of Ggamma2 to the corresponding yeast Ggamma residues identified several amino acids that reduced significantly the ability of Gbetagamma to stimulate channel activity, an effect that was not due to improper association with Gbeta. Most of the identified critical Ggamma residues clustered together, forming an intricate network of interactions with the Gbeta subunit, defining an interaction surface of the Gbetagamma complex with GIRK channels. These results show for the first time a functional role for Ggamma in the effector role of Gbetagamma.  相似文献   

11.
Control of heart rate is a complex process that integrates the function of multiple G protein-coupled receptors and ion channels. Among them, the G protein-regulated inwardly rectifying K+ (GIRK or KACh) channels of sinoatrial node and atria play a major role in beat-to-beat regulation of the heart rate. The atrial KACh channels are heterotetrameric proteins that consist of two pore-forming subunits, GIRK1 and GIRK4. Following m2-muscarinic acetylcholine receptor (M2R) stimulation, KACh channel activation is conferred by the direct binding of G protein betagamma subunits (Gbetagamma) to the channel. Here we show that atrial KACh channels are assembled in a signaling complex with Gbetagamma, G protein-coupled receptor kinase, cyclic adenosine monophosphate-dependent protein kinase, two protein phosphatases, PP1 and PP2A, receptor for activated C kinase 1, and actin. This complex would enable the KACh channels to rapidly integrate beta-adrenergic and M2R signaling in the membrane, and it provides insight into general principles governing spatial integration of different transduction pathways. Furthermore, the same complex might recruit protein kinase C (PKC) to the KACh channel following alpha-adrenergic receptor stimulation. Our electro-physiological recordings from single atrial KACh channels revealed a potent inhibition of Gbetagamma-induced channel activity by PKC, thus validating the physiological significance of the observed complex as interconnecting site where signaling molecules congregate to execute a coordinated control of membrane excitability.  相似文献   

12.
Activation of heterotrimeric GTP-binding (G) proteins by their coupled receptors, causes dissociation of the G protein alpha and betagamma subunits. Gbetagamma subunits interact directly with G protein-gated inwardly rectifying K+ (GIRK) channels to stimulate their activity. In addition, free Gbetagamma subunits, resulting from agonist-independent dissociation of G protein subunits, can account for a major component of the basal channel activity. Using a series of chimeric constructs between GIRK4 and a Gbetagamma-insensitive K+ channel, IRK1, we have identified a critical site of interaction of GIRK with Gbetagamma. Mutation of Leu339 to Glu within this site impaired agonist-induced sensitivity and decreased binding to Gbetagamma, without removing the Gbetagamma contribution to basal currents. Mutation of the corresponding residue in GIRK1 (Leu333) resulted in a similar phenotype. Both the GIRK1 and GIRK4 subunits contributed equally to the agonist-induced sensitivity of the heteromultimeric channel. Thus, we have identified a channel site that interacts specifically with Gbetagamma subunits released through receptor stimulation.  相似文献   

13.
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.  相似文献   

14.
G proteins play a critical role in transducing a large variety of signals into intracellular responses. Increasingly, there is evidence that G proteins may play other roles as well. Dominant-negative constructs of the alpha subunit of G proteins would be useful in studying the roles of G proteins in a variety of processes, but the currently available dominant-negative constructs, which target Mg2+-binding sites, are rather leaky. A variety of studies have implicated the carboxyl terminus of G protein alpha subunits in both mediating receptor-G protein interaction and in receptor selectivity. Thus we have made minigene plasmid constructs that encode oligonucleotide sequences corresponding to the carboxyl-terminal undecapeptide of Galphai, Galphaq, or Galphas. To determine whether overexpression of the carboxyl-terminal peptide would block cellular responses, we used as a test system the activation of the M2 muscarinic receptor activated K+ channels in HEK 293 cells. The minigenes were transiently transfected along with G protein-regulated inwardly rectifying K+ channels (GIRK) into HEK 293 cells that stably express the M2 muscarinic receptor. The presence of the Galphai carboxyl-terminal peptide results in specific inhibition of GIRK activity in response to agonist stimulation of the M2 muscarinic receptor. The Galphai minigene construct completely blocks agonist-mediated M2 mAChR K+ channel response whereas the control minigene constructs (empty vector, pcDNA3.1, and the Galpha carboxyl peptide in random order, pcDNA-GalphaiR) had no effect on agonist-mediated M2 muscarinic receptor GIRK response. The inhibitory effects of the Galphai minigene construct were specific because overexpression of peptides corresponding to the carboxyl terminus of Galphaq or Galphas had no effect on M2 muscarinic receptor stimulation of the K+ channel.  相似文献   

15.
Nagao M  Kaziro Y  Itoh H 《FEBS letters》2000,472(2-3):297-301
Thrombin has been shown to inhibit skeletal muscle differentiation. However, the mechanisms by which thrombin represses myogenesis remain unknown. Since the thrombin receptor couples to G(i), G(q/11) and G(12), we examined which subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (Galpha(i), Galpha(q/11), Galpha(12) or Gbetagamma) participate in the thrombin-induced inhibition of C2C12 myoblast differentiation. Galpha(i2) and Galpha(11) had no inhibitory effect on the myogenic differentiation. Galpha(12) prevented only myoblast fusion, whereas Gbetagamma inhibited both the induction of skeletal muscle-specific markers and the myotube formation. In addition, the thrombin-induced reduction of creatine kinase activity was blocked by the C-terminal peptide of beta-adrenergic receptor kinase, which is known to sequester free Gbetagamma. These results suggest that the thrombin-induced inhibition of muscle differentiation is mainly mediated by Gbetagamma.  相似文献   

16.
G-protein-coupled inwardly rectifying K(+) (GIRK; Kir3.x) channels are the primary effectors of numerous G-protein-coupled receptors. GIRK channels decrease cellular excitability by hyperpolarizing the membrane potential in cardiac cells, neurons, and secretory cells. Although direct regulation of GIRKs by the heterotrimeric G-protein subunit Gbetagamma has been extensively studied, little is known about the number of Gbetagamma binding sites per channel. Here we demonstrate that purified GIRK (Kir 3.x) tetramers can be chemically cross-linked to exogenously purified Gbetagamma subunits. The observed laddering pattern of Gbetagamma attachment to GIRK4 homotetramers was consistent with the binding of one, two, three, or four Gbetagamma molecules per channel tetramer. The fraction of channels chemically cross-linked to four Gbetagamma molecules increased with increasing Gbetagamma concentrations and approached saturation. These results suggest that GIRK tetrameric channels have four Gbetagamma binding sites. Thus, GIRK (Kir 3.x) channels, like the distantly related cyclic nucleotide-gated channels, are tetramers and exhibit a 1:1 subunit/ligand binding stoichiometry.  相似文献   

17.
G protein-coupled inward rectifier K(+) channels (GIRK channels) are activated directly by the G protein betagamma subunit. The crystal structure of the G protein betagamma subunits reveals that the beta subunit consists of an N-terminal alpha helix followed by a symmetrical seven-bladed propeller structure. Each blade is made up of four antiparallel beta strands. The top surface of the propeller structure interacts with the Galpha subunit. The outer surface of the betagamma torus is largely made from outer beta strands of the propeller. We analyzed the interaction between the beta subunit and brain GIRK channels by mutating the outer surface of the betagamma torus. Mutants of the outer surface of the beta(1) subunit were generated by replacing the sequences at the outer beta strands of each blade with corresponding sequences of the yeast beta subunit, STE4. The mutant beta(1)gamma(2) subunits were expressed in and purified from Sf9 cells. They were applied to inside-out patches of cultured locus coeruleus neurons. The wild type beta(1)gamma(2) induced robust GIRK channel activity with an EC(50) of about 4 nm. Among the eight outer surface mutants tested, blade 1 and blade 2 mutants (D1 and CD2) were far less active than the wild type in stimulating GIRK channels. However, the ability of D1 and CD2 to regulate type I and type II adenylyl cyclases was not very different from that of the wild type beta(1)gamma(2). As to the activities to stimulate phospholipase Cbeta(2), D1 was more potent and CD2 was less potent than the wild type beta(1)gamma(2). Additionally we tested four beta(1) mutants in which mutated residues are located in the top Galpha/beta interacting surface. Among them, mutant W332A showed far less ability than the wild type to activate GIRK channels. These results suggest that the outer surface of blade 1 and blade 2 of the beta subunit might specifically interact with GIRK and that the beta subunit interacts with GIRK both over the outer surface and over the top Galpha interacting surface.  相似文献   

18.
G protein-activated inwardly rectifying K(+) (GIRK) channels, expressed in atrial myocytes, various neurons, and endocrine cells, represent the paradigmatic target of beta gamma subunits released from activated heterotrimeric G proteins. These channels contribute to physiological slowing of cardiac frequency and synaptic inhibition. They are activated by beta gamma dimers released upon stimulation of receptors coupled to pertussis toxin-sensitive G proteins (G(i/o)), whereas beta gamma released from G(s) do not converge on the channel subunits. This is in conflict with the finding that dimeric combinations of various beta and gamma subunits can activate GIRK channels with little specificity. In the present study, we have overexpressed the major subtypes of cardiac beta-adrenergic receptors (beta(1)-AR and beta(2)-AR) in atrial myocytes by transient transfection. Whereas in native cells beta-adrenergic stimulation with isoproterenol failed to induce measurable GIRK current, robust currents were recorded from myocytes overexpressing either beta(1)-AR or beta(2)-AR. Whereas the beta(2)-AR-induced current showed the same sensitivity to pertussis toxin as the current evoked by the endogenous G(i/o)-coupled muscarinic M(2) receptor, isoproterenol-activated currents were insensitive to pertussis toxin treatment in beta(1)-AR-overexpressing myocytes. In contrast to a recent publication (Leaney, J. L., Milligan, G., and Tinker, A. (2000) J. Biol. Chem. 275, 921-929), sizable GIRK currents could also be activated by isoproterenol when the signaling pathway was reconstituted by transient transfection in two different standard cell lines (Chinese hamster ovary and HEK293). These results demonstrate that specificity of receptor-G protein signaling can be disrupted by overexpression of receptors. Moreover, the alpha subunit of heterotrimeric G proteins does not confer specificity to G beta gamma-mediated signaling.  相似文献   

19.
G protein-gated inwardly rectifying potassium (GIRK) channels are a family of K(+)-selective ion channels that slow the firing rate of neurons and cardiac myocytes. GIRK channels are directly bound and activated by the G protein G beta gamma subunit. As heterotetramers, they comprise the GIRK1 and the GIRK2, -3, or -4 subunits. Here we show that GIRK1 but not the GIRK4 subunit is phosphorylated when heterologously expressed. We found also that phosphatase PP2A dephosphorylation of a protein in the excised patch abrogates channel activation by G beta gamma. Experiments with the truncated molecule demonstrated that the GIRK1 C-terminal is critical for both channel phosphorylation and channel regulation by protein phosphorylation, but the critical phosphorylation sites were not located on the C terminus. These data provide evidence for a novel switch mechanism in which protein phosphorylation enables G beta gamma gating of the channel complex.  相似文献   

20.
Several mechanisms couple heterotrimeric guanine nucleotide-binding proteins (G proteins) to cellular effectors. Although alpha subunits of G proteins (Galpha) were the first recognized mediators of receptor-effector coupling, Gbetagamma regulation of effectors is now well known. Five Gbeta and 12 Ggamma subunit genes have been identified, suggesting through their diversity that specific subunits couple selectively to effectors. The molecular determinants of Gbetagamma-effector coupling, however, are not well understood, and most studies of G protein-effector coupling do not support selectivity of Gbetagamma action. To explore this issue further, we have introduced recombinant Gbetagamma complexes into avian sensory neurons and measured the inhibition of Ca(2+) currents mediated by an endogenous phospholipase Cbeta- (PLCbeta) and protein kinase C-dependent pathway. Activities of Gbetagamma in the native cells were compared with enzyme assays performed in vitro. We report a surprising selective activation of the PLCbeta pathway by Gbetagamma complexes containing beta(1) subunits, whereas beta(2)-containing complexes produced no activation. In contrast, when assayed in vitro, PLCbeta and type II adenylyl cyclase did not discriminate among these same Gbetagamma complexes, suggesting the possibility that additional cellular determinants confer specificity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号